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Abstract—A boardroom election is an election with a small
number of voters carried out with public communications. We
present BVOT, a self-tallying boardroom voting protocol with
ballot secrecy, fairness (no tally information is available before
the polls close), and dispute-freeness (voters can observe that all
voters correctly followed the protocol).

BVOT works by using a multiparty threshold homomorphic
encryption system in which each candidate is associated with
a masked unique prime. Each voter engages in an oblivious
transfer with an untrusted distributor: the voter selects the index
of a prime associated with a candidate and receives the selected
prime in masked form. The voter then casts their vote by
encrypting their masked prime and broadcasting it to everyone.
The distributor does not learn the voter’s choice, and no one
learns the mapping between primes and candidates until the audit
phase. By hiding the mapping between primes and candidates,
BVOT provides voters with insufficient information to carry
out effective cheating. The threshold feature prevents anyone
from computing any partial tally—until everyone has voted.
Multiplying all votes, their decryption shares, and the unmasking
factor yields a product of the primes each raised to the number
of votes received.

In contrast to some existing boardroom voting protocols,
BVOT does not rely on any zero-knowledge proof; instead,
it uses oblivious transfer to assure ballot secrecy and correct
vote casting. Also, BVOT can handle multiple candidates in one
election. BVOT prevents cheating by hiding crucial information:
an attempt to increase the tally of one candidate might increase
the tally of another candidate. After all votes are cast, any party
can tally the votes.

keywords: Applied cryptography, boardroom voting, election
systems, oblivious transfer.

I. INTRODUCTION

Many of the proposed high-integrity election systems de-
pend on an election authority to administer elaborate proce-
dures or require voters to carry out complex steps, such as
executing and checking zero-knowledge proofs (ZKPs). We
propose a new boardroom voting protocol, BVOT, which is
self-tallying (any voter can tally the votes) and is based on
oblivious transfer (OT).

We focus on electronic boardroom voting, such as that
carried out at a meeting of shareholders or a board of directors.
A traditional boardroom election is an election that takes place
in a single room, where the voters can see and hear each
other [1]. The election is conducted by an untrusted party,
who could be a voter, also present in the room. We address
an electronic version of boardroom elections in which a small
number of voters participate in person or remotely through

web browsers or applications, in the absence of a substantial
election authority. The small scale of boardroom elections
permits the use of protocols and cryptographic primitives that
might be impractical at large scale. Examples of boardroom
voting include [2], [3], [4], [5]. By contrast, many other voting
systems require substantial election authorities (e.g., [6], [7],
[8], [9], [10], [11], [12]).

We seek an electronic boardroom voting system that pro-
vides each of the following properties [4], [2]:
• Fairness. None of the voters can learn a complete or

partial tally of the votes before casting their vote.
• Dispute-freeness. Each voter can observe if the other

voters have carried out the the protocol correctly.
• Perfect ballot secrecy. How each voter voted remains

secret during and after the election, and a partial tally of
the votes of any subset of voters is possible only with the
collaboration of all of the other voters.

• Self-tallying. Any voter can compute the tally.
The main novel feature of BVOT is its use of OT to

provide perfect ballot secrecy and ensure correct vote casting.
Doing so avoids the need for voters to carry out or verify
complex ZKPs. Given that Kilian [13] proved that oblivious
transfer is complete for two-party secure computations, it is
intriguing to explore applications of OT in voting. Nurmi
et al. [14] also used OT in an election system, but only to
distribute credentials to voters. BVOT can handle multiple
candidates in one election. By contrast, [2], [3], [4], [5]
require extensions with additional performance costs to handle
multiple candidates.

As shown in Figure 1, BVOT works by using a multiparty
threshold homomorphic encryption system in which each
candidate is associated with a masked unique prime. Each
voter engages in an OT with an untrusted distributor: the voter
selects the index of a prime associated with a candidate and
receives the selected prime in masked form. The distributor is
untrusted both for privacy and integrity. The voter then casts
their vote by encrypting their masked prime and broadcasting
it to everyone. The distributor does not learn the voter’s choice,
and no one learns the mapping between primes and candidates
until the audit phase.

By hiding the mapping between primes and candidates,
BVOT provides voters with insufficient information to carry
out effective cheating. The threshold feature prevents anyone
from computing any partial tally—until everyone has voted.
Multiplying all votes, their decryption shares, and the unblind-
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ing factor yields a product of the primes each raised to the
number of votes received. The small size of a boardroom
election enables everyone to factor this product. BVOT’s novel
use of primes to represent ballot choices enables BVOT to
handle multiple candidates without extensions.

Our contribution is a remote self-tallying boardroom voting
protocol based on OT that is fair and dispute free and enjoys
perfect ballot secrecy.

(a) Prime-to-candidate mapping. Each prime is associated with a
candidate.

(b) Oblivious transfer between voter and distributor.

Fig. 1: In BVOT, there are λ primes associated with each of the
m candidates. Each voter selects the index γ of an unknown
prime pγ associated with their chosen candidate and, through
an OTλm1 with an untrusted distributor, receives the selected
prime in masked form pγg

s. The distributor does not learn the
voter’s choice, and no one learns the mapping between primes
and candidates until the audit phase.

II. OBLIVIOUS TRANSFER

We briefly review our main building block—oblivious
transer (OT)—including selected OT protocols and their se-
curity and efficiency.

First introduced by Rabin [15], an OT protocol enables a
receiver to receive a piece of information from a sequence of
pieces of information from a sender, while hiding the selection
of information from the sender and hiding the rest of the
information from the receiver. Formally, in 1-out-of-2 OT,
denoted OT2

1, the sender has two strings s0, s1 and transfers sb
to the receiver, where the receiver selects b ∈ {0, 1} and the
following two conditions hold: (1) the sender does not know
the value of b, and (2) the receiver does not learn anything
about s1−b.

We will use a generalization 1-out-of-n OT, denoted OTn1 :
the sender has n strings and transfers one string to the receiver,
without knowing which string it transferred, and the receiver
does not learn anything about the other n− 1 strings.

An ideal implementation of OT uses a trusted third party:
after obtaining the strings from the sender, and the index
choice from the receiver, the trusted party sends the chosen
string to the receiver.

OT can be implemented using public-key cryptography
without a trusted third party. For example, OT2

1 can be im-
plemented as follows: the receiver creates two random public
keys but knows the private key corresponding to only one of
them. The receiver sends the two public keys to the sender.
The sender encrypts each string with a different public key
and sends the resulting ciphertexts to the receiver. Because
the receiver knows the private key corresponding to only one
of the public keys, the receiver will be able to decipher only
one of the strings, and the receiver will learn nothing about
the other string.

Implementing OT with public-key operations, however, is
computationally expensive. Seeking faster implementations,
researchers have explored the possibility of implementing
OT using symmetric-key cryptography, but Impagliazzo and
Rudich [16] showed that it is unlikely to find black-box
constructions of OT using one-way functions.

Seeking greater efficiency, Bellare and Micali [17] created
an OT2

1 that requires two rounds. Naor and Pinkas [18] reduced
the number of exponentiations during run-time in Bellare
and Micali from two to one on the sender’s side. They also
extended OT2

1 to OTn1 . In this OTn1 technique, the sender
performs n exponentiations in the initialization step, and uses
the resulting values for all subsequent transfers.

Noar and Pinkas [19] showed how to extend an OT2
1

protocol to an OTn1 protocol—with O(n log n) calls to OT2
1—

that provides sender and receiver security computationally,
if the underlying OT2

1 provides sender and receiver security
(see Section VI for definitions). Among the most efficient OT
protocols that are secure against active adversaries (including
possibly sender and/or receiver) are [20], [21], [22]. In BVOT,
vote correctness and ballot secrecy rely on the security of OT,
so it is crucial that the OT is secure against an active adversary.

Because there are few voters in BVOT, the performance of
the underlying OT is tolerable: BVOT uses one OTn1 for each
voter, and these OTn1 s can be executed in parallel. Chou and
Orlandi [21] computed more than 10, 000 OT2

1s per second
using one thread of an Intel Core i7-3537U processor. Even
with the overhead of building each OTn1 from OT2

1s using Noar
and Pinkas’s technique, the OTn1 s in BVOT can be executed
sufficiently quickly.

III. PREVIOUS AND RELATED WORK

We briefly review selected self-tallying boardroom voting
protocols that provide ballot secrecy. We also review selected
protocols that use OT as a primary building block.

A. Self-Tallying Boardroom Voting Protocols

Kiayias and Yung [2] proposed the first self-tallying board-
room voting protocol with perfect ballot secrecy. Groth [3]
simplified the protocol and reduced its computational com-
plexity, preserving the same security properties. Hao et al. [4]
proposed a similar self-tallying, dispute-free protocol with
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perfect ballot secrecy that needs only two rounds of commu-
nication.

In the protocols of Hao et al. and Groth, for each 1 ≤ i ≤ n,
voter Vi chooses a vote vi ∈ {0, 1} (1 for “yes” and 0 for
“no”) and computes gvi , where g is a generator of a group in
which the Diffie-Hellman assumption holds [23]. Each voter
publishes gviAi as their masked vote, for some secret masking
value Ai. Hao generates Ai differently than does Groth. In
each protocol, the Ai’s are chosen so that

∏n
i=1Ai = 1.

Therefore,
∏n
i=1 g

viAi = g
∑
vi . The number of “yes” votes

is
∑
vi. Because this sum is small, it can be easily calculated

given g
∑
vi , even assuming the discrete logarithm problem is

hard.
In Hao et al. and Groth, using a ZKP, each voter proves

that they voted correctly by proving vi ∈ {0, 1} (and not, for
example, vi = 2). The correctness of their protocols depends
on this ZKP. By contrast, BVOT does not require such proofs.

The main difference between the protocols of Hao et al.
and Groth is how they compute

∏n
i=1 g

viAi. In Hao et al.,
voters publish their masked votes in one round, enabling this
product to be computed immediately. In Groth, voters compute
the product sequentially. Consequently, Hao et al.’s protocol
requires two rounds of communication, whereas Groth requires
n+1 rounds. Our protocol is similar to Hao et al.’s and requires
only five rounds of communication.

Szepieniec and Bart [24] proposed a protocol similar to
Kiayias and Yung that also provides fairness. Giustolisi et
al. [25] showed how to reuse the key-sharing round in Hao et
al., reducing the number of rounds to one in all subsequent
elections. Adding a commitment round to Hao et al., Khader et
al. [5] achieve fairness, and, by introducing a recovery round,
they achieve robustness (Section VI-F).

In each of these protocols, because each vote is 0 or 1, the
protocol must be executed once for each candidate. Cramer et
al. [26] proposed a technique for handling multiple candidates
in one protocol execution by using independent generators
for the underlying group, one per candidate. Their technique
complicates the ZKPs. By contrast, without any ZKPs, BVOT
supports multiple candidates in one protocol execution by
using a separate small prime integer for each candidate.

B. Applications of Oblivious Transfer
OT is a powerful primitive that can be used alone to

implement any secure two-party [13] and multiparty [27]
secure computation. We briefly point out three examples.

Nurmi et al. [14] used OTn1 to enable a trusted election
authority to distribute a credential to each of the n voters, such
that the election authority does not know the credential of any
voter. Each voter uses their credential to cast their ballot. OT
prevents the election authority from linking voters and their
ballots. By contract, BVOT does not depend on a trusted third
party, and BVOT uses OT to prevent cheating and to hide
primes associated with candidates.

Even et al. used OT to sign contracts [28]. Two parties
use OT2

1 to exchange secrets, where knowledge of the other’s
secret implies their commitment to the contract. Here, OT
guarantees: each party sends its secrets correctly, and both
parties simultaneously exchange their secrets.

Fagin et al. [29] used OT to enable two parties to compare
their secrets without revealing them (e.g., a user wants to prove
their identity using a password but does not trust the medium).

IV. THE BVOT VOTING SYSTEM

We explain the BVOT self-tallying boardroom voting sys-
tem by describing the election organization, our adversarial
model, the underlying homomorphic encryption system, the
voting protocol, and a small example.

A. Election Organization
There is a set of untrusted voters, and one of them is

designated as the distributor. The distributor generates certain
values and uses OT to distribute them to the other voters. After
all votes are cast and published, anyone—including voters and
non-voters—can tally the votes. Instead of using a bulletin
board to post information, for simplicity, BVOT relies on
broadcasting messages.

B. Adversarial Model
Voters communicate with each other from trusted machines

(running a trusted app) over an authenticated channel. A covert
polynomial-time adversary (possibly a voter) listens to all
communications.

The adversary and voters are cautious: they will follow the
protocol and they do not want to be caught misbehaving, but
they may try to cheat in favor of some candidate or to learn
how others voted. Subject to this constraint, the adversary can
behave actively, including as sender or receiver of an OT.

The adversary cannot break standard cryptographic func-
tions. We assume that the adversary does not try to sabotage
or delay the election. In particular, in the spirit of boardroom
elections, we assume that none of the voters will intentionally
lie (e.g., make a false claim of malfeasance) for the purpose
of discrediting the election.

C. The Homomorphic Encryption System
BVOT uses a multiparty threshold encryption system based

on ElGamal, similar to that described by Benaloh [30]. Voters
agree on a multiplicative group G = Z∗q of order q − 1, with
generator g, for which group the Diffie-Hellman problem is
hard [23]. Here, q is a large prime such that q− 1 has at least
one large factor.

a) Key Generation.: Each voter Vi chooses a private key
di ∈R G at random and sends gdi to all other voters. The
product e =

∏n
i=1 g

di is the public key of the set of n voters.
These keys can be used for multiple elections.

b) Encryption.: To encrypt any message M using key e,
voter Vj computes EVj (M) = (gxj ,Mexj ), where xj ∈R G
is a value chosen randomly by Vj .

c) Decryption.: For ciphertext (gxj ,Mexj ), the decryp-
tion share of voter Vi is (gxj )

−di . To decipher this ciphertext,
multiply Mexj by all decryption shares for this ciphertext:

Mexj
n∏
i=1

(gxj )
−di =M

n∏
i=1

(
gdi
)xj n∏

i=1

(gxj )
−di

=Mg0 =M.

(1)
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D. Boardroom Voting Protocol

We describe the four steps of the voting protocol in detail,
in which n voters choose among m candidates. All crypto-
graphic operations take place in a multiplicative group G,
as defined in Section IV-C. For each positive integer k, let
Zk = {0, 1, 2, . . . , k − 1}.
Step 1. Election Setup

a) The voters select a distributor D.
b) The voters agree on a parameter λ, which denotes the

number of primes to represent each candidate (having
multiple primes per candidate mitigates certain attacks
by creating uncertainty which prime a voter selected).

c) D chooses any λm primes p1, p2, . . . pλm such that
bn < q, where b = max(p1, p2, . . . , pλm). Hence, the
product of any n of the primes is less than q.

d) Using a standard numbering system, D associates the
index of each of the primes with some candidate. Let
M : Zλm → Zm denote this mapping. In particular,
primes p1, p2, . . . , pλ are associated with Candidate 1;
primes pλ+1, pλ+2, . . . , p2λ are associated with Candi-
date 2; and so forth.

e) D selects a mask s ∈R G at random. D commits to
M and s (e.g., by publishing a cryptographic hash of
these values).

f) D masks each prime p as pgs.
Masking the primes mitigates certain attacks involving

substituting one prime for another, in hopes of favoring some
candidate: the adversary does not know which prime would
affect which candidate. Furthermore, the distributor knows the
mapping but not which primes are used in the votes, in part
because there are multiple primes per candidate.

As an example of an election setup, consider an election
with 128 voters held using a group with q having 2048 bits.
If b < 216, then there would be 6542 primes available to
represent the candidates. In this example, λ can be chosen
such that λm > 128 (see Section VI-B).
Step 2. Vote Selection

a) To select their candidate, each voter engages in an
OTλm1 with D as the sender using the λm masked
primes. The candidate selects an index of a prime
associated with their candidate, as given by M. The
candidate receives the corresponding masked prime.

As a result of the OT, D does not learn the voter’s
selection.

Step 3. Vote Casting
a) Each non-distributor voter Vi publishes the encryption

of their chosen masked prime prig
s, encrypted with

the public key e of the set of voters: EVi(prigs) =
(gxi , (prig

s)exi), where xi ∈R G is chosen at random.
b) The distributor D = Vδ publishes the encryption of

their unmasked prime: EVδ(prδ) = (gxδ , prδe
xδ).

Encryption prevents anyone from learning the chosen
primes, even after s is eventually revealed.

Step 4. Vote Tallying
a) After all votes are cast, D broadcasts (

∏n
k=1 g

xk)
−dδ ,

which is its decryption share of the product of the gk

values from the encrypted votes from all other
voters. Then, each other voter Vi broadcasts
(
∏n
k=1 g

xk)
−di , which is its decryption share of

this product.
b) D publishes M (defined in terms of masked primes).

From this value, each voter verifies that they received
a masked prime that corresponds to their chosen can-
didate. This step gives each voter an opportunity to
file an allegation that they received the wrong masked
prime—before the voter learns the tally.

c) D publishes g−(n−1)s and s.
d) Anyone can tally the votes by calculating and factor-

ing the product P of all encrypted votes, the encryption
shares, and g−(n−1)s. This product is the product of the
selected candidate primes, each raised to the number
of votes for that prime. That is,

P =

(prδe
xδ)

n∏
i=1
i6=δ

(prig
s)exi


g−(n−1)s

(
n∏
k=1

gxk

)−dδ n∏
i=1
i 6=δ

(
n∏
k=1

gxk

)−di
=pr1pr2 . . . prn

=pa11 p
a2
2 . . . paλmλm .

(2)

The sum of the votes is a1 + a2 + · · · + aλm = n,
and no candidate prime can be selected more than n
times: 0 ≤ a1, a2, . . . , aλm ≤ n. Because boardroom
elections involve a small number of voters, the primes
p1, p2, . . . , pλm and their powers are small. Therefore, P
can be easily factored.

E. An Example with Three Candidates and Four Voters

We illustrate BVOT in an election in which four voters
(V1, V2, V3, V4) select among three candidates 1,2,3. Assume
V4 is the distributor D.

For this example, we will represent each candidate by
λ = 3 distinct primes (see Section VI-B). Let these distinct
primes be p1, p2, . . . , p9. Distributor D randomly partitions the
list of primes to associate three primes with each candidate,
cryptographically commits to this association, but does not
immediately reveal the association. D selects a mask s ∈R G
at random and masks each prime p by computing pgs.

Using the following standard numbering system, Candi-
date 1 is associated with indices 1,2,3; Candidate 2 is asso-
ciated with indices 4,5,6; and Candidate 3 is associated with
indices 7,8,9.

Using the standard numbering system described above, each
voter selects a candidate by engaging in an OT9

1 with D to
receive one of the nine masked primes. For example, to select
Candidate 2, the voter would select index 4, 5, or 6 in the OT.
As a result of the OT, the voter receives the masked prime
corresponding to their chosen index. D does not learn the
selected index, and the voter learns only the selected masked
prime.
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For each 1 ≤ i ≤ 3, let prig
s denote the masked prime

received by Vi. Each voter encrypts their masked prime with
the public key e of the set of voters. Each voter publishes
the resulting ciphertext by sending it to the other voters. For
example, V1 publishes EV1

(pr1g
s) = (gx1 , (pr1g

s)ex1). Simi-
larly, D publishes the encryption of their selected unmasked
prime pr4 .

After all encrypted votes are published, D publishes
(
∏4
k=1 g

xk)−d4 , which is its decryption share of the product of
the gk values from the encrypted votes from the other voters.
Next, each of the other voters publishes their decryption share
of this product. For example, V1 publishes (

∏4
k=1 g

xk)−d1 .
Finally, D publishes the prime-to-candidate mapping, g−3s,

and s. From the published values, anyone can compute the
tally by decrypting and unmasking the selected masked primes
and computing their product. Specifically, the product, P , of
all published encrypted masked primes, decryption shares, and
g−3s yields the tally encoded as a product of the nine candidate
primes, each raised to the number of votes for that prime. To
wit,

P =((pr1g
s)ex1)((pr2g

s)ex2)((pr3g
s)ex3)(pr4e

x4)

(

4∏
k=1

gxk)−d1(

4∏
k=1

gxk)−d2(

4∏
k=1

gxk)−d3

(

4∏
k=1

gxk)−d4(g−3s)

=pr1pr2 . . . pr4 = pa11 p
a2
2 . . . pa99 ,

(3)

where, for each 1 ≤ i ≤ 9, ai is the number of votes for prime
pi. Thus, a1 + a2 + · · · + a9 = 4 is the sum of the votes. In
particular, if the primes for Candidate 1 were p3, p4, p9, then
Candidate 1 would have received a3 + a4 + a9 votes.

V. COMMUNICATION AND PERFORMANCE ANALYSIS

We analyze and compare the computational and communi-
cation complexity of BVOT with that of selected other self-
tallying boardroom voting protocols. Our analysis considers
one election with n voters and m candidates, using security
parameter λ.

The key-generation step requires one exponentiation per
voter. Each voter performs one homomorphic encryption and
computes the product of n decryption shares; each of these
steps requires one exponentiation. BVOT performs n − 1
parallel sessions of OTλm1 .

The distributor makes one commitment to the mapping M.
In addition to their role as a voter, the distributor performs
one more exponentiation to compute g−(n−1)s.

BVOT requires five broadcast rounds, three of which are
performed solely by the distributor: (1) Each voter broadcasts
their public keys. (2) Each voter broadcasts their encrypted
vote. (3a) The vote distributor broadcasts its decryption share.
(3b) Each voter broadcasts their decryption share. (4a) The
vote distributor broadcastsM. (4b) The vote distributor broad-
casts g−(n−1)s and s.

Table I compares the computational and communication
complexity of BVOT to that of four other selected self-tallying
boardroom voting protocols.

TABLE I: Communication and performance of selected self-
tallying boardroom voting protocols, for one election with n
voters.

Protocol
Metric KY [2] G [3] HRZ [4] KSRH [5] * BVOT
OT sessions 0 0 0 0 n− 1
Exponentiations 2n2 + 2n 4n 2n 2n 3n
ZKPs 2n2 + 2n 4n 2n 2n 0
Broadcast rounds 3 n+ 1 2 3 5

* without robustness

BVOT has significantly better performance than [2] and
[3] in that [2] requires a quadratic number of exponentiations
and ZKPs, and [3] requires a linear number of broadcast
rounds, as a function of the number of voters. BVOT is roughly
similar in performance to [4] and [5], with ZKPs replaced with
OTs.

BVOT supports multiple candidates, whereas [2], [3], [4],
[5] require extensions with additional costs to support multiple
candidates. BVOT and [5] are fair, but [2], [3], [4] are not.
In Table I, we used a non-robust version of [5] because none
of the other protocols are robust; the robust version of [5]
requires additional costs.

VI. SECURITY NOTES

We discuss the security properties of BVOT, including
dispute freeness, perfect ballot secrecy, fairness, robustness,
and coercion resistance. First, we give definitions of receiver
and sender security for OT, and we explain implications of
choosing the parameter λ. Table II summarizes our security
comparison of BVOT with four selected other self-tallying
boardroom voting systems.

A. Security of Oblivious Transfer

Adapting definitions from Naor and Pinkas [19], we state
definitions of receiver and sender security for OT. Receiver
security means that the sender does not learn the receiver’s
choice of strings.

Definition 1: Receiver security in OT. An OTm1 pro-
vides receiver security if and only if, for any probabilistic
polynomial-time sender A with m strings s1, s2, . . . sm,
given any 1 ≤ i < j ≤ m where the receiver chose either
si or sj , A cannot distinguish whether the receiver chose si
or sj .

Sender security means that the receiver does not learn
anything other than the string they chose. Sender security is
defined in terms of a comparison between the information
the receiver learns in the ideal implementation of oblivious
transfer and the information the receiver learns in the real
implementation.

Definition 2: Sender security in OT. An OTλm1 pro-
vides sender security if and only if, for every probabilistic
polynomial-time receiver B, substituting B in the real im-
plementation of the protocol, there exists a probabilistic
polynomial-time machine B′ for the receiver’s role in the
ideal implementation such that, for every sequence of strings
s1, s2, . . . sλm of the sender, the outputs of B and B′ are
computationally indistinguishable.
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Because secure OT protocols (Definitions 1 and 2) are
secure against malicious senders and receivers [20], [21], [22],
BVOT sufficiently handles malicious senders and receivers in
the OT protocol.

B. Choosing the Number of Primes for a Candidate

The parameter λ specifies the number of primes associated
with each candidate. Its purpose is to mitigate the threat that
the distributor might try to reduce some candidate’s votes and
increase some other candidate’s votes (without changing the
total number of votes) by exploiting its knowledge of the
mapping M. Choosing λ such that λm/n > 1 is sufficiently
large protects against this threat. With this choice of λ,
the distributor does not know the voter’s selected prime. If
the distributor reduces the votes for an unchosen prime, the
distributor will be caught.

C. Dispute Freeness

BVOT is dispute free for the following reasons. All com-
munications are public and authenticated, and the threshold
feature of the encryption scheme ensures that all votes are
included in the tally.

Manipulating the vote counts without detection requires
knowledge of at least two distinct primes chosen by voters
(e.g., voting with p21p

−1
2 rather than with p1). This knowledge

is hidden from the voters through the OT and masking.
If two voters collude by sharing their masked primes, they

could unmask their primes (see Section VII-C). Assuming
that λ is chosen appropriately, the colluding voters would
risk detection if they tried to cheat by adding more than one
vote to one of their candidates and subtracting one vote from
the other—a result they could have achieved directly without
cheating.

The following elements prevent the distributor from engag-
ing in malfeasance without detection: there are λ primes per
candidate, so the distributor does not know which primes were
chosen. Furthermore, the distributor commits to his vote, mask,
and the mapping M.

D. Perfect Ballot Secrecy

BVOT enjoys perfect ballot secrecy for the following rea-
sons. First, the OT hides each voter’s candidate selection. Sec-
ond, each voter encrypts their ballot. The following theorem
can be proven:

Theorem 1: Assuming that OTλm1 provides receiver security
and the Diffie-Hellman assumption holds in the underlying
group G, for each 1 ≤ i ≤ n, voter Vi’s ballot prig

sexi is
indistinguishable from a randomly chosen element in G.

E. Fairness

The threshold property of the encryption scheme ensures
that none of the voters can learn anything about the tally
until all of the voters publish their decryption share and the
distributor publishes the unmasking value. Each voter casts
their vote before any voter publishes their decryption share.
Thus, BVOT is fair.

F. Robustness

As is true for protocols [2], [3], [4], BVOT is not robust as
defined below.
• Robustness ensures that the protocol can complete, even

if one or more voters attempt to prevent the protocol from
completing.

Due to the threshold feature of the encryption scheme,
any one voter can prevent anyone from computing the tally
by withholding their vote. More generally, Kiayias et al. [2]
claimed that no self-tallying voting system that provides ballot
secrecy is robust.

G. Coercion Resistance

As is true for protocols [2], [3], [4], [5], BVOT is not
coercion resistant [31] as defined below.
• Coercion resistance guarantees that a voter cannot prove

to the adversary that they followed the adversary’s de-
mands.

BVOT is not coercion resistant because a voter can prove
how they voted by releasing their masked vote and the random
value used in the encryption scheme.

TABLE II: Security properties of selected self-tallying board-
room voting protocols.

Protocol
Property KY [2] G [3] HRZ [4] KSRH [5] BVOT
Fair × × × X X
Perfect ballot privacy X X X X X
Self-tallying X X X X X
Dispute-free X X X X X
Robust × × × X ×
Coercion resistant × × × × ×

BVOT has strictly better security properties than [2], [3],
[4] in that [2], [3], [4] are not fair. BVOT and [5] have
similar security properties, except that [5] is robust. None of
the protocols in Table II achieve the challenging property of
coercion resistance.

H. Disruptive or Dishonest Voters

It is possible that one or more of the voters (including the
distributor) do not faithfully follow the protocol, perhaps in
an attempt to cheat or disrupt the election. We discuss three
examples of such behaviors. In each case, the disruptive or
dishonest behavior can be detected, though the source of the
behavior cannot necessarily be determined.

First, the distributor could misbehave, for example, by giv-
ing all voters the same masked prime or a different prime from
the one specified by the mapping. Before tallying the votes,
the other voters could detect such behaviors by examining the
revealed mapping and its commitment. It might, however, be
impossible to determine whether the distributor misbehaved or
the voter lied in reporting malfeasance.

Second, one or more voters might generate e, encrypt, or
decrypt incorrectly. Anyone could detect such behaviors by
attempting to compute the tally.

Third, instead of voting, for example, with a prime p1, a
voter could attempt to cheat by voting with p21p

−1
2 , where the
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voter is uncertain whether anyone else voted with p2 6= p1. If
no one voted for p2, then anyone could detect this behavior by
noticing that the tally includes a vote of −1 for p2. It might,
however, be impossible to determine which voter caused this
anomaly.

As explained in Section IV-B, in the spirit of boardroom
elections, we assume that voters will not intentionally engage
in such behaviors for the purpose of disrupting the election.

VII. DISCUSSION

We discuss selected major design decisions, explain a vari-
ation of BVOT that uses an EA but is still self-tallying, point
out an observation about masked primes, and list some open
problems.

A. Major Design Decisions

Two of our major design decisions were the following.
(1) Instead of relying on each voter to engage in a complex
ZKP of vote correctness, we use OT to hide each voter’s ballot
choice and to provide the voter with the minimum information
needed to cast their ballot. (2) We use multiparty threshold
homomorphic encryption so that computing the vote tally is
possible only when all votes are included.

B. BVOT with Election Authority

BVOT can also be used with a non-voting EA, in which the
EA performs the administrative steps of the distributor. If the
EA is untrusted (and might exfiltrate secrets), then λ must be
chosen as before. If the EA is trusted not to exfiltrate secrets,
then λ = 1 may be chosen. With λ = 1, BVOT runs faster,
performing n sessions of OTm1 instead of n sessions of OTλm1 .

C. An Observation about Masked Primes

It is important that each voter does not learn more than
one masked prime. Otherwise, they could determine the mask
value gs by computing gcd(pig

s, pjg
s), where pigs and pjgs

are two distinct masked primes (Section IV-D).
Therefore, one cannot directly substitute a private infor-

mation retrieval (PIR) [32] protocol for OT in BVOT. A
straightforward such substitution would not prevent the voter
from possibly learning more than one masked prime.

D. Open Problems

Open problems include: (1) Investigate the usability of
BVOT. (2) Explore BVOT’s possible use (with or without
an EA) in particular applications, including as a consensus
protocol for a distributed ledger system—for example, Hy-
perledger Fabric [33]. (3) Design remote boardroom voting
protocols that are accountable (no one can make a false claim
of malfeasance without detection) and coercion resistant.

VIII. CONCLUSION

We introduced BVOT, a self-tallying boardroom voting
protocol with fairness, perfect ballot secrecy, and dispute-
freeness. BVOT is the first boardroom voting protocol to
use oblivious transfer to provide these properties. Unlike
some existing protocols, BVOT avoids the complex steps of
requiring voters to carry out and check ZKPs. BVOT illustrates
the power and flexibility of oblivious transfer as a building
block in protocol design.
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