
Formal Methods Analysis of the
Secure Remote Password Protocol

Alan T. Sherman1, Erin Lanus2, Moses Liskov3, Edward Zieglar4,
Richard Chang1, Enis Golaszewski1, Ryan Wnuk-Fink1,

Cyrus J. Bonyadi1, Mario Yaksetig1, and Ian Blumenfeld5

1 Cyber Defense Lab, University of Maryland, Baltimore County (UMBC),
Baltimore, MD 21250, USA, sherman@umbc.edu

2 Virginia Tech, Arlington, VA 22309, USA, lanus@vt.edu
3 The MITRE Corporation, Burlington, MA 01720, USA, mliskov@mitre.org

4 National Security Agency, Fort George G. Meade, MD 20755, USA,
evziegl@nsa.gov

5 Two Six Labs, Arlington, VA 22203, USA, ian.blumenfeld@twosixlabs.com

Abstract. We analyze the Secure Remote Password (SRP) protocol for
structural weaknesses using the Cryptographic Protocol Shapes Analyzer
(CPSA) in the first formal analysis of SRP (specifically, Version 3).
SRP is a widely deployed Password Authenticated Key Exchange (PAKE)
protocol used in 1Password, iCloud Keychain, and other products. As
with many PAKE protocols, two participants use knowledge of a pre-
shared password to authenticate each other and establish a session key.
SRP aims to resist dictionary attacks, not store plaintext-equivalent pass-
words on the server, avoid patent infringement, and avoid export controls
by not using encryption. Formal analysis of SRP is challenging in part
because existing tools provide no simple way to reason about its use of
the mathematical expression v + gb mod q.
Modeling v + gb as encryption, we complete an exhaustive study of all
possible execution sequences of SRP. Ignoring possible algebraic attacks,
this analysis detects no major structural weakness, and in particular no
leakage of any secrets. We do uncover one notable weakness of SRP,
which follows from its design constraints. It is possible for a malicious
server to fake an authentication session with a client, without the client’s
participation. This action might facilitate an escalation of privilege at-
tack, if the client has higher privileges than does the server. We conceived
of this attack before we used CPSA and confirmed it by generating cor-
responding execution shapes using CPSA.

Keywords: cryptographic protocols · cryptography · Cryptographic Pro-
tocol Shapes Analyzer (CPSA) · cybersecurity · formal methods · Pass-
word Authenticated Key Exchange (PAKE) protocols · protocol analysis
· Secure Remote Protocol (SRP) · UMBC Protocol Analysis Lab (PAL).

2 A. Sherman et al.

1 Introduction

Cryptographic protocols underlie most everything that entities do in a networked
computing environment, yet, unfortunately, most protocols have never under-
gone any formal analysis. Until our work, this situation was true for the widely
deployed Secure Remote Password (SRP) protocol [28, 51–53]. Given the com-
plexity of protocols and limitations of the human mind, it is not feasible for
experts to find all possible structural flaws in a protocol; therefore, formal meth-
ods tools can play an important role in protocol analysis.

Protocols can fail for many reasons, including structural flaws, weak cryp-
tography, unsatisfied hypotheses, improper configuration, inappropriate applica-
tion, and implementation errors. We focus on structural weaknesses: fundamental
logic errors, which enable an adversary to defeat a protocol’s security objective
or learn secret information.

We analyze SRP for structural weaknesses in the first formal analysis of
SRP (specifically, Version 3, known as SRP-3). Using the Cryptographic Protocol
Shapes Analyzer (CPSA) [36] tool in the Dolev-Yao network intruder model [21],
we model SRP-3 and examine all possible execution sequences of our model.
CPSA summarizes these executions with graphical “shapes,” which we interpret.

SRP is a Password Authenticated Key Exchange (PAKE) protocol used in
1Password, iCloud Keychain, and other products. As with many PAKE proto-
cols, two participants use knowledge of a pre-shared password to authenticate
each other and establish a session key. SRP aims to resist dictionary attacks,
not store plaintext-equivalent passwords on the server, avoid patent infringe-
ment, and avoid export controls by not using encryption.

Formal analysis of any protocol is challenging, and analysis of SRP is partic-
ularly difficult because of its use of the mathematical expression v + gb mod q.
This expression involves both modular exponentiation and modular addition, ex-
ceeding the ability of automated protocol analysis tools to reason about modular
arithmetic. Although SRP claims to have no encryption, ironically, we overcome
this difficulty by modeling the expression as encryption, which, effectively it is.

We created a new virtual protocol analysis lab at UMBC. Embodied as a
virtual machine running on the Docker utility,6 this lab includes documentation,
educational modules for learning about protocol analysis, and three protocol
analysis tools: CPSA, Maude-NPA [25, 24], and Tamarin Prover [22].

Contributions of our work include: (1) The first formal analysis of the SRP-3
protocol for structural weaknesses, which we carried out using the CPSA tool.
Ignoring possible algebraic attacks, this analysis detects no major structural
weakness, and in particular no leakage of any secrets. (2) The discovery of the
first attack on SRP, in which it is possible for a malicious server to fake an
authentication session with the client, without the client’s participation. This
action might facilitate an escalation of privilege attack, if the client has higher
privileges than does the server.

6 www.docker.com

Formal Methods Analysis of the Secure Remote Password Protocol 3

2 Background and Previous Work

We briefly review formal methods for analyzing cryptographic protocols, CPSA,
PAKE protocols, and previous work on SRP.

2.1 Formal Methods for Analyzing Cryptographic Protocols

Several tools exist for formal analysis of cryptographic protocols, including
CPSA [19, 20, 29], Maude-NPA [24, 25], the Tamarin Prover [45], and ProVerif [8].
Created in 2005, CPSA outputs a set of “shapes” that describe all possible
protocol executions, which can reveal undesirable execution states including
ones caused by adversarial interference. Developed by Meadows [40] in 1992
as the NRL Protocol Analyzer, and rewritten into Maude language by Escobar
et al. [23] in 2005, Maude-NPA works backwards from explicitly-defined attack
states. The Tamarin Prover uses a multiset-rewriting model particularly well
suited for analyzing stateful protocols. ProVerif is an automated cryptographic
protocol verifier that operates on protocol specifications expressed in applied pi
calculus, which specifications it translates into Horn clauses. We choose to use
CPSA because we are more familiar with that tool, have easy access to experts,
and like its intuitive graphical output.

A variety of additional tools exist to support formal reasoning, including for
cryptography. For example, created in 2009, EasyCrypt7 supports “reasoning
about relational properties of probabilistic computations with adversarial code
. . . for the construction and verification of game-based cryptographic proofs.”
Cryptol [11] is a domain-specific language for cryptographic primitives. Cryptol
allows for the symbolic simulation of algorithms, and thus the ability to prove
properties of such by hooking into various constraint (SAT/SMT) solvers. Addi-
tionally, interactive theorem provers, such as Isabelle or Coq, have been used to
analyze cryptographic functions and protocols [3, 42]. These tools offer the po-
tential to verify any property expressible in their underlying logics (higher-order
logic or dependent type theory, respectively) but sacrifice automation.

The 1978 Needham-Schroeder [41] public-key authentication protocol dra-
matically illustrates the value of formal methods analysis and limitations of ex-
pert review. In 1995, using a protocol analysis tool, Lowe [38] identified a subtle
structural flaw in Needham-Schroeder. This flaw had gone unnoticed for 17 years
in part because Needham and Schroeder, and other security experts, had failed
to consider the possibility that the intended recipient might be the adversary.
Thus, for example, if Alice authenticates to Bob, then Bob could impersonate
Alice to Charlie. CPSA easily finds this unexpected possible execution sequence,
outputting a suspicious execution shape.

Cryptographers sometimes present a Universal Composability (UC) proof of
security [12], but such proofs as typically written are long and complex and can
be difficult to verify. For example, Jarecki, Krawczyk, and Xu’s [33] UC proof of
the OPAQUE protocol is in a 61-page complex paper. There is, however, recent

7 https://www.easycrypt.info/trac/#no1

4 A. Sherman et al.

work on mechanically checking UC proofs (e.g., see Canetti, Stoughton, and
Varia [13]), including Dolev-Yao versions of UC (e.g., see Böhl and Unruh [9]
and Delaune, Kremer, and Pereria [16].) By contrast, to analyze SRP-3, CPSA
requires only a relatively short and easy-to-verify input that formally defines the
protocol in terms of its variables, the participant roles, and the messages sent
and received.

2.2 Cryptographic Protocol Shapes Analyzer

The Cryptographic Protocol Shapes Analyzer (CPSA) [29, 36, 43] is an open-
source tool for automated formal analysis of cryptographic protocols. The tool
takes as input a model of a cryptographic protocol and a set of initial assumptions
called the point of view, and attempts to calculate a set of minimal, essentially
different executions of the protocol consistent with the assumptions. Such exe-
cutions, called shapes, are relatively simple to view and understand. Executions
in which something “bad” happens amount to illustrations of possible attacks
against the protocol. Conversely, when some property holds in all shapes, it is a
property guaranteed by the protocol.

CPSA is a tool based on strand space theory [20, 26], which organizes events
in a partially-ordered graph. In strand space theory, events are transmissions
or receptions of messages, and sequences of events called strands capture the
notion of the local viewpoint of a participant in a network. CPSA also has state
events, which comprise initializing, observing, and transitioning between states.
Protocols are defined as a set of legitimate participant roles, which serve as
templates for strands consistent with the protocol requirements.

Bundles are the underlying execution model, in which every reception is ex-
plained directly by a previous transmission of that exact message. A bundle of
a particular protocol is a bundle in which all the strands are either (1) generic
adversary behavior such as parsing or constructing complex messages, or en-
crypting or decrypting with the proper keys, or (2) behavior of participants in
the protocol consistent with the protocol roles.

CPSA reasons about bundles indirectly by analyzing skeletons, which are
partially-ordered sets of strands that represent only regular behavior, along with
origination assumptions that stand for assumptions about secrecy and/or fresh-
ness of particular values. For example, such assumptions might include that a
key is never revealed or a nonce is freshly chosen and therefore assumed unique.
Some skeletons represent, more or less, the exact set of regular behavior present
in some bundle consistent with the secrecy and freshness assumptions; such
skeletons are called realized skeletons. Realized skeletons are a simplified rep-
resentation of actual protocol executions. Non-realized skeletons may represent
partial descriptions of actual executions, or may represent a set of conditions
inconsistent with any actual execution [36].

The CPSA tool creates visualizations of skeletons as graphs in which events
are shown as circles in columns, where each column represents a strand. Within
each strand, time progresses downward. Arrows between strands indicate neces-
sary orderings (other than orderings within strands, or those that can be inferred

Formal Methods Analysis of the Secure Remote Password Protocol 5

transitively). That is, an arrow from event P to event Q denotes that, for Q to
take place, it is necessary for P to take place first. A solid arrow represents a
transmission of some message to a reception of exactly that message. A dashed
arrow indicates that the adversary altered the message. The color of a circle indi-
cates the type of event: black circles are transmissions; blue circles are receptions;
and grey circles deal with state that is assumed to be not directly observable
by the attacker. A blue arrow from state event P to state event Q denotes that
Q’s strand observes, or transitions from, the state associated with P ; it can ap-
pear only between two state events (e.g., grey circles) of different strands. For
example, Figure 3 in Section 5.1 shows such a visualization.

2.3 PAKE Protocols

PAKE protocols evolved over time in response to new requirements and newly
discovered vulnerabilities in authentication protocols [10]. Initially, authentica-
tion over a network was carried out simply with a username and password sent in
the clear. Unlike terminals hardwired to a computer, networks provided new and
easier ways for intruders to acquire authentication credentials. Passively moni-
toring a network often harvested credentials sufficient to gain remote access to
systems. In the 1980’s, Kerberos [47] attempted to mitigate this vulnerability
by no longer transmitting passwords. Unfortunately, the structure of Kerberos
messages and the use of passwords as keys created opportunities for password
guessing and dictionary attacks against the passwords, without requiring the
intruder to acquire the password file directly from the server. Weak, user-chosen
passwords simplified such attacks.

In 1992, with their Encrypted Key Exchange (EKE) protocols, Bellovin and
Merrit [6] evolved PAKE protocols to address the weaknesses in user-generated
passwords as keys. In 1996, that work led Jablon [32] to develop the Simple Pass-
word Exponential Key Exchange (SPEKE), which is deployed in the ISO/IEC
11770-4 and IEEE 1363.2 standards. As did Kerberos, to complicate dictionary
attacks, SPEKE incorporated random salt values into its password computations.
Attacks against the protocol in 2004 [54], 2005 [48], and 2014 [31], prompted
modifications to the protocol. Although these and similar protocols aimed to
protect against the use of weak passwords for authentication, none protected
the passwords from attack on the server’s password file. Access to the server’s
password file provided keys to authenticate as any user on the system.

Protection of the server’s authentication file became a primary new require-
ment that Wu [51, 52] aimed to address with the Secure Remote Password (SRP)
protocol in 1998. Wu addressed this requirement by not storing the password,
but instead a verifier consisting of a modular exponentiation of a generator raised
to the power of a one-way hash function of the password. Improving on earlier
PAKE protocols, the way SRP incorporates a random salt into the key computa-
tion prevents the direct use of server-stored verifiers as keys. In 2002, weaknesses
discovered against SRP-3 led Wu to propose a new version, SRP-6 [53].

Unfortunately, for each password, SRP publicly reveals the corresponding
salt, which facilitates pre-computation dictionary attacks on targeted passwords.

6 A. Sherman et al.

Aware of this vulnerability, Wu nevertheless considered SRP a significant im-
provement over what had come before. Avoiding pre-computation attacks led to
new approaches including the OPAQUE protocol [27, 33, 34].

2.4 Previous Work

SRP [49, 50] is a widely used password-authenticated key-establishment proto-
col, which enables two communicants to establish a secret session key, provided
the communicants already know a common password. SRP is faster than the
authenticated Diffie-Hellman key exchange protocol, and it aims to avoid patent
infringement and export control. In this protocol, an initiator Alice (typically a
client) authenticates to a responder Bob (typically a server).

In this paper, we analyze the basic version of SRP called SRP-3. SRP-6
mitigates a two-for-one attack and decreases communication times by allowing
more flexible message orderings.

Against a passive adversary, SRP-3 seems to be as secure as the Diffie-
Hellman problem [17, 28, 39]. It remains possible, however, that a passive ad-
versary can acquire information from eavesdropping without solving the Diffie-
Hellman problem. Against an active adversary, the security of SRP-3 remains
unproven.

Wu [52] claims to prove a reduction from the Diffie-Hellman problem to
breaking SRP-3 against a passive adversary, but his proof is incorrect: his re-
duction assumes the adversary knows the password, which a passive adversary
would not know.8 We are not aware of any other previous effort to analyze the
SRP protocol.

Wilson et al. [7] survey authenticated Diffie-Helman key agreement protocols.
Adrian et al. [1] analyze how such protocols can fail in practice. Schmidt et al. [45]
present automated analysis of Diffie-Helman protocols.

As an example of formal analysis of a protocol using CPSA, we note: In 2009,
Ramsdell et al. [43] analyzed the CAVES attestation protocol using CPSA, pro-
ducing shapes that prove desirable authentication and confidentiality properties.
The tool successfully analyzed the protocol despite the presence of hash functions
and auxiliary long-term keys. As another example, which illustrates the utility
of service roles, see Lanus and Zieglar [35]. Corin, Doumen, and Etalle [15] sym-
bolically analyze offline guessing attacks.

3 The Secure Remote Password Protocol

Figure 1 summarizes how SRP-3 works, during which Alice and Bob establish a
secret session key K, leveraging a password P known to Alice and Bob.

In SRP-3, all math is performed in some prime-order group Zq, where q is a
large prime integer. Let g be a generator for this group. The protocol uses a hash
function h. For brevity, for any x ∈ Zq, we shall write gx to mean gx mod q.

8 Wu incorrectly states the direction of his reduction, but his reduction actually pro-
ceeds in the correct direction.

Formal Methods Analysis of the Secure Remote Password Protocol 7

SRP-3 works in three phases: I. Registration. II. Key Establishment and
III. Key Verification. The protocol establishes a new session key K known to
Alice and Bob, which they can use, for example, as a symmetric encryption key.

Phase I works as follows: Before executing the protocol, Alice must register
her password P with Bob. Bob stores the values (s, v) indexed by “Alice”, where
s is a random salt, x = h(s, P) is the salted hash value of Alice’s password, and
v = gx is a non-sensitive verifier derived from P , which does not reveal x or P .

P, s, x = h(s, P), v = gx s, vClient Server

client

s

a, ga ga
ga

gb, u b, u
v + gb,u

K = h((v + gb − v)a+ux)

= h((gb)a+ux)

= h(gb(a+ux))

K = h((ga(gx)u)b)

= h((gagux)b)

= h((ga+ux)b)

= h(gb(a+ux))

h(ga, v + gb,K)

h(ga, h(ga, v + gb,K),K)

Fig. 1. Protocol diagram for SRP-3, which comprises three phases: Registration, Key
Exchange, and Key Verification. During key exchange, the server transmits to the client
the expression v + gb mod q, which we cannot directly model in CPSA. Variables on
arrows inside the lattice diagram indicate message transmissions. Variables to the left
or right of the lattice indicate terms known to the participants and the relative time
within the protocol that they know them. Variables in solid boxes denote values chosen.
Variables in dashed boxes denote values received.

Phase II works as follows:

1. Alice sends her identity “Alice” to Bob.
2. Bob receives Alice’s identity and looks up Alice’s salt s and stored verifier

v = gx, where x = h(s, P). Bob sends Alice her salt s.
3. Alice receives s, calculates x = h(s, P), and generates a random secret

nonce a. Alice calculates and sends ga to Bob.
4. Bob receives ga and generates a random secret nonce b and a random scram-

bling parameter u. Bob calculates and sends v+gb to Alice, together with u.

8 A. Sherman et al.

5. Each party calculates the session key K as the hash of a common value, which
each party computes differently. Alice calculates K = h((v + gb) − gx)a+ux

and Bob calculates K = h(gagux)b.

Thus, in Phase II, Alice and Bob establish a common session key K. In
Phase III, Alice and Bob verify that they have the same session key. Phase III
works as follows:

1. Alice computes M1 = h(ga, v+gb,K) and sends M1 to Bob. Bob verifies the
received value by recomputing M1 = h(ga, v + gb,K).

2. Bob computes M2 = h(ga,M1,K) and sends it to Alice. Alice verifies the
received value by recomputing M2 = h(ga,M1,K).

3. If and only if these two verifications succeed, the session key K is verified.

4 Modeling SRP-3 in CPSA

Using CPSA, we analyze SRP-3 in the Dolev-Yao network intruder model in
two steps: in this section, we model SRP-3 in CPSA; in the next section, we
interpret shapes produced by our model. Appendix A lists important snippets
of our CPSA sourcecode.

4.1 Challenges to Modeling SRP-3 in CPSA

CPSA provides two algebras to express protocols: basic and Diffie-Hellman. The
basic crypto algebra includes functions that support modeling of pairings, de-
composing a pair into components, hashing, encrypting by symmetric and asym-
metric keys, decrypting by keys, returning the “inverse of a key” (a key that can
be used to decrypt), and returning a key associated with a name or pair of
names. CPSA does not support arithmetic operations. The Diffie-Hellman al-
gebra extends the basic crypto algebra by providing sorts (variable types) that
represent exponents and bases, as well as functions for a standard generator
g, a multiplicative identity for the group, exponentiation, and multiplication of
exponents.

SRP-3 is challenging to model in CPSA because CPSA does not support any
of the following computations: addition of bases when the server sends v + gb,
subtraction of bases when the client computes (v + gb)− v, and addition of ex-
ponents (i.e., multiplication of bases) when the client computes the key. CPSA
handles only multiplication of exponents, and cannot be easily modified to han-
dle these additional algebraic operations, because CPSA makes use of general
unifications in its class of messages, and a full decision procedure in the theory
of rings is undecidable [14].

4.2 Our Model of SRP-3

We model SRP-3 by defining variables, messages, and associated roles. Critical
modeling decisions are how to represent the problematic expression v + gb, how

Formal Methods Analysis of the Secure Remote Password Protocol 9

to deal with multiplication of bases, and how to handle the initialization phase.
Figure 2 shows the SRP-3 protocol diagram as we modeled SRP-3 in CPSA.

There are two legitimate protocol participants, which we model by the client
and server roles (see Figure 8). We organize each of these roles into two phases:
initialization and main. The initialization phase establishes and shares the pass-
word, and it establishes the salt and verifier in the long-term memory of the
server.

We model the problematic expression v+gb as {|gb|}v, which is the encryption
of gb using v as a symmetric key. Indeed, this modular addition resembles a
Vernam Cipher. Thus, knowing gb requires knowledge of v. Previous researchers
have similarly modeled modular addition or exclusive-or as encryption (e.g., see
Arapinis et al. [2] and Ryan and Schneider [44].)

The other problematic expressions occur in the calculation of the key. The
key K is supposed to be equal to (gb)a+ux. Here, each party calculates this
value by calculating gab and gbux and multiplying them together. The client can
calculate these values from gb by raising gb to the a power and to the ux power.
The server calculates these values by raising ga to the b power, and by raising
gx = v to the bu power.

We emulate the multiplication of these base values by hashing them; since
both parties can calculate the two factors, each can calculate the hash of the
two factors. Thus, we represent the key K as K = h(gab, gbux), where h stands
for cryptographic hashing.

Finally, we explain how we model the initialization phase, and in particular,
how the client communicates their salt and verifier to the server. In the beginning
of the client and server roles, one could exchange the salt and verifier as a
message. This strategy, however, would prevent CPSA from exploring scenarios
in which the same client or server conducts multiple executions of the protocol
using the same password information exchanged during initialization. Instead,
we model the initialization phase using service roles, which provide a function
or service to one or more participant roles. Our service roles generate values,
store them in state, and exchange the values across a secure channel. These
values persist in state that can be accessed only by instances of the appropriate
main-phase roles.

Specifically, the client-init service role initializes a state record with the value
{“client state”, s, x, client, server} (see Figure 8). The “client state” string literal
serves the function of a label, enabling us to write client roles to observe state
that begins with that string. We store the salt and password hash because each
client role directly uses these values. The names of the client and server help to
link the state to the correct client-server pair.

After initializing its state, the client-init role sends a string literal “Enroll”,
together with the salt and verifier. The client-init role encrypts this message
using a long-term key known by the particular client and server. The server-init
role receives this message and initializes the server’s state by storing a string
literal “server record”, the salt and verifier, and the names of the client and
server.

10 A. Sherman et al.

client-init server-init

“client state,”

s, x

client, server

init

{|“Enroll,′′ s, gx|}client−server

“server record,”

s, v = gx

client, server

init

client server

client

obsv

s

a, ga ga
ga

gb, u b, gb, u{|gb|}v, u

K = h((gb)a, (gb)ux) K = h((ga)b, (gx)ub)

h(ga, {|gb|}v,K)

h(ga, h(ga, {|gb|}v,K),K)

Fig. 2. Protocol diagram for SRP-3, as we modeled it in CPSA. We introduce two
service roles, client-init and server-init, that handle the setup phase by instantiating
values for s, x, and v = gx, and by making these values available to the legitimate
client and server. We model the computation v+gb as an encryption of gb under key v.
The red circle indicates the variables stored inside the state. Solid lines pointing to the
circles denote initializing state values, and dashed lines indicate observing state.

Formal Methods Analysis of the Secure Remote Password Protocol 11

To prevent CPSA from instantiating an unlimited number of server-init and
client-init roles, we add a rule that disregards any executions in which there is
more than one instance of the server-init role for a specific client-server pair (see
Figure 9).

The model above is sufficient to verify most of the security properties of SRP,
but cannot verify the property that compromise of the server’s authentication
database cannot be used directly to gain immediate access to the server. The
reason is that if SRP meets its security goals, the verifier v is not leaked to the
adversary by the protocol. Therefore, to test whether or not access to v allows
the adversary to impersonate a client to the server, we need to use a model
in which the server-init role is modified to transmit the verifier it receives for
a client. This model provides the adversary with access to v that they cannot
obtain from SRP. For this property, it is sufficient to test only the server’s point
of view. Compromise of a server’s authentication database would allow anyone to
impersonate a server to the client and is not a property that SRP was designed
to prevent.

5 Interpreting Shapes from the SRP-3 Model

We generate and interpret shapes showing executions of our model of SRP-3
under various assumptions from the perspectives of various roles. Specifically,
we define skeletons that provide the perspectives of an honest client and an
honest server, respectively (see Figures 10 and 11). We also define listeners to
detect possible leaked values of the password hash x or verifier v (see Figures 12
and 13). Finally, we investigate if an adversary directly using a compromised
verifier could authenticate as a client (see Figure 6). CPSA completed its search,
generating all possible shapes for each point of view (see [37] for an explanation).

Figures 3–6 display selected shapes that highlight our main findings. These
shapes show that, when the client and server are honest, there is no attack
against our model of SRP-3: the only way the protocol completes is between a
client and a server. Similarly, CPSA found no leakage of x or v. CPSA also found
that an adversary directly using a compromised verifier cannot authenticate as
a client without access to internal values of the server.

Our public GitHub repository [46] includes interactive web-based visualiza-
tions of our CPSA shapes and skeletons, which provide more detailed information
than do the static images in this paper.

5.1 Client Point of View

Figures 3 and 4 show the two shapes generated from the perspective of an honest
client. The first shape is what we had expected. One added client-init strand
provides state needed for the client to access password information, and one
added server-init strand provides password information to the server strand. The
solid lines in the shape prove that the messages must come from the expected
parties, and the shape closely reflects the protocol diagram for our model.

12 A. Sherman et al.

The second shape explores the possibility that the adversary could replay the
client’s initial message to the server resulting in the server beginning two protocol
runs with the client. We are able to verify that it is the same server by observing
that the server variables in both strands are instantiated with the same value.
Only one of the server strands is able to complete, because the messages between
the two runs of the protocol cannot be confused. The shape indicates that there
is not any way for the adversary to take advantage of initiating multiple runs of
the protocol with the server.

serverclient-initserver-initclient

srp3 22 (realized)

Fig. 3. Shape showing an execution of SRP-3 from the client’s perspective. The client-
init service role begins the execution. The blue arrow from the client-init strand to the
client strand denotes that the client observes the initial state from client-init. Similarly,
the blue arrow from the server-init strand to the server strand denotes that the server
observes state from server-init. Horizontal black arrows between the client and server
represent successful message transmissions and receptions between these two protocol
participants. This graphical output from CPSA reveals expected behavior.

5.2 Server Point of View

Figure 5 shows the first of two shapes generated from the perspective of an
honest server. As happens for the client, two shapes result. The first shape is
similar to the protocol diagram for our model and is what we had expected. A
client is needed to complete the protocol, as are the service roles server-init and
client-init. The second shape indicates a replay of the client’s initial message
resulting in two server strands with the same server as indicated in the strands’

Formal Methods Analysis of the Secure Remote Password Protocol 13

serverclient-initserver-initserverclient

srp3 41 (realized)

Fig. 4. Shape showing an execution of SRP-3 from the client’s perspective, with an
additional run of the server. This graphical output from CPSA reveals two server roles
accessing the same state, causing them to behave like two instances of the same server.
The client can begin the protocol with one instance of the server, then complete it
with the other. This intriguing shape does not suggest any harmful attack but is an
unavoidable consequence of CPSA exploring two server strands.

14 A. Sherman et al.

instantiated variables. As with the additional shape in the client’s view, only
one of the server’s strands is able to complete, indicating that there is no attack
against the protocol from the server point of view.

clientclient-initserver-initserver

srp3 5119 (realized)

Fig. 5. Shape showing an execution of SRP-3 from the server’s perspective. This figure
is similar to Figure 3, except CPSA is now trying to explain the server events. CPSA
is able to explain the server events only by involving client-init, server-init, and client
roles, thus revealing expected behavior.

5.3 Privacy Properties

It is important that the password hash x = h(s, P) and the verifier v = gx

remain secret. To determine whether a network adversary can observe either of
these values in our model of SRP-3, we define two input skeletons to test these
privacy properties, one for x and one for v (see Figures 12 and 13). Because the
client knows x, we add the listener for x to the client point of view. Similarly,
because the server knows v, we add the listener for v to the server point of view.
Listeners in CPSA represent a test that a value can be found by the adversary.

For each of these skeletons, we ran CPSA. In each case, CPSA returned an
empty tree, meaning that there is no way to realize the skeleton as a shape,
which means that no such attack is possible in our model. In each case, CPSA
ran to completion, indicating that it explored all possible shapes for the model.

5.4 Leaked Verifiers

CPSA analysis of listeners for v confirms that the SRP protocol does not leak
the verifier v. Therefore, to analyze the protocol when the adversary has access

Formal Methods Analysis of the Secure Remote Password Protocol 15

to v, we modified server-init to leak the verifier to the adversary. In the presence
of this variant of the server-init role, CPSA discovered two main shapes: one is
the ordinary server point of view (Figure 5); the other shows that the adversary
is able to impersonate a client if the verifier has indeed leaked (Figure 6).

The situation is more subtle. The adversary is able to impersonate the client
only if they know both v and b, as an adversary might learn if the adversary
comprised the server. Initially, in our model of SRP-3, we did not require that b
and u be distinct, only that they be uniquely generated. CPSA found the imper-
sonation attack in part because CPSA deduced that the adversary could learn b
if b = u, since SRP-3 reveals u. Subsequently, when we added an additional
assumption that b 6= u, CPSA discovered only the expected shapes. This fact
validates the assertion that SRP is secure from an adversary directly using the
verifier to authenticate as a client without access to internal values of the server.

server-initclient-initserver

srp 7022 (realized)

Fig. 6. Shape showing an execution of SRP-3 from the server’s perspective, when the
verifier is leaked to the adversary and u = b. It is suspicious that CPSA can explain
all server events without invoking the client. In the last event of the server-init strand,
the server-init leaks the verifier to the adversary. The dashed arrow indicates that the
adversary is able to use the leaked verifier, together with their knowledge of b (since u is
publicly known), to satisfy the server strand’s final event, and complete the protocol.
This shape indicates an attack where the adversary impersonates the client to the
server, when the adversary learns the verifier and b.

6 A Malicious Server Attack against SRP

Our analysis in Section 5 assumes that legitimate participants of SRP-3 are
honest, meaning they will execute the protocol faithfully. In this section, we
explore an attack on SRP-3 in which the server is compromised. For example,

16 A. Sherman et al.

an adversary might corrupt the server to run a malicious process. In this at-
tack, the malicious server authenticates to itself, pretending to be a particular
client, without the client’s involvement. A possible goal of this attack might be
for the malicious server to escalate its privileges to those of the client, which
might be higher than those of the server. For example, a company might have a
high-power, low-trust offline computing server used by individuals with sensitive
access elsewhere in the network.

serverclient-initserver-initmalserver

srp3 23 (realized)

Fig. 7. Shape showing an execution of SRP-3 from the perspective of a malicious server
impersonating the client. It is notable that CPSA can explain all events of the malicious
server strand, simply by the malicious server knowing the state of the honest server
(without the malicious server knowing the client’s password). This graphical output
from CPSA reveals that a malicious server can impersonate the client to itself (the
server), thereby potentially inheriting the client’s higher privileges.

To analyze this attack, we define a malicious server role, which we call
malserver (see Figure 14). We provide to malserver only the information that an
honest server would have access to by observing the state initialized by a server-
init role. Consequently, malserver must compute the key using the same method
as carried out by an honest server. Malserver also acts like a client, initiating
the protocol and sending messages consistent with those from the client role.
Figure 14 also defines an associated skeleton, which enables CPSA to compute
a strand of the malserver role.

Figure 7 shows the first of two shapes produced by CPSA from the malserver
skeleton. As for honest participants, CPSA also produced a second shape that
shows the protocol can be started and completed with two different honest server

Formal Methods Analysis of the Secure Remote Password Protocol 17

roles on the same machine. Figure 7 shows the malserver initiating the protocol
by sending the client’s name and proceeding to interact with the server as though
it were the client, all the way through to the key verification messages. For
executions with a legitimate client, CPSA adds client-init and server-init strands,
as a result of the setup phase in which a client sends name, salt, and verifier to
the server. Here, however, there is no client strand. The server sends the final
black node on its strand only after the server verifies the hash provided by the
malserver strand, indicating that the server believes it is communicating with
the specified client.

The attack is possible because the malserver role is operating on the server
it is attacking (the server and malserver variables are equal) and has access to
the server’s internal values, as we discuss in the analysis of the leaked verifiers.
Even though this attack is not a part of the Dolev-Yao model that CPSA uses,
by creating a special malserver role outside of the normal protocol roles, we were
able to coax CPSA to explore the attack. This approach is similar to work by
Basin and Cremers [4, 5].

7 Discussion

We briefly discuss two limitations of our work: one arising from our modeling
of the problematic expression v + gb as encryption, the other arising from our
choice of CPSA’s point of view (see Section 2.2). We also comment briefly on
our experiences using CPSA.

Modeling the problematic expression as encryption enabled CPSA to carry
out its work. A consequence of this crucial decision, however, is that we analyzed
a slight variation of SRP-3 that might be stronger than SRP-3. By abstracting
these algebraic operations as strong encryption, our analysis cannot find possible
“algebraic attacks” that might take advantage of detailed algebraic relationships.
We are not aware of any such attacks on SRP-3 and do not suspect that they
exist, but we cannot exclude their possible existence. The consequences of this
crucial modeling decision are similar to those from the common practice of mod-
eling a particular encryption function as a strong encryption function, which
excludes the possibility of finding attacks that exploit possible weaknesses in the
particular encryption function.

CPSA exhaustively explores possible executions of a protocol from a speci-
fied point of view and set of assumptions. Such analysis holds only when those
assumptions are satisfied for that point of view. For example, initially, CPSA
did not find the malicious server attack described in Section 6. CPSA did not
find this attack because the adversary requires access to variables v and b, that
are not available through the messages exchanged and the assumptions of the
model. We were able to show that SRP-3 does not leak those values. Similarly,
initially, CPSA could not verify SRP-3’s property that access to the state vari-
able v by the adversary would not allow the adversary to impersonate a client
directly. To verify that property would require a model that made v available to
the adversary.

18 A. Sherman et al.

Subsequently, we explored two models to investigate possible impersonation
attacks. One model gave the adversary v; the other model gave the adversary v
and b. With these models, CPSA showed that the adversary can impersonate
the client if they know v and b, but not if they know only v (see Section 5).

Different assumptions and points of view can influence analyses. All formal
methods tools explore properties only within a specified scope and do not find
attacks outside that scope. Although CPSA did not initially discover the mali-
cious server attack, we were able to enlarge CPSA’s scope of search to find it. It
is possible, however, that there might be additional attacks outside our scope of
search.

During our analysis of SRP-3, the graphical outputs of CPSA helped us gain
insights into the properties of the protocol. Nevertheless, using CPSA effectively
was challenging. It required learning a new complex language, gaining experi-
ence interpreting shapes, devising techniques to model algebraic expressions that
cannot be expressed directly in CPSA, and exploring ways to expand CPSA’s
point of view. Embodied as a virtual machine, our virtual protocol lab avoids
the need for users to carry out complex installation procedures for each tool.

We found the following existing techniques useful. (1) Service roles (e.g.,
client-init, server-init) permitted us to share state between protocol participants
(e.g., server, client) and, more generally, to model aspects of protocols that do
not directly involve communications among participants. (2) We modeled certain
algebraic expressions as basic cryptographic operations such as encryption or
hashing. (3) Defining additional protocol participants (e.g., listeners, malicious
server) enabled us to explore additional properties of SRP-3 and to expand the
capabilities of the Dolev-Yao adversary. We are sharing theses and other lessons
in our lab’s educational materials.

8 Conclusion

Using CPSA, we formally analyzed the SRP-3 protocol in the Dolev-Yao network
intruder model and found it free of major structural weakness. We did find a
weakness that a malicious server can fake an authentication session with a client
without the client’s participation, which might lead to an escalation of privilege
attack.

Limitations of our analysis stem in part from our cryptographic modeling.
CPSA will not find attacks that exploit weak cryptography, and our use of CPSA
will not find any algebraic attacks. As all tool users must, we trust the correctness
of CPSA and its execution. Our results do not speak to a variety of other po-
tential issues, including possible implementation and configuration errors when
using SRP-3, inappropriate applications of it, and side-channel attacks.

Open problems include formal analysis of other PAKE protocols [30], includ-
ing the recent OPAQUE protocol [27, 33, 34], which, unlike SRP, tries to resist
precomputation attacks by not revealing the salt values used by the server.
OPAQUE is the most promising new protocol possibly to replace SRP. Be-
cause quantum computers can compute discrete logarithms in polynomial time,

Formal Methods Analysis of the Secure Remote Password Protocol 19

it would be useful to study and develop post-quantum PAKE protocols [18] that
can resist quantum attack.

We hope that our work, as facilitated by the virtual protocol analysis lab cre-
ated at UMBC, will help raise the expectation of due diligence to include formal
analysis when designing, standardizing, adopting, and evaluating cryptographic
protocols.

Acknowledgments

We appreciate the helpful comments from Akshita Gorti and the reviewers.
Thanks also to John Ramsdell (MITRE) and other participants at the Protocol
eXchange for fruitful interactions. This research was supported in part by the
U.S. Department of Defense under CySP Capacity grants H98230-17-1-0387,
H98230-18-1-0321, and H98230-19-1-0308. Sherman, Golaszewski, Wnuk-Fink,
Bonyadi, and the UMBC Cyber Defense Lab were supported also in part by
the National Science Foundation under SFS grants DGE-1241576, 1753681, and
1819521.

References

1. Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M., Halderman, J.A.,
Heninger, N., Springall, D., Thomé, E., Valenta, L., VanderSloot, B., Wustrow, E.,
Zanella-Béguelin, S., Zimmermann, P.: Imperfect Forward Secrecy: How Diffie-
Hellman Fails in Practice. In: Proceedings of the 22Nd ACM SIGSAC Conference
on Computer and Communications Security. pp. 5–17. CCS ’15, ACM, New York,
NY, USA (2015), http://doi.acm.org/10.1145/2810103.2813707

2. Arapinis, M., Mancini, L., Ritter, E., Ryan, M., Golde, N., Redon, K., Borgaonkar,
R.: New Privacy Issues in Mobile Telephony: Fix and Verification. In: Proceed-
ings of the 2012 ACM Conference on Computer and Communications Security. p.
205–216. CCS ’12, Association for Computing Machinery, New York, NY, USA
(2012), https://doi.org/10.1145/2382196.2382221

3. Bartzia, E.I., Strub, P.Y.: A formal library for elliptic curves in the Coq Proof
Assistant. In: International Conference on Interactive Theorem Proving. pp. 77–
92. Springer (2014)

4. Basin, D., Cremers, C.: Modeling and Analyzing Security in the Presence of Com-
promising Adversaries. In: Computer Security – ESORICS 2010. pp. 340–356.
Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

5. Basin, D., Cremers, C.: Know Your Enemy: Compromising Adversaries in Protocol
Analysis. ACM Trans. Inf. Syst. Secur. 17(2) (Nov 2014), https://doi.org/10.
1145/2658996

6. Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In: IEEE Symposium on Research in Security
and Privacy. pp. 72–84 (May 1992)

7. Blake-Wilson, S., Menezes, A.: Authenticated Diffie-Hellman Key Agreement Pro-
tocols. In: Proceedings of the Selected Areas in Cryptography. pp. 339–361. SAC
’98, Springer-Verlag, London, UK, UK (1999), http://dl.acm.org/citation.

cfm?id=646554.694440

20 A. Sherman et al.

8. Blanchet, B., Smyth, B., Cheval, V.: Proverif 1.90: Automatic
cryptographic protocol verifier, user manual and tutorial (2015),
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf

9. Böhl, F., Unruh, D.: Symbolic Universal Composability. Journal of Computer Se-
curity 24(1), 1–38 (Mar 2016)

10. Boneh, D., Shoup, V.: A graduate course in applied cryptography version 0.5
(January 2020), https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_
0_5.pdf

11. Browning, S.: Cryptol, a DSL for cryptographic algorithms. In: ACM SIGPLAN
Commercial Users of Functional Programming, pp. 1–1. ACM (2010)

12. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: Proceedings of the 42nd IEEE Symposium on Foundations of Com-
puter Science. p. 136. FOCS ’01, IEEE Computer Society, USA (2001)

13. Canetti, R., Stoughton, A., Varia, M.: EasyUC: Using EasyCrypt to Mechanize
Proofs of Universally Composable Security. In: 2019 IEEE 32nd Computer Security
Foundations Symposium (CSF). pp. 167–183 (2019)

14. Church, A.: An unsolvable problem of elementary number theory. American Jour-
nal of Mathematics 58(2), 345–363 (1936)

15. Corin, R., Doumen, J., Etalle, S.: Analysing password protocol security against
off-line dictionary attacks. Electronic Notes in Theoretical Computer Science 121,
47–63 (2005)

16. Delaune, S., Kremer, S., Pereira, O.: Simulation based security in the applied
pi calculus. In: Kannan, R., Kumar, K.N. (eds.) IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science. Leibniz
International Proceedings in Informatics (LIPIcs), vol. 4, pp. 169–180. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2009), http:

//drops.dagstuhl.de/opus/volltexte/2009/2316
17. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor.

22(6), 644–654 (Sep 2006), http://dx.doi.org/10.1023/A:1008302122286
18. Ding, J., Alsayigh, S., Lancrenon, J., RV, S., Snook, M.: Provably Secure Password

Authenticated Key Exchange Based on RLWE for the Post-Quantum World. In:
Handschuh, H. (ed.) Topics in Cryptology – CT-RSA 2017. pp. 183–204. Springer
International Publishing, Cham (2017)

19. Doghmi, S., Guttman, J., Thayer, F.J.: Skeletons and the shapes of bundles. In:
Proc. 7th Int. Workshop on Issues in the Theory of Security. pp. 24–25 (2006)

20. Doghmi, S.F., Guttman, J.D., Thayer, F.J.: Searching for shapes in cryptographic
protocols. In: Tools and Algorithms for Construction and Analysis of Systems
(TACAS). pp. 523–538. No. 4424 in LNCS (2007)

21. Dolev, D., Yao, A.C.: On the Security of Public Key Protocols. In: Pro-
ceedings of the 22nd Annual Symposium on Foundations of Computer Sci-
ence. pp. 350–357. SFCS ’81, IEEE Computer Society, Washington, DC,
USA (1981). https://doi.org/10.1109/SFCS.1981.32, http://dx.doi.org/10.

1109/SFCS.1981.32
22. Dreier, J., Duménil, C., Kremer, S., Sasse, R.: Beyond Subterm-Convergent Equa-

tional Theories in Automated Verification of Stateful Protocols (extended ver-
sion). In: Proceedings of the 6th International Conference on Principles of Se-
curity and Trust (POST 2017). pp. 117–140. Springer, Uppsala, Sweden (2017),
https://hal.inria.fr/hal-01430490/document, LNCS 10204

23. Escobar, S., Meadows, C., Meseguer, J.: A rewriting-based inference system for
the NRL protocol analyzer and its meta-logical properties. Theoretical Computer
Science 367(1-2), 162–202 (2006)

Formal Methods Analysis of the Secure Remote Password Protocol 21

24. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: Cryptographic Protocol
Analysis Modulo Equational Properties, pp. 1–50. Springer Berlin Heidelberg,
Berlin, Heidelberg (2009), http://dx.doi.org/10.1007/978-3-642-03829-7_1

25. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA, Version 3.0 (April 2017)

26. Fabrega, F.J.T., Herzog, J.C., Guttman, J.D.: Strand spaces: Why is
a security protocol correct? In: Proceedings. 1998 IEEE Symposium on
Security and Privacy (Cat. No.98CB36186). pp. 160–171 (May 1998).
https://doi.org/10.1109/SECPRI.1998.674832

27. Green, M.: Let’s talk about PAKE (October 2018), https://blog.

cryptographyengineering.com/2018/10/19/lets-talk-about-pake/

28. Green, M.: Should you use SRP? (October 2018), https://blog.

cryptographyengineering.com/should-you-use-srp/

29. Guttman, J.D., Liskov, M.D., Ramsdell, J.D., Rowe, P.D.: The Cryptographic
Protocol Shapes Analyzer (CPSA), https://github.com/mitre/cpsa

30. Haase, B., Labrique, B.: AuCPace: Efficient verifier-based PAKE protocol tailored
for the IIoT. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 1–48 (2018)

31. Hao, F., Shah, S.F.: The SPEKE Protocol Revisited. In: Proceedings of the 1st
International Conference on Security Standardisation Research. vol. 8893, pp. 26–
38. Springer, Switzerland (Dec 2014). https://doi.org/10.1007/978-3-319-14054-4

32. Jablon, D.P.: Strong password-only authenticated key exchange. ACM Computer
Communications Review 26(5), 5–26 (Oct 1996)

33. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: An asymmetric PAKE protocol se-
cure against pre-computation attacks. Cryptology ePrint Archive, Report 2018/163
(2018), https://eprint.iacr.org/

34. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: An Asymmetric PAKE Protocol Se-
cure Against Pre-computation Attacks, pp. 456–486. Advances in Cryptology, EU-
ROCRYPT (Jan 2018)

35. Lanus, E., Zieglar, E.: Analysis of a Forced-Latency Defense Against Man-in-the-
Middle Attacks. Journal of Information Warfare 16(2), 66–78 (2017), https://

www.jstor.org/stable/26502758

36. Liskov, M.D., Ramsdell, J.D., Guttman, J.D., Rowe, P.D.: The Cryptographic
Protocol Shapes Analyzer: A Manual. The MITRE Corporation (2016)

37. Liskov, M.D., Rowe, P.D., Thayer, F.J.: Completeness of CPSA. Technical Report
MTR110479, The MITRE Corporation (2011)

38. Lowe, G.: An attack on the Needham-Schroeder public-key authentication
protocol. Information Processing Letters 56(3), 131–133 (1995), http://www.

sciencedirect.com/science/article/pii/0020019095001442

39. Maurer, U.M., Wolf, S.: The Diffie-Hellman protocol. Designs, Codesm and
Cryptography 19(2-3), 147–171 (Mar 2000), http://dx.doi.org/10.1023/A:

1008302122286

40. Meadows, C.: NRL Protocol Analyzer. Journal of Computer Security 1(1) (1992)

41. Needham, R.M., Schroeder, M.D.: Using Encryption for Authentication in
Large Networks of Computers. Commun. ACM 21(12), 993–999 (Dec 1978).
https://doi.org/10.1145/359657.359659, http://doi.acm.org/10.1145/359657.

359659

42. Paulson, L.C.: Relations between secrets: Two formal analyses of the Yahalom
protocol. Journal of computer security 9(3), 197–216 (2001)

43. Ramsdell, J.D., Guttman, J.D., Millen, J.K., O’Hanlon, B.: An analysis of the
CAVES attestation protocol using CPSA. arXiv preprint arXiv:1207.0418 (2012)

22 A. Sherman et al.

44. Ryan, P.Y.A., Schneider, S.A.: An Attack on a Recursive Authentication Protocol.
A Cautionary Tale. Inf. Process. Lett. 65(1), 7–10 (Jan 1998), https://doi.org/
10.1016/S0020-0190(97)00180-4

45. Schmidt, B., Meier, S., Cremers, C., Basin, D.: Automated analysis of Diffie-
Hellman protocols and advanced security properties. In: 2012 IEEE 25th Computer
Security Foundations Symposium. pp. 78–94 (June 2012)

46. Sherman, A.T., Lanus, E., Liskov, M., Zieglar, E., Chang, R., Golaszewski, E.,
Wnuk-Fink, R., Bonyadi, C.J., Yaksetig, M., Blumenfeld, I.: PAL GitHub repos-
itory. https://github.com/egolaszewski/UMBC-Protocol-Analysis-Lab (June
2020)

47. Steiner, J.G., Neuman, B.C., Schiller, J.I.: Kerberos: An authentication service for
open network systems. In: Proceedings Winter USENIX Conference. pp. 191–202
(1988)

48. Tang, Q., Mitchell, C.J.: On the security of some password-based key agreement
schemes. In: International conference on Computational Intelligence and Security.
CIS ’05, vol. 3802, pp. 339–361. Springer, Berlin, Heidelberg, Germany (2005).
https://doi.org/10.1007/11596981-2

49. Taylor, D., Wu, T., Mavrogiannopoulos, N., Perrin, T.: RFC 5054, Using the secure
remote password (SRP) protocol for TLS authentication. Tech. rep., RFC Editor
(November 2007), https://doi.org/10.17487/rfc5054

50. Wu, T.: RFC 2944, Telnet Authentication: SRP. Tech. rep., RFC Editor (Septem-
ber 2000), https://doi.org/10.17487/rfc2944

51. Wu, T.: The Secure Remote Password Protocol. In: Proceedings of the Internet
Society on Network and Distributed System Security (1998)

52. Wu, T.: The SRP Authentication and Key Exchange System, RFC 2945 (Septem-
ber 2000)

53. Wu, T.: SRP-6: Improvements and Refinements to the Secure Remote Password
Protocol (October 2002)

54. Zhang, M.: Analysis of the SPEKE password-authenticated key ex-
change protocol. IEEE Communications Letters 8(1), 63–65 (Jan 2004).
https://doi.org/10.1109/LCOMM.2003.822506

To appear in Festschrift in Honour of Professor Andre Scedrov, Vivek Nigam,
Editor, LNCS, Springer (June 11, 2020).

A CPSA Sourcecode

We list critical snippets of CPSA sourcecode that we used to model SRP-3 and
carry out our analysis. A complete electronic version is available from our public
GitHub repository [46] .

Formal Methods Analysis of the Secure Remote Password Protocol 23

(defprotocol srp3 diffie-hellman

(defrole client-init

(vars (s text) (x rndx) (client server name))

(trace

(init (cat "Client state" s x client server))

(send (enc "Enroll" s (exp (gen) x) client (ltk client server))))

(uniq-gen s x))

(defrole server-init

(vars (s text) (v mesg) (client server name))

(trace

(recv (enc "Enroll" s v client (ltk client server)))

(init (cat "Server record" s v client server))))

(defrole client

(vars (client server name) (a rndx) (b u x expt) (s text))

(trace

(send client)

(recv s)

(obsv (cat "Client state" s x client server))

(send (exp (gen) a))

(recv (cat (enc (exp (gen) b) (exp (gen) x)) u))

(send (hash (exp (gen) a)

(enc (exp (gen) b) (exp (gen) x)) u

(hash (exp (gen) (mul b a)) (exp (gen) (mul b u x)))))

(recv (hash (exp (gen) a)

(hash (exp (gen) a)

(enc (exp (gen) b) (exp (gen) x)) u

(hash (exp (gen) (mul b a)) (exp (gen) (mul b u x))))

(hash (exp (gen) (mul b a)) (exp (gen) (mul b u x))))))

(uniq-gen a))

(defrole server

(vars (client server name) (a expt) (b u rndx) (s text) (v base))

(trace

(recv client) ; Server receives Client’s name

(obsv (cat "Server record" s v client server))

(send s)

(recv (exp (gen) a))

(send (cat (enc (exp (gen) b) v) u))

(recv (hash (exp (gen) a)

(enc (exp (gen) b) v) u

(hash (exp (gen) (mul a b)) (exp v (mul u b)))))

(send (hash (exp (gen) a)

(hash (exp (gen) a)

(enc (exp (gen) b) v) u

(hash (exp (gen) (mul a b)) (exp v (mul u b))))

(hash (exp (gen) (mul a b)) (exp v (mul u b))))))

(uniq-gen u b))

)

Fig. 8. Modeling of SRP-3 in CPSA. We define four roles: client-init, server-init, client,
and server. The client-init and server-init roles are service roles that initialize common
values between the client and server roles.

24 A. Sherman et al.

(defrule at-most-one-server-init-per-client

(forall ((z0 z1 strd) (client server name))

(implies

(and (p "server-init" z0 1)

(p "server-init" z1 1)

(p "server-init" "client" z0 client)

(p "server-init" "client" z1 client)

(p "server-init" "server" z0 server)

(p "server-init" "server" z1 server))

(= z0 z1))

)

Fig. 9. Rule added to SRP-3 to prevent CPSA from instantiating an unlimited number
of server-init roles, which would prevent CPSA from terminating.

(defskeleton srp3

(vars (client server name))

(defstrand client 7 (server server) (client client))

(non-orig (ltk client server)))

Fig. 10. Client skeleton of SRP-3, which provides CPSA a starting point for analyzing
SRP-3 from the client’s perspective.

(defskeleton srp3

(vars (client server name))

(defstrand server 7 (server server) (client client))

(non-orig (ltk client server)))

Fig. 11. Server skeleton of SRP-3, which provides CPSA a starting point for analyzing
SRP-3 from the server’s perspective.

(defskeleton srp3

(vars (client server name))

(defstrand client 7 (server server) (client client))

(deflistener x)

(non-orig (ltk client server)))

Fig. 12. Client skeleton of SRP-3 with listener for the value x, which provides CPSA
a starting point for analyzing SRP-3 from the client’s perspective. The listener role
helps CPSA determine whether an execution of SRP-3 can leak the value x.

Formal Methods Analysis of the Secure Remote Password Protocol 25

(defskeleton srp3

(vars (client server name))

(defstrand server 7 (server server) (client client))

(deflistener v)

(non-orig (ltk client server)))

Fig. 13. Server skeleton of SRP-3 with listener for the value v, which provides CPSA
a starting point for analyzing SRP-3 from the server’s perspective. The listener role
helps CPSA determine whether an execution of SRP-3 can leak the value v.

(defrole malserver

(vars (client server name) (a rndx) (b u expt) (s text) (v base))

(trace

(send client)

(recv s)

(obsv (cat "Server record" s v client server))

(send (exp (gen) a))

(recv (cat (enc (exp (gen) b) v) u))

(send (hash (exp (gen) a)

(enc (exp (gen) b) v) u

(hash (exp (gen) (mul a b)) (exp v (mul u b)))))

(recv (hash (exp (gen) a)

(hash (exp (gen) a)

(enc (exp (gen) b) v) u

(hash (exp (gen) (mul a b)) (exp v (mul u b))))

(hash (exp (gen) (mul a b)) (exp v (mul u b))))))

(uniq-gen a)

)

(defskeleton srp3

(vars (client server name))

(defstrand malserver 7 (server server) (client client))

(non-orig (ltk client server)))

Fig. 14. Modeling a malicious server in CPSA. We define the malserver role to behave
like a client while having access to the legitimate server’s initialized variables. The
associated skeleton provides CPSA a starting point for analyzing the malicious server
attack from the perspective of the malicious server.

