

APPROVAL SHEET

Title of Thesis: Privacy Preserving Distributed Data Mining based on Multi-objective
Optimization and Algorithmic Game Theory

Name of Candidate: Kamalika Das
Doctor of Philosophy, 2009

Thesis and Abstract Approved:
Dr. Hillol Kargupta
Professor
Department of Computer Science and
Electrical Engineering

Date Approved:

Curriculum Vitae

Name: Kamalika Das.

Permanent Address: 113-P, Dr. S. C. Banerjee Road, Kolkata - 700010.

Degree and date to be conferred: Doctor of Philosophy, 2009.

Date of Birth: October 10, 1980.

Place of Birth: Kolkata, India.

Secondary Education: South Point High School, Kolkata, India, 1997.

Collegiate institutions attended:

• University of Maryland Baltimore County, Maryland, USA,
Doctor of Philosophy, 2009.

• University of Maryland Baltimore County, Maryland, USA,
Master of Science, Computer Science, 2005.

• Kalyani University, West Bengal, India,
Bachelor of Technology, Computer Engineering, 2003.

Major: Computer Science

Professional publications:
Refereed Journals

1. K. Das, K. Bhaduri, H. Kargupta. Privacy Preserving Local Asynchronous
Algorithm for Feature Selection in a Peer-to-Peer Network.(submitted to
Knowledge and Information Systems (KAIS)).

2. K. Das, H. Kargupta. A Game-Theoretic Framework for Privacy Preserving
Distributed Data Mining. (submitted to IEEE Transactions on Knowledge and Data
Engineering (TKDE)).

3. K. Das, K. Bhaduri, K. Liu, H. Kargupta. Distributed Identification of Top-l Inner
Product Elements and its Application in a Peer-to-Peer Network. IEEE Transactions
on Knowledge and Data Engineering. Volume 20, Issue 4, pp. 475-488. April 2008.

4. K. Liu, K. Bhaduri,K. Das, P. Nguyen, H. Kargupta. Client-side Web Mining for
Community Formation in Peer-to-Peer Environments. SIGKDDExplorations.
Volume 8, Issue 2, pp. 11-20. December 2006.

Book Chapter

1. K. Liu, K. Das, T. Grandison, H. Kargupta, Privacy-Preserving Data Analysis on
Graphs and Social Networks. In Next Generation Data Mining.Edited by Hillol
Kargupta, Jiawei Han, Philip Yu, Rajeev Motwani, and Vipin Kumar, CRC Press,
2008.

2. K. Bhaduri,K. Das, K. SivaKumar, H. Kargupta, R. Wolff, R. Chen. Algorithms for
Distributed Data Stream Mining. A chapter in Data Streams: Models and
Algorithms, Charu Aggarwal (Editor), Springer. pp. 309-332. 2006.

Refereed Conference Proceedings

1. K. Das, K. Bhaduri, H. Kargupta. A Local Distributed Peer-to-PeerAlgorithm
Using Multi-Party Optimization Based Privacy Preservation for Data Mining
Primitive Computation. Accepted for publication IEEE P2P.2009.

2. K. Das, K. Bhaduri, S. Arora, W. Griffin, K. Borne, C. Giannella, H. Kargupta.
Scalable Distributed Change Detection from Astronomy DataStreams using Local,
Asynchronous Eigen Monitoring Algorithms. SIAM Data Mining Conference. pp.
245–256. 2009.

3. H. Kargupta,K. Das, K. Liu. Multi-party, Privacy-Preserving Distributed Data
Mining Using a Game Theoretic Framework . In 11th European Conference on
Principles and Practice of Knowledge Discovery in Databases (PKDD). pp 523-531.
2007.(nominated for the PET award).

Refereed Workshop Proceedings

1. K. Borne, H. Kargupta,K. Das, W. Griffin, C. Giannella. Scalable Scientific Data
Mining in Distributed, Peer-to-Peer Environments. American Geophysical Union
(AGU) Fall Meeting, 2008, San Francisco.

2. K. Das, W. Griffin, H. Kargupta, C. Giannella, Kirk Borne. ScalableMulti-Source
Astronomy Data Mining in Distributed, Peer-to-Peer Environments. Astronomical
Data Analysis Software & Systems (ADASS), 2008, Montreal, Canada.

3. K. Das, K. Liu and H. Kargupta. A Game Theoretic Perspective TowardPractical
Privacy Preserving Data Mining. In National Science Foundation Symposium on
Next Generation of Data Mining and Cyber-Enabled Discoveryfor Innovation.
Baltimore, Maryland. 2007.

4. K. Bhaduri,K. Das, H. Kargupta. Peer-to-Peer Data Mining. Autonomous
Intelligent Systems: Agents and Data Mining. V. Gorodetsky, C. Zhang, V.
Skormin, L. Cao (Editors), LNAI 4476, Springer. pp. 1-10. 2007.

5. R. Dutton, P. Hu,K. Das, T. Gilbert, Y. Xiao. Can Temperature Probe Removal Be
a Reliable Indicator for Case Finishing? American Society of Anesthesiologist
(ASA) Annual Meeting. San Francisco. 2007.

6. K. Das, P. Hu, Y. Xiao, M. Wasei. Reducing Uncertainty in OperatingRoom
Management. In OR of the Future retreat. Columbia, Maryland. 2006.

7. K. Liu, K Bhaduri,K. Das, P. Nguyen, H. Kargupta. Client-side Web Mining for
Community Formation in Peer-to-Peer Environments. SIGKDDworkshop on web
usage and analysis (WebKDD). Philadelphia, Pennsylvania,USA. 2006. (Selected
as the most interesting paper from the WebKDD workshop)

Professional positions held:

• Research Assistant 08/2007 – 06/2009
Distributed Adaptive Discovery and Computation Lab, Department of Computer
Science and Electrical Engineering, University of Maryland Baltimore County
(UMBC).

• Graduate Assistant 05/2007 – 08/2007
College of Engineering, University of Maryland Baltimore County (UMBC).

• Graduate Assistant 08/2006 – 05/2007
Center for Women and Information Technology (CWIT), University of Maryland
Baltimore County (UMBC).

• Research Assistant 08/2005 – 08/2006
Human Factors Research Program, Department of Anaesthesiology, University of
Maryland School of Medicine (UMMS).

• Software Intern 05/2005 – 08/2005
Agnik LLC, Columbia, Maryland.

• Research Assistant 01/2004 – 01/2005
Vangogh Lab, Department of Computer Science and ElectricalEngineering,
University of Maryland Baltimore County (UMBC).

• Teaching Assistant 08/2003 – 05/2004
Department of Computer Science, Department of Computer Science and Electrical
Engineering, University of Maryland Baltimore County (UMBC).

ABSTRACT

Title of Dissertation: Privacy Preserving Distributed Data Mining
based on Multi-objective Optimization and
Algorithmic Game Theory

Kamalika Das, Doctor of Philosophy, 2009

Thesis directed by: Dr. Hillol Kargupta
Professor
Department of Computer Science and
Electrical Engineering

Use of technology for data collection and analysis has seen an unprecedented growth

in the last couple of decades. Individuals and organizations generate huge amount of data

through everyday activities. This data is either centralized for pattern identification or

mined in a distributed fashion for efficient knowledge discovery and collaborative compu-

tation. This, obviously, has raised serious concerns aboutprivacy issues. The data mining

community has responded to this challenge by developing a new breed of algorithms that

are privacy preserving. Specifically, cryptographic techniques for secure multi-party func-

tion evaluation form the class of privacy preserving data mining algorithms for distributed

computation environments. However, these algorithms require all participants in the dis-

tributed system to follow a monolithic privacy model and also make strong assumptions

about the behavior of participating entities. These conditions do not necessarily hold true

in practice. Therefore, most of the existing work in privacypreserving distributed data

mining fail to serve the purpose when applied to large real-world distributed data mining

applications.

In this dissertation we develop a novel framework for privacy preserving distributed

data mining that allows personalization of privacy requirements for individuals in a large

distributed system and removes certain assumptions regarding participant behavior, thereby

making the framework efficient and real-world adaptable.

First, we propose the idea of personalized privacy for individuals in a large distributed

system based on the fact that privacy is a social concept. Different parties in a distributed

computing environment have varied privacy requirements for their data, and also varying

availability of computation and communication resources.Therefore, we model privacy as

a multi-objective optimization function where each party attempts to find the optimal choice

between two conflicting objectives — (i) maximizing the dataprivacy, and (ii) minimizing

the cost associated with the privacy guarantee. Each party optimizes its own objective to

define the privacy model parameter that satisfies its privacyand cost requirements and then

participates in the collaborative computation.

Secondly, to address the issue of assumptions regarding user behavior in cryptography-

based privacy preservation techniques, we formulate privacy preserving distributed data

mining as a game. The participating entities are the playersof the game and the strategies

they adopt in communicating their data, doing necessary computations and attacking others

data to reveal personal information, decide the result of the game in terms of the quality of

the data mining results. Knowing that, in the absence of a supervisor, the tendency of any

player in this game would be to cheat, we design a penalizing mechanism and blend it with

the distributed data mining algorithm for getting a self-correcting system that forces parties

to follow the protocol and not cheat.

The framework that we have proposed is independent of the choice of the privacy

model for the distributed computation and also applicable to any privacy preserving data

mining application involving multi-party function evaluation in a distributed environment.

To demonstrate the working of our framework, we have adaptedit to work for some real

life distributed data mining applications such as web advertisement ranking, distributed fea-

ture selection, and online similarity identification in browsing patterns. We have designed

mechanisms for privacy preserving sum computation and inner product computation in a

distributed environment and adapted the framework to work for Bayes optimal model of

privacy andǫ-differential privacy model. We have simulated the workingof the distributed

applications and presented experimental results for each of the algorithms developed, us-

ing the Distributed Data Mining Toolkit (DDMT) developed bythe DIADIC laboratory at

UMBC.

PRIVACY PRESERVING DISTRIBUTED DATA

MINING BASED ON MULTI-OBJECTIVE

OPTIMIZATION AND ALGORITHMIC GAME

THEORY

by

Kamalika Das

Dissertation submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2009

c© Copyright Kamalika Das 2009

Dedicated to Ma and Appa

ii

ACKNOWLEDGMENTS

This dissertation would not have been written without the support and encouragement

of all these people who I want to thank today. First I would like to acknowledge the guid-

ance and support extended by my advisor Dr. Hillol Kargupta.He not only helped me with

my dissertation research from the beginning to the end, but also taught me to believe in my

abilities and dream big. I would also like to take this opportunity to thank my dissertation

committee members Dr. Tim Oates, Dr. Tim Finin, Dr. Aryya Gangopadhyay and Dr. Tom

Armstrong for their help and cooperation. Thanks to Jane as well, for her help in getting

things arranged smoothly, even if they were last minute. I want to also thank Dr. Marie

desJardins, in whose class I first learnt how to do research and got some really useful tips

which helped me through the rest of graduate school.

My parents played the most important role in making me the person I am today. With-

out their unconditional love, support, encouragement and sacrifices, I would never have

been able to achieve this today. This has always been their dream and I am grateful to God

for giving me the opportunity to fulfill their wish. My sisterAmy has been my biggest sup-

port and confidante throughout my life and more so, during my days of struggle in graduate

school. I definitely want to thank her for standing by me during the toughest of times. Now

its my turn to do the same and I wish her success in achieving her goals. Nothing I say

to Kanishka is enough to acknowledge his role in my life and inmy success. He has been

there with me during the most trying times of graduate schoolwhen nothing was working in

my favor and my confidence had reached rock bottom. In spite ofbeing a graduate student

with similar trying circumstances, his words of support andencouragement were always

there to cheer me up.

The six years I spent at UMBC paved the way for many friendships which will remain

with me forever. Aarti, Aseem, Kishalay, Soumya, Meghana - thank you for being there

iii

for me every time I needed. I want to especially thank my friend Nicolle for making life

bearable in Baltimore for the last one year of graduate school as I struggled to manage my

personal and professional lives all by myself. A note of thanks to my lab mates Kun Liu,

Haimonti Dutta, Wes Griffin, Tushar Mahule and Sugandha Arora for sharing the highs

and lows of graduate life in the DIADIC lab. When I look back, Ifeel that my six years

in graduate school have contributed a lot in making me the person I am today and I thank

each and everyone for making this journey a pleasant memory.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF FIGURES . xi

LIST OF TABLES . xiii

LIST OF ALGORITHMS . xiv

Chapter 1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Problem Statement . 3

1.3 Contributions . 4

1.4 Dissertation Organization 6

Chapter 2 RELATED WORK . 9

2.1 Introduction . 9

2.2 Distributed Computing Primitives 10

2.2.1 Distributed Systems . 10

2.2.2 Types of Distributed Algorithms 11

2.3 Distributed Data Mining .14

v

2.3.1 Data Mining in GRID . 15

2.3.2 Distributed Stream Mining . 16

2.3.3 Data Mining in Ad-hoc Networks 19

2.3.4 Peer-to-Peer Data Mining . 21

2.3.5 Privacy Preserving Distributed Data Mining 23

2.4 Privacy Preserving Data Mining .. . 23

2.5 Data Distortion based Privacy .. . 25

2.5.1 Data Perturbation . 26

2.5.2 Data Microaggregation . 28

2.5.3 Data Swapping . 29

2.5.4 Data Anonymization . 29

2.5.5 Vulnerabilities of Data Distortion Techniques 31

2.6 Cryptography based Privacy .. 33

2.6.1 Secure Multi-party Computation 33

2.6.2 Data Encryption . 36

2.6.3 Disadvantages of Cryptography based Techniques 37

2.7 Output Perturbation .38

2.8 Summary . 40

Chapter 3 MULTI-OBJECTIVE OPTIMIZATION BASED PERSONAL-

IZED PRIVACY . 41

3.1 Introduction . 41

3.2 Optimization in Privacy .. 43

3.3 Privacy Preserving Distributed Computation Model 45

3.4 Multi-objective Optimization Framework 46

3.4.1 Problem Formulation . 47

3.4.2 Non-dominated Set and Pareto Optimal Set 49

vi

3.4.3 Solving Multi-objective Optimization via Scalarization 51

3.4.4 Privacy, Cost and their Combination 56

3.5 Privacy Protection in a Multi-party Scenario 59

3.5.1 Distributed Averaging . 61

3.5.2 Optimal Privacy-Cost Solution 62

3.5.3 Multi-party Multi-objective Optimization Algorithm 63

3.6 Illustration using Differential Privacy Model 65

3.6.1 Differential Privacy Framework 66

3.6.2 Differential Privacy as Multi-objective Optimization 68

3.7 Conclusion . 71

Chapter 4 MECHANISM DESIGN FOR PRIVACY PRESERVING DIS-

TRIBUTED DATA MINING 72

4.1 Introduction . 72

4.2 Game Theory and Mechanism Design .73

4.2.1 Strategic Games . 74

4.2.2 Repeated Games . 76

4.2.3 Mechanism Design . 77

4.3 Game Theory in Privacy and Security 78

4.4 Distributed Privacy Preserving Data Mining as Games 80

4.4.1 Game Theoretic Framework . 80

4.4.2 Mechanism Design for Privacy Protection 81

4.5 Illustration: Secure Sum with Collusion under Bayes Optimal Privacy . . . 90

4.5.1 Model of Privacy . 90

4.5.2 Secure Sum Computation . 91

4.5.3 Threat to Data Privacy or Utility of Collusion 93

4.6 Secure Sum with Penalty Algorithm 100

vii

4.7 Analysis of the SSP Algorithm .. 105

4.7.1 Correctness Analysis . 105

4.7.2 Performance Analysis . 107

4.7.3 Equilibrium Analysis . 111

4.7.4 Privacy Analysis . 113

4.8 Experiments . 114

4.8.1 Overview of the Simulation Set-Up114

4.8.2 Measurement Metrics . 114

4.8.3 Results . 116

4.9 Conclusions . 117

Chapter 5 PRIVACY PRESERVING DISTRIBUTED SUM COMPUTA-

TION AND ITS APPLICATIONS 119

5.1 Introduction . 119

5.2 Algorithm Overview . 120

5.3 Privacy Preservation as Optimization 123

5.3.1 Threat Measure in Presence of Multiple Rings 126

5.4 Distributed Averaging for Asymmetric Topologies 129

5.5 Overall Algorithm . 131

5.5.1 Local Ring Formation Algorithm (L-Ring) 131

5.5.2 Local Privacy Preserving Sum Computation Algorithm (L-PPSC) . 132

5.5.3 Illustration . 136

5.6 Algorithm Analysis . 137

5.6.1 L-Ring Running Time Analysis 137

5.6.2 L-PPSC Correctness Analysis . 139

5.6.3 L-PPSC Convergence Analysis . 141

5.6.4 L-PPSC Locality Analysis . 141

viii

5.6.5 L-PPSC Privacy Analysis . 143

5.7 Experimental Results .146

5.8 Application . 148

5.8.1 Privacy Preserving P2P Web Advertisement Ranking 148

5.8.2 Privacy Preserving Feature Selection 151

5.9 Conclusions . 166

Chapter 6 PRIVACY PRESERVING INNER PRODUCT APPLICATION

IN P2P NETWORKS . 169

6.1 Introduction . 169

6.2 Related Work on Distributed Inner Product Computation 170

6.2.1 Identifying top-k items . 171

6.3 Notations, Problem Definition and Overview of the Algorithm 172

6.3.1 Notations . 172

6.3.2 Problem definition . 173

6.3.3 Overview of the algorithm . 174

6.4 Building Blocks . 174

6.4.1 Decomposable inner product computation 175

6.4.2 Ordinal approximation . 175

6.4.3 Cardinal approximation . 177

6.4.4 Random sampling and random walk 179

6.5 P2P Algorithm for Identifying the Significant Inner Product Entries 182

6.5.1 Sample size computation . 183

6.5.2 Sample collection . 183

6.5.3 Threshold detection . 183

6.5.4 Some top-l inner product elements identification 184

6.6 Local Algorithm . 184

ix

6.7 Error Bound and Message Complexity 186

6.7.1 Error bound . 186

6.7.2 Message complexity . 188

6.8 Experiments and Performance Evaluation 189

6.8.1 Network topology, simulator and data generation 189

6.8.2 Performance . 189

6.9 Interest based P2P Community Formation 194

6.9.1 Notations, Data Description and Problem Definition 197

6.9.2 Approach . 198

6.9.3 Privacy Preservation . 199

6.9.4 Privacy Preserving Inner Product Computation using SSP Framework200

6.9.5 Experimental Evaluation . 202

6.10 Conclusion . 203

Chapter 7 CONCLUSION AND FUTURE WORK 206

Appendix A . 211

REFERENCES . 213

x

LIST OF FIGURES

4.1 Overall utility for classical secure sum computation. The optimal strategy

takes a value ofk > 1 . 99

4.2 Overall utility for secure sum computation with punishment strategy. The

optimal strategy takes a value ofk = 1. 99

4.3 Decrease in the number of colluding nodes in the network over successive

rounds of secure sum computation. .117

5.1 Figure showing how local rings are formed based onL-Ring protocol. It

shows four rings with the initiators highlighted. Note thata given node

(e.g.node 12) is part of multiple rings. 136

5.2 This figure shows the probability that less thanτ ∗i −2 nodes are bad in a ring

of sizeτ ∗i . As shown in the figure, the probability increases with increasing

θ. Also, as the size of the ring increases, the probability increases faster. . . 145

5.3 This figure demonstrates the variation ofθ(1− θ)τ∗
i +τ∗

j −1 vs. θ, τ ∗i andτ ∗j .

The probability is very low and decreases with increasing size of the ring.

Also, for a fixed ring size, asθ increases, the probability decreases. 145

5.4 Convergence to global sum and communication cost per peer. 147

5.5 Figure showing the scalability of the algorithm as the number of peers is

increased. 149

5.6 Results on the real advertisement data set. 152

5.7 Plot of Gini index and Misclassification gain for binary class distribution. . 159

xi

5.8 Plot of the number of messages transferred vs. number of peers (misclassi-

fication gain). 164

5.9 Plot of the number of messages transferred vs. number of peers (gini index). 165

5.10 Plot of the number of messages transferred vs. number ofpeers (entropy). . 166

5.11 Relative values of the three feature selection measures for all the attributes

of the forest cover data set as found byPAFS. 167

6.1 Performance of three different random walks on a power law topology of

5000 Nodes. 180

6.2 Quality and cost variation with increasing network size. 193

6.3 Scalability with variation in number of attributes per peer. 195

6.4 Scalability with variation in cardinal approximation.. 196

6.5 Quality value w.r.t. the order of percentile. 203

6.6 Messages exchanged for increase in the population percentile of interest.

Higher similarity detection detection requires more number of messages. . . 204

xii

LIST OF TABLES

4.1 Payoff table for prisoners dilemma 76

4.2 Payoff table for secure computation with penalty for a 2-player game. . . . 84

4.3 Payoff table for secure computation with penalty for ann-player game. . . . 85

4.4 Payoff table for three-party secure sum computation. 111

5.1 Number of entries of attributeAi and the class. 153

xiii

LIST OF ALGORITHMS

1 Distributed Averaging Algorithm (DAvg)[143] 62

2 Distributed Multi-objective Optimization Based PrivacyAlgorithm (DMOP) 64

3 Secure Sum with Penalty (SSP) . 101

4 Registration System (RegSys) . 102

5 Ring Formation Algorithm (L−Ring) . 133

6 Local Privacy Preserving Sum Computation (L− PPSC) 134

7 Privacy Preserving Algorithm for Feature Selection (PAFS) 160

8 Distributed Metropolis-Hastings (DMH) [12, 73] 181

9 Distributed selection of samples (OrdSamp) 185

10 Distributed Candidate Identification (DiCat) 201

11 Distributed Element Selection (ElemSel) 205

xiv

1

Chapter 1

INTRODUCTION

1.1 Motivation

Use of technology for data collection has seen an unprecedented growth in the last

couple of decades. Individuals and organizations generatehuge amount of data through ev-

eryday activities. Decreasing storage and computation costs have enabled us to collect data

on different aspects of people’s lives such as their credit card transaction records, phone

call and email lists, personal health information and web browsing habits. Security issues,

government regulations, and corporate policies require most of this data to be scanned for

important information such as terrorist activities, credit card fraud detection, cheaper com-

munications, and even personalized shopping recommendations. Such analysis of private

information often raises concerns regarding the privacy rights of individuals and organiza-

tions. The data mining community has responded to this challenge by developing a new

breed of algorithms that analyze the data while paying attention to privacy issues.

Considerable research in privacy preserving data mining isgeared towards the cen-

sus model where the data in a private database is sufficiently‘distorted’ to prevent leakage

of individually identifiable information and then releasedto entrusted agencies for pattern

mining [2]. However, this set of solutions does not encompass all real world problems

in data mining. Under many circumstances, data is collectedat different locations and the

data mining task requires the entire data to be centralized for identifying the global patterns.

2
For example, the US Department of Homeland Security funded PURSUIT project1 for pri-

vacy preserving distributed data integration and analysisaims at analyzing network traffic

of different organizations to detect “macroscopic” patterns for revealing common intrusion

detection threats against those organizations. However, network traffic is usually privacy

sensitive and no organization is generally willing to sharetheir network traffic information

with a third party. Similarly, different collaborative computing environments also require

individuals to share their private data for different function computations. For example,

peer-to-peer networks are a type of distributed systems that are characterized by huge size

in terms of number of participating nodes and a lack of coordination among the nodes.

Peer-to-peer systems are emerging as a choice of solution for a new breed of applications

such as collaborative ranking, electronic commerce, social community formation, and di-

rected information retrieval [103]. Most of these applications require information integra-

tion among the nodes, some of which maybe privacy sensitive.The census model solutions

do not work well in many of these emerging distributed privacy-sensitive data mining ap-

plications. Cryptographic techniques for secure computations have been deployed for such

privacy preserving distributed data mining problems [36].

Broadly speaking, cryptographic protocols compute functions over inputs provided

by multiple parties without sharing the inputs with one another. The robustness of cryp-

tographic protocols depends on the mutual trust placed on the parties. The cryptography

literature assumes two types of participant behavior. A semi-honest party is curious and at-

tempts to learn about others’ private information during the computation, but never deviates

from the protocol. Malicious participants deviate from theprotocol, collude with others to

send spurious messages to reveal others’ private data. Protocols that are secure against ma-

licious adversaries are computationally extremely expensive and therefore cannot be used

in real-life for large scale data mining applications. Therefore, considerable effort has gone

1http://www.agnik.com/DHSSBIR.html

3
into developing secure protocols in the semi-honest adversary model [36, 80, 85, 151, 152].

However, information integration in such multi-party distributed environments is often an

interactive process guided by the dynamics of cooperation and competition among the par-

ties. The behavior of these parties usually depends on theirown objectives and is guided

by whatever maximizes their personal benefits. If getting toknow someone’s private infor-

mation is beneficial, then every self-interested party in the computation will try to get that

information. Therefore, the assumption of semi-honest behavior falls apart in most real life

distributed data mining applications [87].

Another important shortcoming of existing privacy preserving distributed data mining

applications is the definition of a monolithic privacy modelfor all participants. Privacy

is a social concept and, therefore, the privacy concerns of the different participating en-

tities vary, as does their ability to protect their private data due to varying availability of

resources. Therefore, in a distributed computing environment it is important that the par-

ties be able to tailor their privacy definitions based on their requirements and yet be able to

participate in a collaborative computing task.

In this dissertation we develop a novel framework for personalized privacy in dis-

tributed data mining environments, paying careful attention to performance and real-world

adaptability.

1.2 Problem Statement

This dissertation addresses the following problem. Consider a distributed computing

environment consisting of nodes (parties) and connected via an underlying communication

infrastructure. Each node has some data which is known only to itself. The nodes can

exchange messages with any other node in the network. This research aims at answering the

following question: “how can data mining tasks for extracting useful knowledge from the

union of all the data be executed in the system such that different nodes participating in the

4
collaborative computation (i) can specify their own privacy requirements without having to

adhere to a monolithic privacy definition, (ii) can ensure that the required privacy is actually

achieved without having to rely on unrealistic assumptionsregarding the behavior of other

parties and (iii) can compute the privacy preserving data mining results with an efficient

use of resources.

1.3 Contributions

In this dissertation we have systematically studied the shortcomings of existing pri-

vacy preserving data mining techniques in terms of their applicability to real life applica-

tions of distributed data mining, and provided alternate solutions for some of those.

1. We have identified the importance of personalization of privacy in distributed sys-

tems since most of these distributed programs run at different locations on computers

owned by a variety of individuals or organizations, operating by partial or complete

autonomy. These entities have varied privacy requirementsfor their share of the pri-

vate data, and also varying availability of computation andcommunication resources.

Therefore, for such heterogeneous distributed computing environments, we propose

a framework of personalized privacy based on multi-objective optimization. Privacy

comes at a cost and higher privacy usually means higher cost of computation. In our

framework, each party attempts to find the optimal choice between two conflicting

objectives — (i) maximizing the data privacy, and (ii) minimizing the cost associ-

ated with the privacy guarantee. Each party optimizes its own objective to define

the privacy model parameter that satisfies its privacy and cost requirements and then

participates in the collaborative computation.

2. Research in distributed privacy preserving data mining for secure function evalua-

tion, often tacitly assumes that the different parties in the distributed computation

5
perform their tasks as specified by the system designer. Alternatively, parties are

sometimes explicitly modeled as adversaries, who can deviate arbitrarily from the

specification in order to defeat the intentions of the systemdesigner or the other par-

ticipants. However, in most real life scenarios, the parties are merely self-interested

agents acting to maximize their personal benefits and competing with each other in

the process. Therefore, we formulate privacy preserving distributed data mining as

games where the participating entities are the players and the strategies they adopt in

communicating their data, doing necessary computations and attacking others data

to reveal personal information decide the result of the gamein terms of the quality

of the data mining results. Knowing that in the absence of a supervisor, the tendency

of any player in this game would be to cheat, we design a penalizing mechanism and

blend it with the distributed data mining algorithm for getting a self-correcting sys-

tem that forces parties to follow the protocol and not cheat.We want to emphasize

here that of all possible cheating behavior by a party, we have addressed only the

problem of collusion in this dissertation. However, incentive based mechanisms can

similarly be designed for addressing these issues [98, 99].

3. Usually, the primary focus of research on distributed systems is the development of

efficient distributed algorithms, i.e., algorithms with low computational complexity

and communication requirements. In this dissertation, we have taken our person-

alized privacy and mechanism design schemes to work with existing efficient dis-

tributed algorithms for different data mining tasks such asdistributed ranking, dis-

tributed feature selection and distributed similarity measurement. Our results use a

privacy preserving sum computation and a privacy preserving inner product compu-

tation primitive for the data mining tasks at hand.

6
1.4 Dissertation Organization

This dissertation is organized as follows:

Chapter 1: This chapter describes the motivation behind this research, states the specific

problem we have addressed, highlights the contributions ofthe dissertation and gives an

overview of how the rest of this dissertation is organized.

Chapter 2: This chapter presents an overview on fields of researchviz. distributed data

mining and privacy preserving data mining. Since this dissertation deals with privacy is-

sues in distributed data mining applications, it is important to get an understanding of both

these areas. In Chapter 2 we first describe the important primitives of distributed comput-

ing and present a classification of existing distributed data mining literature. Based on the

type of the distributed computing environment, the model ofdata communication, and the

application areas, we describe the literature on (i) data mining on the grid, (ii) distributed

data stream mining, (iii) data mining in mobile ad-hoc networks, and (ii) data mining in

peer-to-peer systems. We then go on to describe in details the literature on privacy pre-

serving data mining which we have classified based on the techniques as (i) data distortion

based privacy preservation, (ii) cryptography based privacy preservation, and (iii) output

perturbation based privacy preservation. We also discuss how some of the existing privacy

preservation techniques fail to adapt to the distributed data mining applications’ require-

ments.

Chapter 3: This chapter presents the multi-objective optimization formulation of the per-

sonalized privacy problem in a distributed setting. The amount of data privacy required and

the cost associated with the privacy guarantee are the two conflicting objectives for every

party in the optimization problem. Solution to this multi-objective optimization problem is

a Paretooptimal solution set such that no one solution in the set is “better” than the oth-

ers. In this chapter we present a distributed averaging algorithm for solving this distributed

multi-objective optimization problem in a communication efficient manner by averaging

7
the constraints of all the parties. We finally demonstrate the functioning of this framework

using a popular privacy model from the privacy preserving data mining literature, namely,

the differential privacy model.

Chapter 4: This chapter presents the game-theoretic formulation of the privacy preserving

distributed data mining problem. Here we first introduce some key concepts and definitions

in game theory and mechanism design and then present our framework. We show that in the

absence of a penalizing mechanism, parties tend to behave ina fashion that is harmful to the

collaborative computing environment and then proceed to design distributed mechanisms

for forcing parties to follow the distributed function evaluation protocol without collusion.

We illustrate this concept using a secure sum computation protocol from the privacy pre-

serving data mining literature and present a modified securesum with penalty algorithm.

We also provide detailed analytical results for our proposed algorithm and present empirical

results to corroborate our claim.

Chapter 5: In this chapter we present a distributed privacy preservingranking algorithm

for two real life applications: a web advertisement rankingapplication in a peer-to-peer

network and a feature selection algorithm in a peer-to-peernetwork. The ranking algorithm

uses a sum computation primitive and builds on the multi-objective optimization framework

for personalized privacy and uses penalty based mechanism design to prevent collusion

among peers.

Chapter 6: In this chapter we present a distributed privacy preservingsimilarity detection

algorithm for a peer-to-peer online community like application. The similarity detection

algorithm uses inner product among the features as a measureof correlation or similar-

ity among them. We frame this distributed inner product computation as a series of sum

computations and design a mechanism to perform this computation in a privacy preserving

manner using a penalty scheme.

Chapter 7: This chapter concludes this dissertation and outlines the directions for future

8
research in privacy preserving distributed data mining.

9

Chapter 2

RELATED WORK

2.1 Introduction

Advances in technology has enabled collection of a huge amount of data about indi-

viduals, groups or organizations from a wide variety of sources. This data collection and

subsequent data mining often leads to a breach of privacy forthe subject under consider-

ation. Privacy preserving data mining is a growing field of research that tries to address

the issue of privacy in the context of data mining. The objective of the field of privacy

preserving data mining is to modify the data or the data mining protocols in such a way

that the ‘privacy’ of the subject is preserved while providing utility in terms of the mining

results. When the private data is distributed across multiple data repositories owned by dif-

ferent parties, privacy preservation becomes a different kind of challenge due to personal

preferences while doing distributed data mining.

This chapter briefly introduces the literature on distributed data mining and gives a

description of the state of the art of the field of privacy preserving data mining in the con-

text of distributed data mining. We begin with a review of important concepts from the

distributed computing literature which are relevant to this dissertation in Section 2.2 and

followup with a discussion on the literature of distributeddata mining algorithms in Sec-

tion 2.3. Section 2.4 introduces the field of privacy preserving data mining. Section 2.5

discusses data perturbation techniques, while Sections 2.6 and 2.7 describe cryptographic

10
and output perturbation based techniques for privacy preserving data mining. Finally Sec-

tion 2.8 summarizes the discussions.

2.2 Distributed Computing Primitives

In this section we first define a distributed system and then present different types of

algorithms for distributed systems.

2.2.1 Distributed Systems

Leslie Lamport informally defined a distributed systems as follows:

“A distributed system is one in which the failure of a computer you didn’t even

know existed can render your own computer unusable”.

While this is not a strict definition it captures the important characteristic of a distributed

system. Ghosh [62] highlights several properties of distributed systems:

Multiple processes There is generally more than one concurrent process. There can be

one or more than one process per node of the distributed system.

Common goal Any distributed systems must have a common goal. The processes should

collaborate to solve the same problem or task. This is one of the distinctions with

parallel processing as we discuss later.

Interprocess communication In a typical distributed system, each process performs some

computation by itself and then communicates with other processes. The communica-

tion can be over a network using finite delaymessages. The messages are transmitted

across the communication channels.

Disjoint address spaceProcesses have disjoint address space. Shared-memory architec-

tures are not considered distributed systems.

11
Mathematically, a distributed system can be represented asa graphG = (V,E), where

V is the set of computers or machines or nodes andE is the set of edges or communication

links connecting them. The messages are exchanged across the edges. It is generally

assumed that the graph is connectedi.e. for any two arbitrary nodesvi, vj ∈ V , there exists

a (possibly multi-hop) path fromvi to vj. The set of one-hop (immediate) neighbors ofvi

is known as the neighbor set and is denoted asΓi. Mathematically, it can be written as,

Γi = {vj ∈ V |(vi, vj) ∈ E}.

In the next section we describe different types of distributed algorithms.

2.2.2 Types of Distributed Algorithms

Distributed algorithms can be categorized based on the typeof communication proto-

col it uses for inter-process communication. We discuss each of them in details in the next

few subsections.

Broadcast-based Algorithms Broadcasting is a communication protocol in which a

message from a node is disseminated to all the nodes in the network. One way of achieving

broadcast in networks in which there is no point to point connection among nodes is through

flooding. In flooding, whenever a node receives a message, it forwards it to all its neighbors

except the one from whom it received. As evident, there is a lot of wasted resources and

high load on the network since the same message can be transmitted many times along

each link. Moreover, each node needs to process an overwhelming number of messages

in order to identify and disregard the duplicates. The message complexity isO(|E|), since

each edge sends a message once or more. The running time is proportional to the diameter

of the network. A slightly more intelligent variant uses directional flooding — it sends

messages only in one directione.g.from lower to higher node identifier.

12
Convergecast Algorithms In convergcast algorithms, the communication takes

place on a spanning tree. Such a tree encompassing all the nodes can be easily constructed

using a broadcast-based spanning tree algorithm. Communication proceeds from the leaf

up to the root of the tree. At each step, a node in the tree checks if it has received messages

from all its children. If yes, it simply sends a message to itsparent up the tree, else it

simply waits. The parent does the same computation. The rootfinally receives a message

containing information about the entire network. Similar to broadcast, this technique is

also communication expensive: it requiresO(|V |) messages since each node sends exactly

one message. The running time is proportional to the depth ofthe tree which can be greater

than the diameter of the network. However, once the tree is pre-computed, this technique

is extremely simple.

Local Algorithms Both the algorithm types discussed earlier suffer from one major

drawback — the communication complexity is of the order of the size of the network. This

is unacceptable for large networks such as peer-to-peer systems in which the size of the

network typically ranges from thousands to millions of nodes. Local algorithms [133] are a

different genre of algorithms in which the communication load at each node is either a small

constant or sub-linear with respect to the network size, providing excellent scalability for

the local algorithm. In a local algorithm, a node typically converges to the correct result by

communicating with only a small fraction of nearby neighbors. Primarily for this reason,

local algorithms exhibit high scalability. Below we present a definition of local algorithms.

Definition 2.2.1. [α-neighborhood of a vertex] Let G = (V,E) be the graph representing

the network whereV denotes the set of nodes andE represents the edges between the

nodes. Theα-neighborhood of a vertexv ∈ V is the collection of vertices at distanceα or

less from it inG: Γα(v) = {u|dist(u, v) ≤ α}, wheredist(u, v) denotes the length of the

shortest path betweenu andv and the length of a path is defined by the number of edges in

it.

13
Definition 2.2.2(α-local query). LetG = (V,E) be a graph as defined in Definition 2.2.1.

Let each nodev ∈ V store a data setXv. Anα-local queryby some vertexv is a query

whose response can be computed using some functionf(Xα(v)) whereXα(v) = {Xv|v ∈
Γα(v, V)}.

Definition 2.2.3 ((α, γ)-local algorithm). An algorithm is called(α, γ)-local if it never

requires computation of aβ-local query such thatβ > α and the total size of the response

to all suchα-local queries sent out by a peer is bounded byγ. α can be a constant or a

function parameterized by the size of the network whileγ can be parameterized by both the

size of the data of a peer and the size of the network.

We call such an (α, γ)-local algorithmefficientif both α andγ are either small con-

stants or some slow growing functions (sub-linear) of its parameters.

The previous set of definitions discuss the efficiency of distributed algorithms in terms

of the communication required but not in terms of the qualityof the results. There are two

types of local algorithms in terms of accuracy:exactandapproximate. In an exact local

algorithm, once the computation terminates, the result computed by each peer is the same

as that compared to a centralized execution [160]. However,such algorithms have only

been developed till date for very simple thresholding functions (e.g., L2-norm [158]). For

more complicated tasks, researchers have proposed approximate local algorithms using

probabilistic techniques (for examplek-means [43]). Next, we define the notations for

measuring the quality of local algorithms.

Definition 2.2.4 ((ǫ, δ)-correct local algorithm). An local algorithm is (ǫ, δ) correct, if it

returns the result of a query within anǫ-distance of its actual result with a probability of

(1− δ), where the actual result is computed on a centralized data and δ is the probability

that the result is outside theǫ radius.

In the rest of this thesis, we will refer to these definitions of locality.

14
2.3 Distributed Data Mining

Distributed data mining deals with the problem of data analysis in environments with

distributed data, computing nodes, and users. This area hasseen considerable research

during the last decade. For a detailed introduction to the area, interested readers are re-

ferred to [89]. Data mining often requires massive amount ofresources in storage space

and computation time. If the data happens to be distributed at a number of different sites,

then centralizing the data to a single storage location requires additional communication

resources. Distributed data mining is a field of research that concentrates on developing

efficient algorithms for mining of information from distributed data without centralizing

it. Depending on how the data is distributed across the sites, distributed data mining algo-

rithms can be divided into two categories:

• Algorithms for homogeneous data distribution: For this kind of data distribution,

also known as the horizontally partitioned scenario, all attributes or features are ob-

served at every site. However, the set of observations or tuples across the different

sites differ.

• Algorithms for heterogeneous data distribution: For this kind of data distribution,

also known as the vertically partitioned scenario, each site has all tuples or rows, but

only for a subset of the attributes for the overall data set.

There exists a vast literature of algorithms for each type ofdata partition scenario.

Interested readers are referred to the books by Karguptaet al. [89], [86], the distributed

data mining bibliography [45] maintained by the DIADIC laboratory at the University of

Maryland Baltimore County and other surveys [167] for detailed discussion on each algo-

rithm.

In the next few subsections we discuss different classes of distributed data mining

algorithms based on the data distribution infrastructure and the computation task.

15
2.3.1 Data Mining in GRID

Distributed data mining has seen a number of applications onthe Grid infrastructure.

Informally, a Grid can be defined as - “the ability, using a setof open standards and proto-

cols, to gain access to applications and data, processing power, storage capacity and a vast

array of other computing resources over the Internet” [67].Grid computing has gained pop-

ularity as a distributed computing infrastructure for manyhighly computational-intensive

tasks which are impossible to execute on a single computer. Grid applications rely on

the computing and processing powers of possibly tens to thousands of dedicated or user-

donated CPU cycles to perform a task. These users may be entities on the Internet or they

may be part of a Grid consortium. The prospect of solving extremely challenging compu-

tational problems has found application of Grid computing in many research domains such

as weather modeling, earthquake simulation, finance, biology (to study the effect of protein

folding), chemistry and high-energy physics.

Grid computing was popularized by the seminal work by Fosteret al. [60] who are

widely recognized as the “father of the modern grids” [156].A Grid is a type of paral-

lel and distributed system that enables the sharing, selection, and aggregation of resources

distributed across multiple administrative domains, based on the resources’ availability,

capacity, performance, cost, and the users’ quality-of-service requirements. A Grid in-

frastructure is not a completely asynchronous network. Since the main goal in Grid is to

submit and execute user jobs, there exists centralized authority which monitors and ensures

optimal resource allocations. Hoscheket al. [77] discusses the data management issues

for Grid data mining. The goal of voluntary Grid computing isto ensure that jobs get

executed in the scavenged CPU cycles in an optimal fashion without causing too much in-

convenience to the CPU owner. Grid computing is essentiallya heterogenous collection of

different machines having access to distributed data, and so, researchers have explored the

use of distributed data mining algorithms for information extraction from Grids. Talia and

16
Skillicorn [146] argue that the Grid offers unique prospects for mining of large data sets

due to its collaborative storage, bandwidth and computational resources. Cannataroet al.

[29] address general issues in distributed data mining overthe Grid. Several interesting on-

going Grid projects involve data mining over the Grid. The NASA Information Power Grid

[135], Papyrus [14], the Data Grid [41], the Knowledge Grid [30] are some examples. The

Globus Consortium has developed the open-source Globus Toolkit [65], to help researchers

with Grid computing. Grid computing is closely related to peer-to-peer computing infras-

tructure in terms of data storage and computing power. However, one basic difference is

the absence of any centralized authority in peer-to-peer systems. Talia and Trunfio [147]

discuss the similarities between Grid and peer-to-peer computing. We discuss peer-to-peer

data mining in details in Section 2.3.4.

2.3.2 Distributed Stream Mining

The literature of distributed stream mining has seen contributions from the distributed

data mining community, and the databases community and eventhe wireless sensor net-

works community.

Computation of complex functions over the union of multiplestreams have been stud-

ied widely in the stream mining literature. Gibbonset al. [64] present the idea of doing

coordinated sampling in order to compute simple functions such as the total number of

ones in the union of two binary streams. They have developed anew sampling strategy to

sample from the two streams and have shown that their sampling strategy can reduce the

space requirement for such a computation fromΩ(n) to log(n), wheren is the size of the

stream. Their technique can easily be extended to the scenario where there are more than

two streams. The authors also point out that this method would work even if the stream is

non-binary (with no change in space complexity).

Much work has been done in the area of query processing on distributed data streams.

17
Chenet al. [31] have developed a system ‘NiagaraCQ’ which allows answering continuous

queries in large scale systems such as the Internet. In such systems many of the queries

are similar. So a lot of computation, communication and I/O resources can be saved by

properly grouping the similar queries. NiagaraCQ achievesthis goal by using a grouping

scheme that is incremental. They use an adaptive regroupingscheme in order to find the

optimal match between a new query and the group to which the query should be placed.

If none of these matches, then a new query group is formed withthis query. The paper

does not talk about reassignment of the existing queries into the newly formed groups,

rather leaves it as a future work. A different approach has been described by Olstonet al.

[124]. The distributed model described here has nodes sending streaming data to a central

node which is responsible for answering the queries. The network links near the central

node become a bottleneck as soon as the arrival rate of data becomes too high. In order to

avoid that, the authors propose installing filters which restrict the data transfer rate from the

individual nodes. NodeO installs a filter of widthWO of range [LO, HO]. WO is centered

around the most recent value of the objectV (LO = V − WO

2
andHO = V + WO

2
). The

node does not send updates ifV is inside the rangeLO ≤ V ≤ HO; otherwise it sends

updates to the central node and recenters the boundsLO andHO. This technique provides

the answers to queries approximately and works in circumstances where the exact answers

to the queries are not required. Since in many cases the user can provide the query precision

that is necessary, the filters can be made to work after setting the bounds based on this user

input.

The sensor network community provides a rich literature on the data stream mining

algorithms. Since, in many applications, the sensors are deployed in hostile terrains, one

of the most fundamental task aims at developing a general framework for monitoring the

network themselves. [170] presents a general framework forthis and shows how decom-

posable functions like min, max, average, count and sum can be computed over such an

18
architecture. The architecture is highlighted by three tools that the authors calldigests,

scansanddumps. Digestsare the network parameters (e.g.count of the number of nodes)

that are computed either continuously, periodically or in the event of a trigger.Scansare

invoked when thedigestsreport a problem (e.g. a sudden drop in the number of nodes)

to find out the energy level throughout the network. These twosteps can guide a network

administrator towards the location of the fault which can bedebugged using thedumps

(dump all the data of a single or few of the sensors). Furthermore, this paper talks about the

distributed computing of some aggregate functions (mean, max, count etc.). Since all these

functions are decomposable, the advantage is in-network aggregation of partial results up

a tree overlay. The leaf does not need to send all its data to the root and in this way vital

savings can be done in terms of communication. The major concern though is maintain-

ing this tree structure in such a dynamic environment. Also this technique would fail for

numerous non-decomposable functionse.g.median, quantile etc.

The above algorithm describes a way of monitoring the statusof the sensor network

itself. There are many data mining problems that need to be addressed in the sensor net-

work scenario. Such an algorithm for multi-target classification in sensor networks has

been developed by Kotechaet al. [94] Each node makes local decisions and these de-

cisions are forwarded to a single node which acts as the manager node. The maximum

number of targets is known apriori, although the exact number of targets is not known in

advance. Nodes that are sufficiently apart are expected to provide independent feature vec-

tors for the same target which can strengthen the global decision making. Moreover, for

an optimal classifier, the number of decisions increases exponentially with the number of

targets. Hence the authors propose the use of sub-optimal linear classifiers. Through real

life experiments they show that their sub-optimal classifiers perform as well as the optimal

classifier under mild assumptions. This makes such a scheme attractive for low power, low

bandwidth environments.

19
Frequent items mining in distributed streams is an active area of research. There are

many variants of the problem that has been proposed in the literature. Interested readers

are referred to [110] for a description. To give a broad definition of the problem, there

arem streamsS1, S2, .., Sm. Each stream consists of items with time stamps such as<

di1, ti1 >,< di2, ti2 >, etc. LetS be the sequence preserving union of all the streams. If

an itemi ∈ S has a countcount(i) (the count may be evaluated by an exponential decay

weighting scheme), the task is to output an estimatêcount(i) of count(i) whose frequency

exceeds a certain threshold. Each node maintains a precision threshold and outputs only

those items exceeding the precision threshold. As two extreme cases, the threshold can

be set to very low (≈ 0) or very high (≈ 1). In the first case, all the intermediate nodes

will send everything without pruning resulting in a messageexplosion at the root. In the

second case, the intermediate nodes will send a low number ofitems and hence no more

pruning would be possible at the intermediate nodes. So the precision selection is crucial

for such an algorithm to produce meaningful results with lowcommunication overhead.

The paper presents a number of ways to select the precision values for different scenarios

of load minimization.

2.3.3 Data Mining in Ad-hoc Networks

Ad-hoc networks, as the name suggests, consists of a collection of light-weight (pos-

sibly mobile) battery-powered sensors capable of communicating via wireless links. Cur-

rently such networks are mainly used for data collection from hostile and uninhabited en-

vironments such as war fronts, deep seas, volcanos, outer space, and safety critical equip-

ments. The data is usually collected in an offline fashion andshipped to the base station

using wired or wireless sensor network. However, with the proliferation of network infras-

tructure and low maintenance cost, it seems that the next generation of sensor nodes will

be able to communicate in an peer-to-peer fashion using the wireless ad-hoc links. It is

20
generally agreed upon that for a sensor, the majority of the power is wasted in commu-

nicating with its neighbors. Therefore, these ad-hoc networks form an ideal testbed for

communication-efficient distributed data mining algorithms. Note that in such networks,

one also needs to minimize the computations at each sensor topreserve battery power. De-

tails about information processing in sensor networks can be found in the book by Zhao

and Guibas [169].

Since data collection is communication intensive, many algorithms have been pro-

posed to reduce the amount of data collected: LEACH, LEACH-C, LEACH-F [74, 75],

and PEGASIS [102] are some examples. Monitoring applications for wireless sensor and

ad-hoc networks include intrusion detection by Radivojacet al. [138], anomaly detec-

tion by Palpanaset al. [130] and Branchet al. [28], and expectation maximization and

target tracking by Gu [68] and Nowak [122]. Rabbat and Nowak [136] present an algo-

rithm for optimization in sensor and ad-hoc networks. Greenwald et al. [66] present a

general framework for computing theǫ-approximate quantiles and median of the sensor

data. Since these statistics are not decomposable and additive, they make the aggregates

“quasi”-decomposable and thereby achieve excellent reduction in communication cost per

node.

Optimal node placement in sensor networks is an other activearea of research. Krause

et al. [95] developed a technique in which optimal sensor placement leads to maximization

of information and minimization of communication cost. Ghiasi et al. [61] present a

technique for logical clustering of the sensors for reducing the cost of data transfer and

computation. Several other techniques for sensor node clustering are also presented in the

literature such as [33, 165].

21
2.3.4 Peer-to-Peer Data Mining

Peer-to-peer (P2P) networks are becoming increasingly popular for different applica-

tions that go beyond downloading music without paying for it. Social network applications,

search and information retrieval, file storage, and certainsensor network applications are

examples of popular P2P applications [128]. In many cases, the nodes or peers in such P2P

networks are loosely coupled with no shared memory and no synchronization. In general,

P2P networks can be viewed as a massive network of autonomousnodes with no central ad-

ministrator site monitoring their activities. Therefore,data mining in P2P networks requires

a different genre of algorithms which are highly scalable and communication efficient. In

this section we discuss some techniques for distributed data mining in P2P environments

and then discuss some desired properties of P2P data mining algorithms.

P2P data mining is a comparatively new field of research. Recently, several data

mining algorithms have been proposed in the literature for different mining tasks. These

algorithms are either approximate or exact. Dattaet al. [42] present an overview of this

topic.

Probabilistic approximation techniques sometimes rely onsampling either the data or

the network nodes. Examples include clustering algorithmsdescribed in [16] and [43].

Gossip-based algorithms rely on the properties of random walks on graphs to provide esti-

mates of various data statistics. Kempeet al. [91] and Boydet al. [26] have put forward

important theories for development of gossip based algorithms. Deterministic approxima-

tion techniques transform the P2P data mining problem into an optimization problem and

look for optimal results in the sometimes intractable search space using mathematical ap-

proximation. One such approximation is the variational approximation technique proposed

by Jordan and Jaakkola [81, 84]. Mukherjee and Kargupta [118] extended the variational

approximation techniques for distributed inferencing in sensor networks.

Exact algorithms form an exciting paradigm of computation whereby the result gen-

22
erated by the distributed algorithm is exactly the same as the scenario where all the peers

had been given all the data. Thus, contrary to approximate techniques, these algorithms

produce the correct result every time they are executed. Exact algorithms can be designed

using flooding, convergecast or the more communication efficient local algorithms. Local

algorithms for P2P data mining include the majority voting and association rule mining

protocol developed by Wolff and Schuster [161], multivariate regression [22], decision tree

induction [24], eigen monitoring [38],k-facility location [96], meta-classification [108],

distributed stream mining [159] and expectation maximization [23].

From the above discussion it is evident that not all types of algorithms are suitable

for P2P applications. Next, we identify and discuss certaindesirable features of P2P algo-

rithms:

1. Communication efficiency: Distributed data mining algorithms are developed to

avoid centralization of the data. Therefore, it is important that these algorithms pro-

vide excellent performance in terms of the communication required for computing

the results from multiple data sources. There exist different metrics for measuring

the communication efficiency of a distributed algorithm. Number of messages per

node of the communication network and the size of the messagein bytes are exam-

ples of such metrics. The definition of local algorithms, presented in [39] provides a

novel way of deciding whether a distributed data mining algorithm is communication

efficient based on these metrics.

2. Asynchronism: In asynchronous algorithms there does not exist a global system

clock requiring the computations to be performed in a serialor parallel fashion across

the different sites containing the data. In other words, there is no time dependence

across sites for performing their computations. This is a desirable property for dis-

tributed data mining algorithms since real life networks suffer from connection la-

tency and node failures making synchronism requirements impractical.

23
3. Scalability: Scalability of a distributed data mining algorithm says howwell the al-

gorithm scales with respect to the different independent parameters such as the size of

the data and the number of data sites. Usually, communication efficient asynchronous

algorithms scale well with increasing values of these independent parameters.

4. Privacy and security: Since distributed data mining builds a global model by shar-

ing data or knowledge from independent sites, data privacy is a very important issue

that need to be addressed.

This dissertation highlights some of the open problems in privacy preserving dis-

tributed data mining and proposes a solution concept for handling the user’s privacy re-

quirements in the context of different distributed data mining applications.

2.3.5 Privacy Preserving Distributed Data Mining

Since this dissertation deals with privacy preserving algorithms in distributed environ-

ments, we dedicate the next few sections on a thorough discussion on this topic.

2.4 Privacy Preserving Data Mining

The area of privacy preserving data mining has been extensively studied by the data

mining community. In this discussion, we classify privacy preserving data mining algo-

rithms into three categories:

1. Data distortion based privacy: These algorithms aim at distorting the original pri-

vate data, when released, do not divulge any individually identifiable information.

2. Cryptography based privacy: Cryptographic protocols are called private when

their execution does not reveal any additional informationabout the involved par-

ties’ data, other than what is computed as a result of the protocol execution.

24
3. Output perturbation based privacy: Output perturbation techniques discuss pri-

vacy with respect to the information released as a result of querying a statistical

database by some external entity.

Privacy preserving data mining as a field has been hugely influenced by the research

in statistical disclosure control. In this section, we givea brief overview of the statistical

disclosure control literature before delving into the description of the individual privacy

preserving data mining techniques.

Statistical Disclosure Control Statistical disclosure control is a field of research

that concentrates on how to provide summary statistical information on a statistical

database without disclosing individual’s confidential data. The privacy issues in such a

scenario occur when the summary statistics are computed on the data of very few individu-

als or when the data of most individuals in the database are identical. Adam and Wortmann

[2] provide an extensive review of the security control methods for statistical databases.

Statistical disclosure control approaches suggested in the literature are classified into four

general groups: conceptual, query restriction, output perturbation and data perturbation.

Two models are based on the conceptual approach for disclosure control. The conceptual

model [34] provides a framework for investigating the security from the development of the

schema to the implementation at the data-model level. The lattice model [49] constitutes a

framework for data represented in a tabular form at different levels of aggregation. Disclo-

sure control methods that are based on the query-restriction approach provide protection

through the following measures [48]: restricting the queryset size, controlling the overlap

among successive queries and making cells of small size inaccessible to users in the tabular

data representation. The data perturbation approach introduces noise into the database and

transforms it into a different representation. The methodsbased on the data perturbation

techniques either are probability distribution based or fixed data perturbation based. In the

25
former, a database is considered to be a sample from a population with a given probabil-

ity distribution and the security control method replaces the original database with another

sample from the same population or by the distribution itself. In the latter, the values of

the attributes in the database are perturbed and replaced before answering any queries. The

output perturbation approach perturbs the answer to user queries while leaving the data in

the database unchanged. The disclosure control technique is said to be secure if the vari-

ance of the estimatêAi of an attributeAi in the database after one or more queries to the

database is bounded byc where the constantc is a parameter set by the database owner or

administrator.

Addressing privacy issues in data mining require more sophisticated techniques since

data mining results from algorithms such as clustering, classification, and association rule

mining go beyond summary statistics. However, many parallel lines of research in privacy

preserving data mining are very similar to the statistical disclosure control approaches, as

will be noticed in the next few sections where we describe thedata distortion based, cryp-

tography based and output perturbation based privacy preserving data mining techniques.

2.5 Data Distortion based Privacy

In data distortion techniques, some transformation is usually applied on the data for

privacy preservation. Examples of such transformations include adding noise to the data

or suppressing certain values and reducing the granularityof the data. It should be noted

here that there is a tradeoff between the privacy achieved and the utility of the data mining

results. We divide the literature on data distortion based privacy into the following cate-

gories: (i) data perturbation, (ii) data microaggregation, (iii) data swapping, and (iv) data

anonymization. We discuss each of these techniques in depthin the next few sections.

26
2.5.1 Data Perturbation

The data distortion based privacy preservation techniquesaim at modifying the private

data values by adding additive or multiplicative noise drawn from a probability distribution

to the data values. Quantification of privacy is a very important aspect in understanding the

effectiveness of a technique as a privacy preserving method. There are several quantifica-

tions of privacy in the literature of data perturbation based privacy preserving data mining.

Agrawal and Srikant [8] said that if the real value can be estimated withc% confidence

to be in the range[α1, α2], then the interval width(α1, α2) is the amount of privacy pro-

tection provided by the randomization algorithm. However,this definition does not take

into account the initial data distribution. An alternativedefinition proposed in [6] says that

privacy can be quantified by the expression2h(A), whereh(A) is the differential entropy of

a random variableA since it takes into account the inherent uncertainty in the data value. A

number of quantification issues in the measurement of privacy breaches has also been dis-

cussed by Evfimievski [55]. In the next two sections we discuss additive and multiplicative

perturbation in details.

Additive Perturbation In additive perturbation, there is a private data setD =

d1, d2, . . . dn and to everydi ∈ D random noiseri is added, whereri is drawn from a known

distribution such as a uniform distribution or a Gaussian distribution. The modified data

setD
′

= d1 + r1, d2 + r2, . . . dn + rn is released to the data miner. The data miner uses

an expectation maximization algorithm to extract the values of di from di + ri. Agrawal

and Aggarwal [6] prove that this expectation maximization converges to the maximum

likelihood estimate of the original distribution. This randomization method has been used

for a number of data mining tasks such as privacy preserving classification [8], association

rule mining [56], [139], collaborative filtering [134] and other applications such as OLAP

[9].

27
Karguptaet al. [88] proposed a random matrix based spectral filtering algorithm for

reconstructing the private data from additively perturbeddata, thereby questioning the pri-

vacy guarantees provided by additive perturbation. Later,Guo and Wu [69] provided the-

oretical bounds on the reconstruction error from spectral filtering and singular value de-

composition based reconstruction techniques. With the identification of the fact that the

reconstruction gets better with higher correlation among the actual data points, Huanget

al. [78] proposed a modified additive perturbation algorithm where the random noise added

to the data has similar correlation as the actual data.

Multiplicative Perturbation To address the privacy issues of additive perturbation

techniques, multiplicative perturbation has been explored as an alternative. The two most

common multiplicative perturbation techniques have been borrowed from the statistical

disclosure control literature. In the first method, every data elementdi of a private database

D = d1, d2, . . . dn is multiplied by a random number drawn from a truncated Gaussian

distribution with meanµ (usuallyµ = 1) and varianceσ2. In the second method, the

data setD is first transformed by taking a natural logarithm such that the transformed data

elements arezi = ln(di). Then, to each of these transformed data elementszi random

noiseri is added whereri is drawn from a multivariate Gaussian distribution with mean

µ = 0 and variancesσ2 = cΣZ where0 < c < 1 andΣZ is the covariance matrix of

the transformed data elementszi. The data released to the data miner is an exponential of

the noisy transformed data,i.e. D
′
= exp(z1 + r1), exp(z2 + r2), . . . , exp(zn + rn). Both

these multiplicative transformations preserve mean and variance of the real data, but fail

to preserve Euclidean distance or inner product. This wouldbe an issue for most privacy

preserving data mining applications. To address this problem, Liu et al. proposed [105]

a random projection based multiplicative perturbation technique that preserves distance on

an average. If there exists a private databaseDn×m, the technique produces a perturbed

databaseD
′

n×m such thatD
′

n×m = Rn×n × Dn×m, whereRn×n is a n × n orthogonal

28
matrix. The perturbed databaseD

′

n×m is released to the data miner. [123], [32], and [117]

present some other distance preserving multiplicative perturbation based privacy preserving

algorithms. Liuet al. [104] analyze the privacy of their orthogonal projection based privacy

algorithms with respect to principal component analysis based attacks.

The advantage of randomization based data perturbation techniques is that privacy

of the data can be preserved during the data collection process since the amount of noise

to be added to each data record is independent of the later observations. This advantage

leads to a weakness of randomization based privacy preservation. Since the amount of

noise added is not correlated to the data distribution, it might be difficult to mask outliers.

Also, randomization techniques do not take into account prior knowledge about a database

for privacy analyses which lead to known vulnerabilities for these techniques discussed in

Section 2.5.5.

2.5.2 Data Microaggregation

To obtain microaggregates in a data set withn records, these are combined to form

g groups each of size at leastk. For each attribute, the average value over each group

is computed and is used to replace each of the original averaged values. It is a popular

approach for protecting the privacy of the confidential attributes in statistical databases.

For univariate confidentiality in attributes, the confidential attribute is sorted for creating

the groups [71]. For multivariate microaggregation, confidential attributes are grouped

using a clustering technique [50]. The optimalk-partition, from the information loss point

of view, is defined to be the one that maximizes homogeneity within a group: the higher

that homogeneity, the lower the information loss, since microaggregation replaces values

in a group by the group centroid. Obviously, in the extreme case of all identical values, this

can lead to a privacy breach.

29
2.5.3 Data Swapping

Other than adding or multiplying noise to the data, another approach to preserve pri-

vacy is to swap data values across records in a database, alsoknown as data swapping [59].

This method preserves the marginals of individual attributes of the data and is therefore,

very useful for privacy preserving aggregate computations. This technique does not follow

the general principle of randomization which allows the value of a record to be perturbed

independently of the other records. Therefore, this technique can be used in combination

with other frameworks, as long as the swapping process is designed to preserve the defini-

tions of privacy for that model.

2.5.4 Data Anonymization

Data anonymization is a privacy preserving technique addressing some of the limita-

tions of randomization. In anonymization algorithms, the granularity of representation is

lowered by generalization and suppression so that individually identifiable information is

absent in the released database. In generalization, the attribute values are generalized to

a range of acceptable values while in suppression the attribute value is deleted from the

database to avoid identification of individuals. The most popular anonymization based pri-

vacy model called thek-anonymity was proposed by Sweeney [145].k-anonymity states

that each release of data must be such that every combinationof values of released at-

tributes that are externally available and, therefore, available for linking attacks on privacy,

can be indistinctly matched to at leastk respondents. The basic approach proposed in [145]

is a greedy solution using domain generalization hierarchies of quasi-identifiers to buildk-

anonymous tables. Subsequently, there has been extensive research on thek-anonymity

model of privacy. Meyerson and Williams [115] does a complexity analysis of thek-

anonymization problem and states that optimalk-anonymity is an NP hard problem. The

optimality is based on a cost metric defined on the quality of the privacy achieved versus

30
the utility of the released data. A number of heuristic methods have been proposed for

optimallyk-anonymizing a data set. One such method proposed by Bayardoand Agrawal

[19] attempts to bound the running time of the search algorithm by presetting a desired

quality of the output, which might not be the optimal quality. The algorithm assigns a

penalty to each data record based on how many records in the transformed data set are

indistinguishable from it. If an unsuppressed record fallsinto an induced equivalence class

of sizej, that record is assigned a penalty ofj. If a record is suppressed, it is assigned a

penalty of|D|, where|D| denotes the size of the data setD. If g denotes the anonymization

function for a givenk, then mathematically, the algorithm optimizes the objective function

Cost(g, k,D) =
∑

∀Es.t.|E|≥k |E|2 +
∑

∀Es.t.|E|<k |D||E|, whereE is the set of equivalence

classes of records inD. The first sum computes penalties for each non-suppressed record,

the second for suppressed records. Other heuristic search techniques such as simulated

annealing [157] and genetic algorithm [79] have also been used for optimizing the perfor-

mance of the anonymization algorithm. Xiao and Tao [162] present an interesting variation

of the k-anonymization problem by introducing the concept of personalized privacy. In

this approach a person can specify the the level of privacy for his or her sensitive values

and is a good fit for distributed data mining scenarios. Jiangand Clifton also proposed a

distributedk-anonymity model [82]. They have developed a secure protocol for achieving

k-anonymity in case of two vertically partitioned data sites.

Thek-anonymity model is susceptible to attacks when all the values of the sensitive at-

tribute in a anonymized group ofk records are the same (homogeneity attack). Sometimes

even background knowledge on the association between quasi-identifiers and sensitive at-

tributes can lead to inferencing of the sensitive attributes correctly (background knowledge

attack). The technique ofℓ-diversity [109] has been proposed to address the homogeneity

attack. The main idea behindℓ-diversity is that the anonymization not only maintains in-

distinguishable groups of sizek, but also maintains diversity of the values of the sensitive

31
attribute within that group. However, this technique, likek-anonymity suffers from the

curse of dimensionality [3].

Another disadvantage of thel-diversity method is that it treats all values of a given

attribute in the same way irrespective of its distribution in the data. This is far from what

happens in a real life data set and background knowledge attack can be used to inference

correctly the values of a sensitive attribute. To address this problem, thet-closeness model

[100] has been developed which uses the property that the distance between the distribution

of the the sensitive attributes within an anonymized group and that between the global

distribution of the same attribute should not be different by more than a thresholdt. The

inherent weakness of anonymization based privacy preserving algorithms still remains that

although these methods are effective in preventing identification of a record, they are not

always effective in preventing inference of the sensitive values of the record.

2.5.5 Vulnerabilities of Data Distortion Techniques

There has been considerable research in analyzing the vulnerabilities of existing pri-

vacy preserving data mining techniques. Some of these efforts have assumed the role of

an attacker and developed techniques for breaching privacyby estimating the original data

from the perturbed data and any additional available prior knowledge. Additive data per-

turbation attacks use eigen analysis for filtering the protected data. The idea for techniques

such as PCA [78] is that even after addition of random noise, the correlation structure in

the original data can be estimated with considerable accuracy. This then leads to removal

of the noise in such a way that it fits the aggregate correlation structure of the data. It has

been shown that such noise removal results in prediction of values which are fairly close

to their original values. Kargupta et al. [88] use results from matrix perturbation theory

and spectral analysis of large random matrices to propose a filtering technique for random

additive noise. They show that when the variance of noise is low and the original data

32
has correlated components, then spectral filtering of the covariance matrix can recover the

original data with considerable accuracy. A second kind of adversarial attack uses pub-

licly available information. Assuming that the distribution of the perturbation is known, a

maximum likelihood fit of the potential perturbation to a publicly available data creates a

privacy breach. The higher the log-likelihood fit, the greater the probability that the public

record corresponds to a private data record.

For multiplicative perturbation, privacy breach is in general more difficult if the at-

tacker does not have prior knowledge of the data. However, with some prior knowledge,

two kinds of attacks are possible [104]. In the known input-output attack, the adversary

knows some linearly independent collection of records, andtheir mapping to the corre-

sponding perturbed version and linear algebra techniques can be used to reverse-engineer

the nature of the privacy preserving transformation. For the known sample attack, the

adversary has a collection of independent samples from the original data distribution and

assumes that the perturbation matrix is orthogonal. Using this, he can replicate the behavior

of the original data using eigen analysis techniques.

Data anonymization techniques are prone to different attacks if the adversary has back-

ground knowledge about the private data set. If all values ofa sensitive attribute in an

anonymized data set are the same, then the privacy of the sensitive attribute is breached.

Such an attack on anonymization is called the homogeneity attack [55]. In background

knowledge based attacks of data anonymization techniques,the adversary can use an asso-

ciation between one or more quasi-identifier attributes with the sensitive attribute in order

to narrow down possible values of the sensitive field [109].

In the next section we discuss a different paradigm of privacy preserving data mining,

viz. cryptography based privacy preservation. This is most applicable for distributed data

mining applications since it deals with privacy preserving(secure) function computation

on different parties’ private information.

33
2.6 Cryptography based Privacy

Cryptography is the practice and study of hiding information. The broad approach to

cryptographic methods can be listed as either data encryption or secure multi-party compu-

tations. There is a considerable overlap between distributed privacy preserving data mining

and secure multi-party computation since both tend to compute functions over inputs pro-

vided by multiple participants without actually sharing the inputs with one another.

2.6.1 Secure Multi-party Computation

Privacy preserving distributed data mining requires multiple parties to collaborate for

computing joint functions on their privately held data while providing a privacy guarantee

that the participants would not learn any information beyond what is implied by the output

of the function computation. This is what even secure multi-party computation deals with.

If there aren parties involved in a distributed data mining protocol where thei-th party

owns dataxi, then secure multi-party computation is the approach to compute the function

f on all parties’ dataf(x1, x2, . . . , xn) = (y1, y2, . . . , yn), such that partyi only gets to

knowyi and nothing else. An example of such a computation is Yao’s millionaire problem

[164]. The problem description is as follows: two millionaires meet in the street and want

to find out who is wealthier without having to reveal their actual fortune to each other.

The function computed in this case is a simple comparison between two numbers. If the

result is that the first millionaire is wealthier, then he knows that, but this should be all the

information he learns about the other guy and not the exact value of his assets.

Adversary Model: The privacy threats in this system arise from participants who cheat,

also known as adversaries. The secure multi-party computation literature defines

two types of adversaries. Semi-honest adversaries (honestbut curious adversaries)

who follow the protocol, but try to infer additional information about other parties’

data during the protocol execution. The malicious adversary model assumes that

34
the adversary can deviate from the protocol and send misleading messages to other

parties to infer secret information about other parties’ data. It is understandable that

it is easier to design a solution that is secure against semi-honest adversaries than

against malicious adversaries.

Privacy: There exists different definitions of privacy (called security for cryptography

based guarantees) for both the secure computation models [36]. A computation is

called secure if the information obtained by any party can beobtained through only

its own input and output. An alternative definition is based on the hypothetical exis-

tence of a trusted third party. All parties send their private inputs to the trusted party,

who computes the function and sends the appropriate resultsback to all the parties.

We say a protocol is secure or private if anything that an adversary can learn in the

actual world can also be learned in the ideal world. Protocols satisfying this defini-

tion prevent an adversary from gaining any extra advantage in the actual world over

what it could have gained in an ideal world.

Oblivious Transfer Protocol: A key building-block for many kinds of secure function

evaluations is the 1 out of 2 oblivious-transfer protocol [54, 137] which involves two

parties: a sender, and a receiver. The sender’s input is a pair (x0, x1) and the re-

ceiver’s input is a bitb ∈ 0, 1 denoting the index ofxb. At the end of the protocol

the receiver learnsxb and nothing else, and the sender learns nothing. There can be

many ways for implementing the oblivious transfer protocol. One simple way is for

the receiver to generate two random public keys,K0 andK1, but to know only the

decryption key forKb. Using the public keys the sender can encrypt(x0, x1) and

send it back to the receiver who can decrypt only one of themxb using the decryp-

tion key. Oblivious transfer is sufficient for secure computation in the sense that,

given an implementation of oblivious transfer, it is possible to securely evaluate any

polynomial-time computable function without any additional primitive. Oblivious

35
transfer can be used to design secure protocols for both semi-honest and malicious

adversaries and there exist generalizations of the 1 out of 2oblivious protocol to 1

out of N oblivious protocol in the literature for designing efficient secure function

computations.

Circuit Evaluation: Yao [164] presents a constant round protocol for secure computa-

tion of probabilistic polynomial time functions by expressing the functions as combi-

natorial circuits with gates defined over some fixed base. Thepolynomial size circuit

consists of AND and XOR gates and the input bits are transmitted through wires

connecting these gates. The protocol requires one of the parties to generate an en-

crypted or “garbled” circuit representing the function to be evaluated,f , and send

it to the other party. The receiver can then reconstruct the values from the garbled

representation using a 1 out of 2 oblivious transfer protocol. Using this informa-

tion the receiver can now compute the output of the circuit himself. Although Yaos

generic circuit evaluation method is secure, it poses significant computational prob-

lems since the computational complexity of the protocol is roughly linear in relation

to the size of the input and the communication complexity is linear in relation to the

size of the circuit. Given the size and computational cost ofdata mining problems,

representing algorithms as a boolean circuit results in unrealistically large circuits.

Therefore, this technique is not used usually for distributed privacy preserving data

mining problems.

A number of secure multiparty computation protocols have been adopted for different

privacy preserving data mining tasks till date. A classic problem which is often used as

a primitive for many other problems in data mining is that of computing the scalar dot-

product in a distributed environment and Du and Atallah [51]describe a systematic set

of methods for transforming a number of privacy preserving data mining problems into

secure inner product computation. Cliftonet al. [36] describe another set of important

36
secure data mining primitives such as sum computation, set union, size of set intersection,

and scalar product. A number of secure data mining applications have been developed

using the primitives mentioned above. For the horizontal data partition scenario, examples

include secure classification [101], secure clustering [80] and association rule mining [85].

There exists these solutions even for the vertical data partition scenario [150], [151], [152],

[166]. Secure multi-party computation is very relevant to the line of research involving

privacy reserving data mining in distributed environmentssince it requires multiple data

owners to collaborate in computing a function in a privacy preserving manner. The secure

sum computation problem has been discussed in details in Chapter 4 in the context of this

dissertation.

2.6.2 Data Encryption

An alternative to secure multi-party computation is the process of data encryption

where secret data (plaintext) is transformed using an algorithm (cipher) to a format (ci-

phertext) that is unreadable to everyone except those who have access to some specialized

information (key) used for decrypting it. A public-key cryptosystemP(G,E,D) is a col-

lection of probabilistic polynomial time algorithms for key generation, encryption and de-

cryption. The key generation algorithmG produces a private keysk and public keypk with

specified key size. Anybody can encrypt a message with the public key, but only the holder

of a private key can actually decrypt the message and read it.The encryption algorithm

E take as an input a plaintextm, a random valuer and a public keypk and outputs the

corresponding ciphertextEpk(m, r). The decryption algorithmD takes as an input a ci-

phertextc and a private keysk (corresponding to the public keypk) and outputs a plaintext

Dsk(c). It is required thatDsk(Epk(m, r)) = m. The plaintext is usually assumed to be

from Zµ, whereµ is the product of two large primes. The integers moduloµ, denotedZµ,

is the set of (equivalence classes of) integers{0, 1, . . . , µ − 1}. Addition, subtraction, and

37
multiplication inZµ are performed moduloµ.

Homomorphic Encryption A public-key cryptosystem is homomorphic when one

can perform a specific algebraic operation on the plaintext by performing a (possibly

different) algebraic operation on the ciphertext. For example, for the Paillier public-

key cryptosystem [129],∀m1, m2, r1, r2 ∈ Zµ, Dsk(Epk(m1, r1)Esk(m2, r2) modµ2) =

m1 +m2 modµ;. This feature allows a party to add or multiply plaintext by doing simple

computations with ciphertext, without having the secret key. An application of Paillier’s

homomorphic encryption scheme for secure scalar product isdiscussed in Chapter 5.

Commutative Encryption A cryptosystem is called commutative when the com-

position of the encryption with two different keys is the same irrespective of the order

of encryption. This means that the encryption algorithmE taking as input plaintext

m for two different encryption keyspk1 and pk2 will produce the same ciphertext,i.e.

Epk1[Epk2(m)] = Epk2[Epk1(m)]. The encryption function is such that the ciphertext pro-

duced from two different plaintexts is never the same. Also,decryption of the ciphertext for

retrieving the plaintext takes polynomial time. Based on commutative encryption, Agrawal

et al. [7] developed several secure protocols for set intersection, equijoin, intersection size,

and equijoin size. We refer interested readers to their workfor more details.

2.6.3 Disadvantages of Cryptography based Techniques

Although cryptography based privacy preserving techniques are most suitable for dis-

tributed data mining applications, these techniques are not adopted frequently in practice

because of the high cost involved in doing secure computations. Most of these protocols

require a completely synchronous distributed computing environment which is not realistic

for large P2P systems. Also, cryptography based data miningprotocols model parties as

either honest, semi-honest or malicious. However, in real life most parties can be assumed

38
to be ‘rational’ instead, and game theoretic analysis can reveal interesting characteristics of

these algorithms leading to mechanism design for optimal protocol design. By adjusting

the size of the keys used in the protocols, the trade off between privacy and efficiency can

be modulated. However, unlike perturbation based techniques, cryptographic techniques

do not allow easy trade-off between privacy and accuracy. Inthis dissertation, we aim at

making privacy preserving data mining more adaptable to real life requirements.

2.7 Output Perturbation

The cryptography based privacy preservation techniques donot provide any guarantee

that the outcome of the data mining analysis does not reveal any individually identifiable

information and even a secure protocol can lead to compromised privacy. Output perturba-

tion based privacy models are an alternative solution to this problem, where an individual’s

data is included in an analysis only if does not change the result ‘too much’. Like data per-

turbation based techniques, even this line of research has its roots in the statistical disclo-

sure control literature and discusses the privacy of a statistical databaseD = d1, d2, . . . , dn

by constructing output perturbation mechanisms [2]. Unlike the anonymization literature,

output perturbation based techniques, do not identify specific data attributes inD to be

more privacy sensitive than others. Privacy is achieved by defining algorithmic mecha-

nisms called sanitizers that work by perturbing the output of a query functionf(D) on the

database. Mathematically, the sanitizer is defined asSan(D, f) = f(D) + Y whereY is

random noise following a probability distribution. A sanitizer is private if an adversary can

gain no significant knowledge about an individual in the database beyond what he or she

could have learned by interacting with a similar (neighbor)database where that individual

entry is arbitrarily modified, or removed. The most popular privacy model in the output

perturbation literature is theǫ-differential privacy model [52] which states that a sanitizer

San is ǫ-private if for all neighbor statistical databasesD, D
′

(databases differing only

39
in one entry) and for all subsets of possible answersT , the ratio ofPr[San(D) ∈ T]

to Pr[San(D
′
) ∈ T] is bounded byeǫ. The advantage of this privacy model over ex-

isting models is that it does not depend on a specific technique or output format. Also,

ǫ-privacy is not a property of a specific outcome of a sanitization mechanism, but of the

mechanism itself. It is possible to extend this privacy guarantee even when the adversary

poses a series of adaptive questions to the database by modifying the amount of noise

added to each query result. The amount of noise to be added to the query result for con-

structing the sanitizer is proportional to the global sensitivity of the query function [53].

For Laplacian noise, the sanitizer on databaseD for query functionf can be written as

San(D, f) = f(x) + (Y1, Y2, . . . , Yn), where(Y1, Y2, . . . , Yn) are i.i.d random variables

from Lap(GSf/ǫ), andGSf is the global sensitivity of the query functionf . If the noise

is correlated with the instanceD, then special techniques [121] need to be applied to smooth

sensitivity of the locally sensitive function, to prevent leakage of information.

McSherry and Talwar proposed a generic technique for constructingǫ-private sanitiz-

ers by attaching a score to the result of a query depending on its quality. This improves the

utility of the ǫ-private query results. Blumet al. [25] shows how to compute singular value

decompositions, find the ID3 decision tree, carry out k-means clusterings, learn association

rules, and learn anything learnable in the statistical queries learning model using only rel-

atively small number of counting queries. This lays the basic framework for adapting the

ǫ-differential privacy model for standard data mining tasks. Baraket al. [17] extends the

privacy model for contingency tables and OLAP cubes.

Recently, Xiao and Tao [163] showed that the differential privacy model suffers from

two major drawbacks. Finding the global sensitivity of the query function is an NP-hard

problem and therefore, the model requires prohibitive computation overhead. They also

proved that this model of privacy can answer only a limited number of queries, after which

the database has to be shut down to prevent leakage of privateinformation. In this disser-

40
tation, we adapt the differential privacy model to fit a distributed data mining problem.

2.8 Summary

In this chapter we have first presented an overview of the literature on distributed data

mining algorithms. We have talked about the desired properties of these algorithms that

would make them useful for large administration-free environments such as P2P networks.

We have then described the literature on privacy preservingdata mining. We have classified

existing literature on privacy preserving data mining intothree types: (i) data perturbation

based privacy preservation, (ii) cryptographic privacy preservation, and (iii) output per-

turbation based privacy preservation. We have given a broadoverview on each of these

techniques. For details on the state of the art of the field, interested readers can refer to

the book by Aggarwal and Yu [5]. Starting from the next chapter, we focus on describing

the research contributions of this dissertation, where we have taken some of the existing

privacy preservation techniques and modified them to fit the requirements of a distributed

data mining environment.

41

Chapter 3

MULTI-OBJECTIVE OPTIMIZATION BASED

PERSONALIZED PRIVACY

3.1 Introduction

Proliferation of communication technologies and reduction in storage costs over the

past decade have led to the emergence of several distributedsystems. Gnutella, BitTorrents,

e-Mule, Kazaa, and Freenet are some examples which can no longer be viewed as isolated

systems of file storage or data transfer. Researchers in the past decade have pointed out

the value of information hidden in the data in these systems.However, mining of such

data naturally requires satisfying the privacy requirements of the users. Also, in multi-

party environments such as the Internet, each user has a different requirement of privacy.

Binding all users to one common model of privacy is a not realistic scenario; personalized

privacy seems to be a more attractive solution.

Research in privacy has shown that the privacy guarantee is not holistic; it often comes

with its own assumptions and drawbacks [52, 109, 145]. For example, consider the widely

usedk-anonymity privacy model [145] in which one uses the conceptof suppression or

generalization to hide a sensitive tuple amongk − 1 other tuples. But such privacy comes

at a cost — loss in data accuracy and the cost involved in performing the anonymization.

Thus, privacy preserving techniques can be posed as optimization of multiple objectives,

42
commonly referred to as multi-objective optimization. Theindividual objective functions

can be conflictingi.e. improving one degrades the other. For example, in the perturbation

based privacy model, increasing the noise in the data provides better privacy, but degrades

the accuracy of the results.

When the data is distributed across multiple parties, providing privacy becomes even

more challenging. An important shortcoming of existing privacy preserving distributed

data mining applications is the definition of a monolithic privacy model for all participants.

Since each participant has its own requirement for privacy and the cost it is willing to

bear for it, a single privacy model is not likely to work for a heterogenous computing

environment such as the Internet.

In this chapter we present a framework for personalized privacy based on the concept

of multi-objective optimization. We frame the privacy problem as a multi-objective opti-

mization problem where each user tries to find an optimal point between two possibly con-

flicting objectives — (1) maximizing the data privacy or minimizing the threat of privacy

breach, and (2) minimizing the cost associated with the privacy guarantee. Solution to this

multi-objective optimization problem is aParetooptimal solution set [47] — none of which

are “better” than the others. Any solution in this set may satisfy the unique privacy and cost

requirements of a node, thereby providing personalized privacy. This chapter attempts to

provide personalized privacy guarantees to nodes in a heterogeneous collaborative comput-

ing environment by solving the multi-objective optimization in a communication-efficient

distributed manner. The global solution found by our distributed algorithm is guaranteed

to be in theParetooptimal set. In this context we also discuss an alternative formulation of

the multi-objective optimization problem that provides anoptimal cost-privacy model for

the overall system and not for individual participants. Finally, we end this chapter with an

illustration of our framework of personalized privacy using theǫ-differential privacy model.

43
3.2 Optimization in Privacy

Privacy preserving data mining is a relatively new field of research and the pioneering

works in this area has shown that in most cases, privacy comesat a cost. Sometimes this

cost is in terms of the amount of excess computation that needs to be performed to ensure

privacy and sometimes it is additional communication for secure multi-party computation

techniques. Other than requirement of additional resources, privacy also comes at the cost

of utility in many situations. The quality of the data miningresults is compromised due to

different kinds of perturbation or anonymization techniques. Therefore, privacy preserva-

tion for data mining can be thought of as an optimization problem. The problem of utility

based privacy preserving data mining was first studied formally by Kifer [93] where the

problem of dimensionality in the process of anonymizing data for privacy preservation was

addressed by separately publishing marginal tables containing attributes which have util-

ity, but were not as good in terms of privacy preservation. The approach is based on the

idea that the generalization performed on the marginal tables and the actual tables do not

need to be the same. As discussed in Chapter 2, the problem of optimal k-anonymization

is NP-hard [19]. The optimality is based on a cost metric defined on the quality of the

privacy achieved versus the utility of the released data. A number of heuristic methods

have been proposed to find the optimal anonymization of the given data. One such method

proposed by Bayardo and Agrawal [19] attempts to bound the running time of the search

algorithm by presetting a desired quality of the output, which might not be the optimal

quality. The algorithm assigns a penalty to each data recordbased on how many records in

the transformed data set are indistinguishable from it. If an unsuppressed record falls into

an induced equivalence class of sizej, that record is assigned a penalty ofj. If a record

is suppressed, it is assigned a penalty of|D|, where|D| denotes the size of the data setD.

If g denotes the anonymization function for a givenk, then mathematically, the algorithm

44
optimizes the objective function

Cost(g, k,D) =
∑

∀κs.t.|κ|≥k

|κ|2 +
∑

∀κs.t.|κ|<k

|D||κ|,

whereκ is the set of equivalence classes1 of records inD. The first sum computes penalties

for all non-suppressed records, the second for suppressed records. The utility measure

in this approach is called the generalization height. Othermeasures of utility for optimal

anonymization include size of the anonymized group for theℓ-diversity approach [109] and

privacy information loss ratio [155]. For randomization based privacy preservation, Zhu

and Liu [171] propose a metric based on the mutual information between the randomized

and original data. They propose optimization of this metricfor an optimal privacy utility

combination for density estimation tasks on the data.

A different connotation of optimal privacy involves payingattention to the privacy re-

quirements of individual data owners participating in the data mining task. A condensation

based approach has been proposed in [4] for addressing variable constraints on the privacy

of data tuples depending on the data owners’ preferences. This technique constructs groups

of non-homogeneous size from the data, such that it is guaranteed that each record lies in

a group whose size is at least equal to its anonymity level. Subsequently, pseudo-data is

generated from each group so as to create a synthetic data setwith the same aggregate dis-

tribution as the original data. A comparatively recent workon personalized privacy based

onk-anonymization has been proposed by Xiao and Tao [162]. In this approach the entire

data set is divided into domains in the form of an ontologicalgraph structure and the indi-

viduals can specify the level of privacy required for the sensitive attributes by specifying

the node level in the generalization hierarchy. The authorspropose a greedy algorithm to

obtain the optimal privacy for different sensitive attributes depending on the individual’s

1the set of tuples which are grouped together due to the anonymization operation

45
preference. Although there has been some research in the area of optimization and privacy,

it has never been studied in the light of distributed data mining.

In this dissertation we present a practical and efficient solution for achieving person-

alized privacy using a multi-objective optimization framework in distributed data mining

environments.

3.3 Privacy Preserving Distributed Computation Model

Privacy is a social concept and it has different connotations for different participants

in distributed data mining applications. Even the requirement of privacy can vary from one

user to another, depending on the data mining application and the sensitivity of the private

information. The amount of resources available to a data owner and its belief about the

adversary’s computing power and background knowledge might also influence the privacy

expectations. In this dissertation, we propose a multi-objective optimization based frame-

work for privacy preserving distributed data mining. As noted in Section 3.1, privacy often

comes at a price — both computational and communication costis involved for achieving

privacy and the quality of the data also gets affected. Any rational user will try to maxi-

mize both its data privacy and utility while minimizing the cost it has to pay for privacy

preservation. Therefore, we can frame the multi-objectiveoptimization problem as the one

which:

1. maximizes the user’s data privacy at the end of the computation

2. minimizes the total cost incurred in the process

In this context, cost may refer to the cost of performing the computation, communication

and/or the degradation in quality or utility of the data for mining results. For a heteroge-

nous multi-party distributed data mining scenario, each node has an optimization problem,

the components of which are threat to data privacy and the cost of data mining. While the

46
objective function for each node is the same, the constraints of each node are different,

depending on its personal preferences. Any multi-party privacy preserving data mining

algorithm should solve this optimization problem in a global sense: the outcome of the

optimization problem is a parameter of the privacy preserving data mining algorithm that

should satisfy both the cost and the privacy requirement of each participating individual.

The specific parameter is algorithm and domain-dependent and we do not specify it here.

As an example, one might consider the well-studiedk-anonymity [145] model where in-

creasingk increases the privacy while also increases the cost since more number of tuples

need to be anonymized. The optimization problem can be solved using the centralized au-

dit based technique where each node sends its constraints tothe centralized authority. The

central auditing node can solve the constrained optimization problem where the global set

of constraints is the union of the set of all the constraints of the individual nodes. However,

for an asynchronous distributed network, the auditing nodecan become a performance bot-

tleneck. For thek-anonymity model of privacy in a distributed setting, different nodes can

end up with different values ofk depending on the solution of the optimization. The final

privacy preserving data mining algorithm has to be designedin a way such that it can satisfy

the cost and privacy constraints of all the nodes optimally.In the next section we present

a mathematical framework of the personalized privacy scheme based on multi-objective

optimization.

3.4 Multi-objective Optimization Framework

Multi-objective optimization involves simultaneous optimization of more than one

objective functions. In this section we first formally definemulti-objective optimization,

show how it can be solved and discuss the solution characteristics. Due to the vast literature,

here we present a very brief introduction to this subject. Interested readers are referred to

the books by Deb [47] and Boyd [27].

47
3.4.1 Problem Formulation

Optimization is the task of maximizing or minimizing a real function by choosing val-

ues of the variables which define that objective function. Mathematically it can be defined

as,

minimize f(x)

subject to g(x) ≥ 0, (3.1)

h(x) = 0,

x
(ℓ)
i ≤ xi ≤ x

(u)
i , ∀i = 1 . . .m

wheref : Rm → R is known as the objective function,x ∈ Rm is am-dimensional input

vector, andg : Rm → R, h : Rm → R are the constraints. This optimization problem is

known asscalaroptimization since the objective function is a mapping fromRm to R.

Multi-objective optimization, also known as multi-criteria or multi-attribute optimiza-

tion, is the process of simultaneously optimizing two or more possibly conflicting objec-

tives subject to certain constraints. Multi-objective optimization is found in any situation

where optimal decisions are guided not by a single objectivebut rather by multiple possibly

conflicting objectives. In its general form, it can be mathematically stated as:

minimize f(x) = [f1(x) . . . fM(x)]T

subject to gj(x) ≤ 0, ∀j = 1, . . . , p (3.2)

hk(x) = 0, ∀k = 1, . . . , q

x
(ℓ)
i ≤ xi ≤ x

(u)
i , ∀i = 1 . . .m

where there areM scalar objectivesf1 . . . fM with fi : Rm → R, gj andhk are known

as the constraint functions and each variable also has its own explicit bound betweenx(ℓ)
i

48
andx(u)

i . The solution to such a multi-objective optimization problem is a vectorx∗ =

{x∗1, x∗2, . . . , x∗m} ∈ Rm. The bounds restrict the decision variables and hence constitute

thedecision variable spaceD.

In this formulation, there areM scalar objective functions. It is assumed that each

objective function needs to be minimized. Note that, any maximization problem can be

converted to a minimization problem by multiplying it by -1 (the duality principal). Mixed

type of objective functions (some maximization and some minimization) can also be han-

dled similarly by converting all of them to the same type. Unlike in a single objective

optimization, a multi-objective optimization framework is associated with two spaces: (1)

the decision variable spacewhich is theRm space spanned by the inputx, and (2) the

objective space whichis the space spanned by the objective functionf(x) = z ∈ RM . In

multi-objective optimization, since the objective function is a vector ofM objectives, it is

often referred to asvector optimization.

Types of Multi-objective Optimizations

Depending on the type of functions, the resulting multi-objective optimization can be

classified into several classes. If all the objective functions and constraint functions are

linear with respect to the input parameterx, the resulting optimization is known as alinear

multi-objective optimization. If any of these functions are non-linear with respect tox, it

is known asnon-linearmulti-objective optimization. Multi-objective optimization can be

convex. Before we define convex optimization, we first define convex functions.

Definition 3.4.1 (Convex function). A functionf : R → R defined on an interval (or

on any convex subset of some vector space) is convex if for anytwo pointsa and b in its

49
domain and anyθ ∈ [0, 1], we have

f(θa+ (1− θ)b) ≤ θf(a) + (1− θ)f(b)

Geometrically, the above inequality means that given any two pointsa andb lying on

the functionf , the straight line joining them lies completely inside the function. The above

definition is also applicable for multi-variate functions.There are several tests for convex-

ity. In this dissertation, we will use the second order optimality condition which states that

a function is convex iff the second derivative is positive. For multivariate functions, there

does not exist a single derivative, rather set of all double derivatives is known as the Hessian

matrix. Checking for convexity in this case is equivalent tochecking if the Hessian matrix

(H) is positive semi-definitei.e. if

yHyT ≥ 0

for any vectory. We now define a convex multi-objective optimization problem.

Definition 3.4.2. [Convex Multi-objective Optimization][27] A multi-objective optimiza-

tion problem is convex if all the objective functions are convex, the inequality functions are

convex and the equality constraints are all linear.

For a convex multi-objective optimization, the solution space (the feasible region) will

be, by definition, convex. We will use the concepts of convex optimization in the rest of

this chapter.

3.4.2 Non-dominated Set and Pareto Optimal Set

Most multi-objective optimizations do not have a unique optimal solution. Due to

the existence of multiple objectives, there might exist solutionsx∗
1 andx∗

2, such thatx∗
1 is

“better” thanx∗
2 for a pair of objective functionsfi(x) andfj(x) such thatfi(x

∗
1) > fj(x

∗
2)

while “worse” for another pair of objectivesfk(x) andfℓ(x) i.e. fk(x
∗
1) < fℓ(x

∗
2). In such

50
a situation, without added information, one would not be able to choosex∗

1 overx∗
2 or vice

versa. Note that such a situation does not arise in case of scalar optimization due to the

existence of only one objective function. In other words, there is a unique ordering among

the solutions in case of scalar optimization, but none exists, in general, for a multi-objective

optimization.

The concept of dominance is intricately related to multi-objective optimization. Let

x∗
1 andx∗

2 be two solutions where we define the ‘≺’ operator asx∗
1 ≺ x∗

2 implies that

solutionx∗
1 is better than solutionx∗

2 on a particular objectivefj(x) i.e. ∃j such that,

fj(x
∗
1) < fj(x

∗
2). Similarly, we define the ‘⊁’ operator asx∗

1 ⊁ x∗
2 implying thatx∗

1 is no

worse thanx∗
2 for the objective functionfj(x) i.e. ∃j such that,fj(x

∗
1) ≯ fj(x

∗
2).

Definition 3.4.3 (Dominance of solutions). [27] For a multi-objective optimization (as

stated in Equation 3.2), solutionx∗
1 is said to dominate solutionx∗

2, denoted byx∗
1 ⊳ x∗

2, if

the following conditions hold:

1. the solutionx∗
1 is no worse thanx∗

2 on all objectives i.e.fi(x
∗
1) ≯ fi(x

∗
2) ∀i = 1 . . .M

2. the solutionx∗
1 is better thanx∗

2 in at least one objective i.e.fi(x
∗
1) < fi(x

∗
2) for at

least onei = 1 . . .M

The idea of dominance allows us to compare two solutions of a multi-objective opti-

mization problem. Intuitively, ifx∗
1 ⊳ x∗

2, it means that solutionx∗
1 is better than solution

x∗
2.

Given a finite set of solutionsS, it is always possible to find a subset of solutions

S ′ ⊂ S, such that any two solutions inS ′
do not dominate each other. Moreover, for any

solution inS \ S ′
, we can always find a solution inS ′

which dominates the one inS \ S ′
.

The setS ′
is known as thenon-dominated set. Below is a formal definition.

Definition 3.4.4(Non-dominated set[47]). Given a set of solutionsS, the non-dominated

setS ′ ⊂ S is the set of all solutions which are not dominated by any solution in S.

51
Finally, we define aParetooptimal set.

Definition 3.4.5(Pareto optimal set[47]). When the setS refers to the entire search space,

then the setS ′
is known as the Pareto optimal set of solutions.

Thus, none of the solutions in thePareto optimal set are dominated by any other

solution in the entire search space. Moreover, for any otherfeasible solution not in the

Paretooptimal set, there always exists one solution in this set which dominates the former.

As a result, while searching for optimal solutions, one may only focus on theParetooptimal

set; the other solutions will be ‘inferior’ than all membersof this set.

3.4.3 Solving Multi-objective Optimization via Scalarization

The multi-objective optimization problem defined by Equation 3.2 can be solved in

several different ways to find theParetooptimal set. Interested readers are referred to the

book by Deb [47] and Boyd [27] for a detailed exposure. In thisthesis, we explore the

use of one such techniqueviz. scalarization. Scalarization is the technique of combining

multiple objective functions into a single objective function using a set of weights. Deb

[47] presents a detailed analysis of the advantages and disadvantages of this technique.

Due to scalarization, Equation 3.2 can be reformulated as:

minimize F = wTf(x) = [w1f1(x) + . . . + wMfM(x)]

subject to gj(x) ≤ 0, ∀j = 1, . . . , p (3.3)

hk(x) = 0, ∀k = 1, . . . , q

x
(ℓ)
i ≤ xi ≤ x

(u)
i , ∀i = 1 . . .m

wherew is a M-dimensional weight vector whose components are positive.We refer

to it as a positive vector and denote it asw ≻ 0. Since multiplication by a constant

does not change the optimal value, it is customary to assume that
∑M

i=1wi = 1. Note

52
that this technique reduces the multi-objective optimization problem to an ordinary scalar

optimization problem. The exact value of the weights depends on several factors: (1) the

importance one associates to each objective function, and (2) if the objective functions are

not all in the same scale, the weights can be used to scale themto uniformity. By varying

the weight vector one can obtain possibly differentParetooptimal solutions of the multi-

objective optimization given in Equation 3.2.

Let x∗ be a solution to the scalarized optimization problem (Equation 3.3). Then we

claim thatx∗ lies in theParetooptimal set of solutions of Equation 3.2. The following

theorem formalizes this claim.

Theorem 3.4.1([27, 116]). Let x∗ be a solution to the scalarized multi-objective function

defined in Equation 3.3. For a positive weight vectorw, x∗ is a Pareto optimal solution to

the original multi-objective optimization given in Equation 3.2.

Proof. We prove this by the method of contradiction. Let us assume thatx∗ is an optimal

solution of Equation 3.3, but not aParetooptimal solution of Equation 3.2. Hence, there

must exist another feasible solutiony∗ which is better thanx∗ i.e. y∗ ≺ x∗. Proceeding,

x∗ − y∗ ≻ 0

⇒ wT [f(x∗)− f(y∗)] > 0 sincew ≻ 0

⇒ wTf(x∗) > wTf(y∗)

This contradicts our assumption thatx∗ is optimal for Equation 3.3. Thus, every optimal

solution of Equation 3.3 is aParetooptimal solution of Equation 3.2.

The above theorem proves one important point: for any choiceof weight vector

w ≻ 0, all generated solutions of the scalarization of the original multi-objective opti-

mization problem will lie in the latter’sParetooptimal set. Thus scalarization does not

53
destroy the structure of the optimization; it merely helps in finding the solution using scalar

optimization techniques.

Although any solution to the scalarization is guaranteed tobe in theParetooptimal

set, we need to prove that the entireParetooptimal set can be generated by solving the

scalarized version (Equation 3.3). Unfortunately, this statement is not true in general. If

theParetooptimal front is non-convex, then it can be shown that all solutions in thePareto

optimal set cannot be generated by this technique even ifw ≻ 0. On the other hand, for

convexmulti-objective optimization generating a convexParetooptimal set (as defined in

Definition 3.4.2), this statement holds. Note that if the individual objective functions are

convex i.e. fi(x) is convex for alli, then their affine combinationF is also convex by

definition. Henceforth, we will only consider convex objective functionsi.e. all fi(x)’s are

convex. The following theorem proves the claim for convex multi-objective optimizations.

Theorem 3.4.2 ([27, 116]). For every Pareto optimal pointxpo of the original multi-

objective optimization, there is some nonzerow ≻ 0 such thatxpo is a solution of the

scalarized problem of Equation 3.3.

Proof. Let us consider two solutions to the original multi-objective problem given in Equa-

tion 3.2:xpo andy, wherexpo is aParetooptimal solution. Then, by definition, there must

exist at least onek such that,

fk(x
po) < fk(y), fi(x

po) ≤ fi(y) ∀i = 1 . . .M, i 6= k.

54
Now after scalarization byw ≻ 0, we get,

F (xpo)− F (y) = wTf(xpo)−wTf(y)

= [w1f1(x
po) + · · ·+ wMfM(xpo)]− [w1f1(y) + · · ·+ wMfM(y)]

= w1 [f1(x
po)− f1(y)] + · · ·+ wM [fM(xpo)− fM(y)]

< 0

where the last inequality follows from the fact thatw ≻ 0 andxpo is better thany in at

least one objective. This shows thatxpo is an optimal solution to the scalarized problem

given by Equation 3.3. In other words, everyParetooptimal solution can be found by the

scalarization technique, provided the weight vector is positive.

Theorem 3.4.2 provides an important statement about generating all theParetoop-

timal points. Given a multi-objective optimization problem, we first solve the scalarized

objective function assumingw > 0. This gives us a set ofParetooptimal points. In order

to generate all the ‘extreme’Paretooptimal points, we apply the limits of the variables (as

specified in the multi-objective optimization problem statement) to generate the range of

w. Next, we illustrate our entire convex multi-objective optimization framework and solu-

tion concept using a numerical example.

Multi-objective Optimization Example

Let the multi-objective optimization problem be represented as,

minimize f(x) =
[
f1(x) = x1 f2(x) = 1 + x2

2 − x1 − 0.2 sin(πx1)
]T

subject to 0 ≤ x1 ≤ 1, −2 ≤ x2 ≤ 2 (3.4)

55
After scalarization, we have,

minimize F = wTf(x) = w1x1 + w2

[
1 + x2

2 − x1 − 0.2 sin(πx1)
]

subject to 0 ≤ x1 ≤ 1, −2 ≤ x2 ≤ 2 (3.5)

w1 + w2 = 1, w1 ≥ 0, w2 ≥ 0

Using the first order optimality condition, we obtain,

∂F

∂x1

= w1 + w2 [−1− 0.2π cos(πx1)]

∂F

∂x2

= 2w2x2

Setting these to zero, we obtain the critical solutions as,

x∗1 =
1

π
cos−1

{
1

0.2π

[
w1

w2

− 1

]}

(3.6)

x∗2 = 0

Computing the Hessian and checking for positive semi-definiteness gives the condition:

sin(πx∗1) ≥ 0,

which means that2i ≤ x∗1 ≤ (2i + 1) ∀i = 0, 1, 2, . . . , while maintaining the condition

that the upper bound of the variable should be 1. Thus, for a given choice of the weights,

x∗1 andx∗2 provide the optimal values of the objective functions assuming that the second

order optimality conditions are satisfied. Now, since0 ≤ x1 ≤ 1, using Equation 3.6, we

get,

x∗1 = 0 : w1 = 0.62 w2 = 0.38

x∗1 = 1 : w1 = 0.27 w2 = 0.63

56
Thus any choice ofw1 ∈ [0.27, 0.62] gives the entireParetooptimal front of the multi-

objective optimization problem.

In the next section we discuss how we adapt this multi-objective optimization formu-

lation for our privacy preserving data mining scenario.

3.4.4 Privacy, Cost and their Combination

As discussed earlier, many privacy preserving data mining algorithms can be modeled

as an optimization problem with two conflicting objectives:maximizing the privacy (or

minimizing the threat to the data) while minimizing the cost. This allows us to frame pri-

vacy preserving computation as a multi-objective optimization problem. Letft : Rm → R

andfc : Rm → R be two functions defining the threat to data privacy and the cost respec-

tively, wherex ∈ Rm is a multi-dimensional input vector whose components determine

the optimal privacy and cost. We do not specify howx is defined here, but rather leave

it as a problem statement for instantiating a particular privacy preserving distributed data

mining situation. Using the examples presented in the beginning of this chapter, the value

of privacy required such as the value ofk in k-anonymization, the number of nodes with

whom data is shared, the number of colluders present (for secure multi-party computation)

in the system are some variables that may define the optimization vectorx. The function

ft(x) is defined by the choice of the privacy model for the system. For example, Bayes

optimal model of privacy [109],k-anonymity [145],ǫ-differential privacy [52] are differ-

ent privacy models that will lead to different definitions ofthe functionft(x). Similarly,

fc(x) is defined by the cost incurred during the privacy preservingdata mining algorithm

execution. This cost includes the standard communication and computation costs, the cost

of providing privacy to the data and the loss of utility of thedata mining results, if any, due

to privacy preservation.

57
Therefore, the optimization problem in this context can be stated as,

minimize f(x) = [ft(x) fc(x)]T (3.7)

subject to x
(ℓ)
i ≤ xi ≤ x

(u)
i , ∀i = 1 . . .m

where as before,x ∈ Rm, and eachxi varies betweenx(ℓ)
i , andx(u)

i constraining the fea-

sible search space. From a practical standpoint, the rangesof the variables may define the

ranges of threat and cost for a data owner. Using the weightedcombination of objective

functions (scalarization), we convert this multi-objective optimization problem to a scalar

optimization problem for easy solution. Using the notations defined in Section 3.4.3, we

can reformulate the same optimization problem now as:

minimize F = wTf(x) = [w1ft(x) + w2fc(x)]

subject to x
(ℓ)
i ≤ xi ≤ x

(u)
i , ∀i = 1 . . .m (3.8)

w1 + w2 = 1

w1, w2 ≥ 0

wherew1 andw2 are the relative ‘importance’ that a user attaches to its data threat and

cost respectively. As stated before, different choices ofw may generate differentPareto

optimal sets. Moreover, Theorem 3.4.1 and 3.4.2 allows us tosolve the scalarized multi-

objective optimization, while guaranteeing enumeration of the entireParetooptimal set.

Since scalarization transforms a multi-objective optimization to a scalar objective function

with known weights, one might be able to find a closed form expression for finding the

entireParetooptimal solution set. Next, we show an example of such a computation.

For simplicity, we restrict ourselves tox ∈ R2 only i.e. we assumex = (x1, x2). Now

given,

F = w1 × ft(x1, x2) + w2 × fc(x1, x2)

58
we first compute the first order partial derivatives and set them to 0.

∂F

∂x1

= 0⇒ w1
∂ft(x1, x2)

∂x1

= −w2
∂fc(x1, x2)

∂x1

and,

∂F

∂x2

= 0⇒ w1
∂ft(x1, x2)

∂x2

= −w2
∂fc(x1, x2)

∂x2

Solution to these equations, gives us the critical solutionvector(s)x∗ = (x∗1, x
∗
2) in terms

of w. In order to test for minima, we first compute the matrix of second order derivatives

(Hessian matrix) as follows:

H =

∂2F
∂x2

1

∂2F
∂x1∂x2

∂2F
∂x2∂x1

∂2F
∂x2

2

at each of the critical points. The next step is to compute theeigen decomposition ofH. If

all the eigenvalues are positive, thenx∗ is a minima. Solutions of the equations involving

the first order derivatives give us a mapping from the objective vector space to the space of

weights. Letκ1 : RM → R andκ2 : RM → R be two such (possibly nonlinear) functions

mapping the weight to the objective variables. We can therefore write:

x∗1 = κ1(w1, w2)

x∗2 = κ2(w1, w2)

Now, sincex(ℓ)
1 ≤ x1 ≤ x

(u)
1 , we can find a range ofw, using the extreme values of

the input objective variables. Assuming that the functionsκ1 andκ2 are invertible (i.e.

they are one-to-one and onto), the variation ofw between
[

κ−1
1 (x

(ℓ)
1), κ−1

1 (x
(u)
1)
]

and
[

κ−1
1 (x

(ℓ)
2), κ−1

1 (x
(u)
2)
]

allows us to list all the solutions in theParetooptimal set.

59
3.5 Privacy Protection in a Multi-party Scenario

Given the formulation of privacy preserving data mining as amulti-objective optimiza-

tion problem, we now discuss how a distributed privacy preserving data mining scenario

can be modeled on this framework. As discussed, in Section 3.4.4, a privacy preserving dis-

tributed data mining environment such as the Internet consists of autonomous participants

with varying degrees of privacy requirements and varying amounts of resource availabil-

ity. Therefore, this can be modeled as a distributed multi-objective optimization problem,

where the functionsft(x) andfc(x) are same across all nodes in the system, the weightsw

maybe different and the constraints may vary across the nodes.

The constraints are different since each node has its own threshold of privacy and cost

defined by its own requirements and resources. The weights may be different for different

participants depending on the importance they attach to thetwo optimization problems,

viz. threat and cost. Note that, in a multi-party scenario, each party can define its own

optimization functions and solve them independently. But this might generate a different

Paretooptimal set for each party. The other extreme solution is forall nodes in the network

to use the same objective functions and constraints. Both ofthese solutions are undesirable

— in the first, parties do not guarantee a global solution while in the second, each party has

to abide by the same threat and cost requirements. In this dissertation we guarantee a global

solution based on the personalized requirements of user. Toachieve this, we require that

the threatft(x) and the costfc(x) functions be the same for each party. The privacy model

across each party may be different. For example, in the case of privacy by anonymization,

parties can choose either thek-anonymity [145],ℓ-diversity [109], or thet-closeness [100]

model since all of them gives rise to sameft(x). However, the choice ofǫ-differential

privacy will be meaningless in this context, since the measurement of threatft(x) will be

different for this privacy model. It should be noted here that there is no restriction onft(x)

andfc(x) other than convexity (as discussed in Section 3.4).

60
Let V = {v1, v2, . . . , vn} be a collection ofn different nodes where each node rep-

resents a party with some privacy sensitive data. They are connected by an underlying

communication infrastructure. Mathematically the network can be represented as an undi-

rected graphG = (V,E), whereE is the set of edges or connections between the nodes.

The set of one-hop neighbors ofvk, denoted byΓ1,k is defined as

Γ1,k = {vi ∈ D|(vi, vk) ∈ E}.

For nodevk, its goal is to find a solution to the following multi-objective optimization

problem,

minimize F = wTf(x) = [w1,kft(x) + w2,kfc(x)]

subject to x
(ℓ)
i,k ≤ xi ≤ x

(u)
i,k , ∀i = 1 . . .m (3.9)

w1,k + w2,k = 1

w1,k, w2,k ≥ 0

wherex(ℓ)
i,k is the lower bound of constraintxi for nodevk. Note that these parameter values

are local to each node and are independent of the values chosen by any other node in the

network. If each node solves the optimization problem locally, each would have its own op-

timal solution which may or may not lie in theParetooptimal set of the global optimization

problem. In other words, if every node solves its own multi-objective optimization problem

using only its local constraints and if the intersection of the feasible solution sets defined

by these local constraints on the optimization variable arenull for any pair of nodes in the

network, then no privacy preserving collaborative computing is possible with that solution.

So it is important to consolidate the local constraints to identify the common feasible set.

To develop a collaborative solution, we can centralize all the constraints such that the solu-

tion of each node is in the globalParetooptimal set. However, this technique may not scale

61
for large number of nodes. A more efficient approach than centralizing all the constraints

is to compute the average of the cost constraints of all nodesand the threat constraints

of all nodes separately and use these average constraints tosolve the global optimization

problem. Since each constraint is represented as an inequality, one way of computing the

average constraint over all nodes is to compute separately the average of the lower bounds

and higher bounds for each inequality. In the next section wedescribe a decentralized

asynchronous averaging algorithm for computing the average constraints in a distributed

fashion.

3.5.1 Distributed Averaging

In distributed averaging, the objective is to compute the global average∆(ℓ)
i =

1
n

∑n
i=1 x

(ℓ)
i,k of the lower bound (and similarly upper bound) of every constraint xi of x.

Recall from Section 3.5 thatx(ℓ)
i,k is the lower bound of constraintxi for nodevk andn

is the size of the network. For convenience, we are going to refer to ∆
(ℓ)
i as∆i through

the rest of this section. In the naive solution, all nodes canexchange messages with every

other node in the system to compute the correct average. However, this solution is highly

synchronous and does not scale well for large distributed environments such as P2P net-

works. Distributed approaches include the iterative Laplacian based approach proposed by

Mehyaret al. [113], the LTI approach proposed by Scherber and Papadopoulos [143]. The

basic idea of all these approaches is to maintain the currentestimate of∆i denoted byz(t)
i

and exchange messages with its immediate neighbors to update z(t)
i . As iterationt → ∞,

z
(t)
i → ∆i, i.e. the system asymptotically converges to the correct average.

In this thesis, we adopt the distributed averaging algorithm (DAvg as shown in Alg. 1)

proposed by Scherber and Papadopoulos [143]. In [143], the authors exploit the properties

of the symmetric negative semi-definite connectivity matrix Ω to derive the update rule for

asymptotic convergence which isz(t)
i = Wz(t−1)

i , wherez(t)
i denotes a column vector of the

62
estimates of all the nodes at timet, i.e. z(t)

i =
[

z
(t)
i,1z

(t)
i,2 . . . z

(t)
i,n

]T

andW is a matrix used in

first order linear transformation rules. At initialization, z(0)
i = xi =

[

x
(ℓ)
i,1x

(ℓ)
i,2 . . . x

(ℓ)
i,n

]

. In

order forz(t)
i to converge to∆i, W must satisfy the following properties: (i)W.1 = WT .1 =

1, where1 denotes an×1 vector of all ones and (ii) the eigenvalues ofW, λi when arranged

in descending order are such thatλ1 = 1 and|λi| < 1 for i > 1. It has been shown in [143]

that if Ω is a symmetric matrix, thenW can be constructed fromΩ as follows:W = I +ρΩ.

HereI is then × n identity matrix andρ is a small number which determines the stability

of the solution and the convergence rate. Typically,ρ can be set to 1
maxi|Ωii| . For updating

from timet to t+ 1, the update rule for any nodedk can be written as

z
(t+1)
i,k = z

(t)
i,k + ρ

∑

a∈Γk

(

z
(t)
i,a − z(t)

i,k

)

DAvg (Algorithm 1) presents the pseudo-code for the distributed averaging algorithm.

Algorithm 1 : Distributed Averaging Algorithm (DAvg)[143]

Input of node vk:
Convergence rateρ, local datax(ℓ)

i,k, round
Initialization:

Setz(0)
i,k ← x

(ℓ)
i,k;

Setround← 1;
On receiving a message (z(t)

i,k′) from vk′:

z
(t+1)
i,k = z

(t)
i,k + ρ

∑

a∈Γk

(

z
(t)
i,a − z(t)

i,k

)

;

Sendz(t+1)
i,k to all neighbors inΓk;

3.5.2 Optimal Privacy-Cost Solution

The distributed averaging algorithm discussed above can beused for computing the

average for a set of numbers in a distributed setup. In our scenario, for each variable of

the objective function each party needs to instantiate two separate distributed averaging

63
algorithms: one for computing the average lower bound and the other for computing the

average upper bound of the individual constraints. Let the average of the lower bounds of

xi be denoted byxi
(ℓ) i.e. xi

(ℓ) =
∑n

k=1 x
(ℓ)
i,k

n
. Once these are computed using Algorithm

DAvg, each node can solve the same multi-objective optimization problem without any

further communication. In this scenario, the objective function at each node would look

like:

minimize F = w × ft(x) + (1− w)× fc(x)

subject to xi
(ℓ) ≤ xi ≤ xi

(u), ∀i = 1 . . .m

Therefore, we can write the range ofw as,

κ−1
1 (xi

(ℓ)) ≤ w ≤ κ−1
1 (xi

(u)) (3.10)

Note that, given the range ofw, each node selects a value forw from that range, so that the

solution lies in the globalParetooptimal set. The solution achieved by each node will not

be the same; however, they are guaranteed to remain in the globalParetooptimal set.

3.5.3 Multi-party Multi-objective Optimization Algorith m

The overall distributed multi-objective algorithm (DMOP)is depicted in Algorithm 2.

The input of each nodevk are the objective functionsft(x) andfc(x), the set of constraints

and the relaxation parameterρ. vk initializes two distributed averages for each objective

variablexi. Once the averaging algorithms converge (or after sufficient time has elapsed),

nodevk solves the optimization problemF with the average of the constraints. The out-

come of the solution is an optimal vectorx∗ which lies in theParetooptimal set.

64
Algorithm 2 : Distributed Multi-objective Optimization Based PrivacyAlgorithm
(DMOP)

Input of node vk:
Convergence rateρ, threat functionft(x), cost functionfc(x), constraints

x
(ℓ)
i,k ≤ xi ≤ x

(u)
i,k , ∀i = 1 . . .m

Initialization:
Instantiate two distributed averaging algorithms for eachvariablexi, one forx(ℓ)

i,k

and the other forx(u)
i,k

On receiving a message fromvk′:
Pass it to the underlying distributed averaging algorithm
On convergence of the averaging algorithms:
Find optimal (minimal) pointsx∗ of the following optimization problem:

MinimizeF = w × ft(x) + (1− w)× fc(x)
subject toxi

(ℓ) ≤ xi ≤ xi
(u), ∀i = 1 . . .m

Below we present the correctness criteria for the distributed multi-objective solution

technique and prove that DMOP algorithm is correct.

Definition 3.5.1. A multi-objective optimization solution technique is correct if:

1. Necessary:Any solutionx∗ found by the distributed technique lies in the Pareto

optimal set, and

2. Sufficient:All solutions in the Pareto optimal set can be found by this method.

Lemma 3.5.1.The solution found by the distributed multi-objective optimization technique

is correct.

Proof. In order to prove that any solution found by the distributed algorithm lies in the

Paretooptimal set, we use Theorem 3.4.1. Whenever a party solves the multi-objective

optimization problem, we put an additional constraint: a node only selects non-negative

weights. This ensures that the condition of Theorem 3.4.1 are satisfied and hence any

solution found by the distributed algorithm will lie in theParetooptimal set.

65
Using Theorem 3.4.2, we can prove that any solution found by the multi-party tech-

nique lies in thePareto optimal set. Since the distributed solution does not changethe

objective function, by our initial assumption, bothft(x) andfc(x) are convex. Moreover,

by construction, a node only selects non-negative weights.Hence, by Theorem 3.4.2, all

solutions in theParetooptimal set can be found by the distributed technique. Therefore,

our proposed distributed technique is correct.

Globally Optimal Model of Privacy It is important to note here that Algorithm

2 produces optimal solution of the multi-objective optimization problem for every node.

The optimality for each peer is defined in terms of the desiredprivacy and cost thresholds

defined by each node. The averaging of the constraints is required for ensuring that the

union of theParetooptimal feasible sets of solutions across all the nodes is not null. Here

each node ultimately comes up with its own solution based on its personal choice ofw.

Therefore the solutions obtained here are not to be confusedwith the global optimal privacy

solution for the entire system. Finding the global optimal model of privacy for the entire

system would also call for a multi-objective optimization where the the functionsft(x)

andfc(x) would be defined on optimization variabley = (y1, y2, . . . , yn) wheren is the

number of nodes in the system. Each such optimization variable will haven constraints

coming from each of then nodes and solving the multi-objective optimization will require

either centralizing all the constraints to one central location or communicating the every

node’s local constraints to every other node in the system.

3.6 Illustration using Differential Privacy Model

In this section we demonstrate our solution technique usinga popular privacy model

viz. ǫ-differential privacy model [52], whereǫ is a user specified privacy parameter. Before

we formulate our solution, we briefly discuss the differential privacy model.

66
3.6.1 Differential Privacy Framework

Differential privacy is an output perturbation based privacy preservation technique

recently proposed by Dwork [52]. For discussing the differential privacy model, we define

some important terms used through the rest of this section.

Definition 3.6.1(Statistical Database). [52] A statistical databaset of sizer over domain

D is a collection ofr tuples

t = (t1, . . . , tr)

In order to access information from the databaset, it is assumed that there exists a

mechanism which has access to the database. This mechanism is commonly known as the

sanitizer, meaning that it sanitizes the data before it is released. Inthe differential privacy

framework, it is assumed that all database queries are executed via the sanitizer. A query is

a mappingq : tr → Rd in which the output is often referred to as theanswerto or output

of a query.

A sanitizer can be viewed as a technique which either modifiesor changes query

values depending on its sensitivity. There are several different ways in which a sanitizer can

be defined. In this section we define a sanitizer which simply adds random noise to its query

result:San(t, q) = q(t) + Y . The noise is generally added from a probability distribution

based on the type of the query result. Henceforth, without loss of generality, we will

interchangeably use the termsSan(t) andSan(t, q) if the queryq is inconsequential. In

this section we only consider a specific distribution of the noise — Laplacian distribution. A

one-dimensional Laplace distribution with mean 0 and variance2ǫ2 has a density function

defined by:

Lap(ǫ) : h(y) =
1

2ǫ
e−

|y|
ǫ

Before we present the definition ofǫ-differential privacy, we present what is meant by

neighbor databases.

67
Definition 3.6.2(Neighbor Databases). [52] Two databasest andt

′
are called neighbor

databases if the Hamming distance between them is 1i.e.

distH(t, t
′

) =
∣
∣
∣

{

i : ti 6= t
′

i

}∣
∣
∣ = 1

A sanitizer is private if an adversary can gain no significantknowledge about an in-

dividual in the database beyond what he or she could have learned by interacting with a

similar (neighbor) database where that individual entry isarbitrarily modified, or removed.

Below is a formal definition.

Definition 3.6.3(ǫ−differential privacy). A sanitizerSan is ǫ-private if for all neighbor

statistical databasest, t
′

(databases differing only in one entry) and for all subsets of

possible answersT ,
Pr[San(t) ∈ T]

Pr[San(t′) ∈ T]
≤ eǫ, ǫ > 0

.

Sum queries are defined as,qΥ =
∑r

i=1 Υ(i, ti) whereΥ : N × t → [0, 1]. The

sanitizer in this case can be defined as,

San(t, qΥ) =
r∑

i=1

Υ(i, ti) + Y

whereY ∼ Lap(1/ǫ) i.e. the noise variance is proportional to1/ǫ for the sanitizer to be

ǫ-differentially private [52].

In the next section we analyze the privacy/cost tradeoff of this sanitizer in a distributed

data mining environment using our multi-objective optimization framework.

68
3.6.2 Differential Privacy as Multi-objective Optimization

From the discussion in Section 3.4.4, we understand that to find expressions for the

threatft(x) and costfc(x). In the differential privacy framework, there is only one variable

ǫ which determines the privacy and the cost. Therefore, in this scenario,x ∈ R. We will

usex instead ofX in the remainder of this section.

Note that by increasing the variance of the Laplacian noise (by reducingǫ), one can

hide the data better. This increases the privacy, thus reducing the threat to the data. Thus,

threat of the data decreases with decrease inǫ. We can write,

ft(x) = eǫ.

In this context, the cost refers to the decrease in data utility or increase in error for

varying levels ofǫ (ignoring some constant computational cost). For a fixed variance of

the Laplacian, we can write the error introduced as the squared difference between the

sanitized output and the true output as:

Error = E[{San(x)− q(x)}2]

= E[{q(x) + Y − q(x)}2]

= E[Y 2]

= V ar(Y) + [E(Y)]2

=
2

ǫ2
+ (0)2 [sinceY follows a (0,2/ǫ2) laplacian distribution]

=
2

ǫ2

Therefore, increasing the value ofǫ decreases variance and hence decreases the error. For

the cost, we can write,

fc(x) =
2

ǫ2
.

69
Next we show that each of these functions are convex. Note that,

d2

dx2
ft(x) = eǫ > 0, ∀ǫ > 0.

Also, the cost function is convex since:

d2

dx2
fc(x) =

12

ǫ4
> 0, ∀ǫ > 0.

This allows us to apply the multi-objective optimization framework without any change.

Using Equation 3.7, we have,

minimize f(x) =

[

eǫ 2

ǫ2

]T

(3.11)

subject to ǫ(ℓ) ≤ ǫ ≤ ǫ(u)

Using scalarization, we can convert this multi-objective optimization to a single optimiza-

tion problem as:

minimize F = wTf(x) =

[

w1e
ǫ + w2

2

ǫ2

]

subject to ǫ(ℓ) ≤ ǫ ≤ ǫ(u) (3.12)

w1 + w2 = 1

In order to find theParetooptimal point, we proceed as follows:

dF

dǫ
= 0

⇒ w1e
ǫ − 4w2

ǫ3
= 0

⇒ eǫǫ3 =
4w2

w1
(3.13)

70
Let κ : R→ R be a function such that,

κ(ǫ) = eǫǫ3

Assuming the inverse ofκ exists, we can write the optimal value ofǫ∗ as,

ǫ∗ = κ−1

(
4w2

w1

)

Now whenǫ∗ = ǫ(ℓ), we get

eǫ(ℓ)(ǫ(ℓ))3 =
4w2

w1

⇒ w2

w1

=
eǫ(ℓ)(ǫ(ℓ))3

4
.

Usingw1 + w2 = 1, we get

w1 =
4

4 + eǫ(ℓ)(ǫ(ℓ))3
, w2 =

eǫ(ℓ)(ǫ(ℓ))3

4 + eǫ(ℓ)(ǫ(ℓ))3

Similarly, whenǫ∗ = ǫ(u), we can write

w1 =
4

4 + eǫ(u)(ǫ(u))3
, w2 =

eǫ(u)
(ǫ(u))3

4 + eǫ(u)(ǫ(u))3
.

Thus, the entire ranges ofw1 andw2 which lists the entirePareto optimal front of this

optimization are:
4

4 + eǫ(u)(ǫ(u))3
≤ w1 ≤

4

4 + eǫ(ℓ)(ǫ(ℓ))3

and
eǫ(ℓ)(ǫ(ℓ))3

4 + eǫ(ℓ)(ǫ(ℓ))3
≤ w2 ≤

eǫ(u)
(ǫ(u))3

4 + eǫ(u)(ǫ(u))3

Now, different nodes in the distributed data mining computation can choose any value

in this range forw1 andw2 and get a solution ofǫ accordingly. Based on their choice of

71
ǫ, they can have their personalized privacy requirements fulfilled (by adding noise to their

data) and still participate in a collaborative computing environment.

3.7 Conclusion

In this chapter we have presented a multi-objective optimization framework for pri-

vacy protection in a multi-party environment. Since privacy is intricately related to one’s

preferences such as data, computing power, etc., we feel a party should be given the free-

dom to specify its own privacy requirement. Therefore, a uniform model and privacy con-

straint for each node in the network is not desirable; we needa personalized solution for

each node. To achieve this, we have proposed a multi-objective optimization based frame-

work where each node may have a different set of constraints signifying its desired privacy

and cost. TheParetooptimal solution set provides the privacy/cost tradeoff for each node.

To ensure that each node generates a solution in the samePareto optimal set, which is

important for the distributed data mining algorithm to workcorrectly, we take an average

over the constraints of all the nodes. For this purpose, we use an existing asynchronous

distributed averaging protocol which, without centralizing all the constraints, can generate

a ‘global’ constraint for the multi-objective optimization problem. Finally, we illustrate our

framework on theǫ-differential privacy framework.

72

Chapter 4

MECHANISM DESIGN FOR PRIVACY PRESERVING

DISTRIBUTED DATA MINING

4.1 Introduction

Analysis of privacy sensitive data in a multi-party environment often assumes that the

parties are well-behaved, they abide by the protocols and donot try to collude. Many of

these assumptions fall apart in real-life applications of privacy preserving data mining. For

example, the US Department of Homeland Security funded PURSUIT project1 for privacy

preserving distributed data integration and analysis of network traffic data from different

organizations aims at detecting “macroscopic” patterns from network traffic of different

organizations for revealing common threats against those organizations. However, partici-

pating entities in a consortium like PURSUIT may not all be ideal. Some of them might try

to collude with other parties for exposing the private data of another party. Therefore, in-

formation integration in multi-party distributed environments is often an interactive process

guided by the dynamics of cooperation and competition amongthe parties. The assump-

tions of well-behaved parties fail to translate to real lifeapplications, where self-interested

parties try to maximize their own benefit, even if that requires collusion.

To address this issue, we formulate privacy preserving datamining problems as games

1http://www.agnik.com/DHSSBIR.html

73
where each party tries to maximize its own objectives. We usealgorithmic mechanism

design to modify existing privacy preserving data mining protocols to incorporate incentive

or penalty so that the protocol reaches a desired equilibrium, even in the presence of self-

interested participants (rational agents). We then choosea popular privacy preserving sum

computation technique, namely, the secure sum protocol to illustrate this framework. We

show, in the light of the game theoretic framework, that the assumption of semi-honesty

in participant behavior is sub-optimal and propose a penalty based mechanism for a series

of secure sum computations. We also present equilibrium-analysis of the algorithm and

experimentally demonstrate the performance of the mechanism.

The rest of this chapter is organized as follows. Section 4.2introduces some of the

key concepts and definitions in game theory and mechanism design. Section 4.3 discusses

how game theory has been used in the privacy and security literature. Section 4.4 frames

the problem of privacy preserving distributed data mining as games. Section 4.5 illustrates

this concept using the secure sum computation protocol. Section 4.6 discusses a modified

secure sum with penalty (SSP) algorithm. Section 4.7 provides a detailed analysis of the

SSP algorithm while Section 4.8 describes the experimentalresults. Finally, Section 4.9

concludes this chapter.

4.2 Game Theory and Mechanism Design

In this section we give a brief introduction to game theory and mechanism design and

point out some relevant definitions that we will use throughout the rest of this dissertation.

For further details, interested readers can refer to the books by Owen [127] and Osborne

[126].

74
4.2.1 Strategic Games

A game is an interaction or a series of interactions between players, which assumes

that (i) the players pursue well-defined objectives (they are rational) and (ii) they take into

account their knowledge or expectations of other players’ behavior (theyreason strategi-

cally).

Definition 4.2.1(Strategic Game). A strategic game consists of (i) a finite setP : the set of

players, (ii) for each playeri ∈ P a nonempty setAi: the set of actions available to player

i, and (iii) for each playeri ∈ P a preference relation�i onA = ×j∈PAj: the preference

relation of playeri.

The preference relation�i of playeri can be specified by a utility functionui : A→ R

(also called a payoff function), in the sense that for anya ∈ A, b ∈ A, ui(a) ≥ ui(b)

whenevera �i b. The value of such a function is usually referred to as utility (or payoff).

Herea or b is called theaction profile, which consists of a set of actions, one for each

player. Therefore, the utility of playeri depends not only on the action chosen by itself,

but also the actions chosen by all the other players. Mathematically, for any action profile

a ∈ A, let ai be the action chosen by playeri anda−i be the list of actions chosen by all

the other players excepti, the utility of playeri is ui({a}) = ui({ai, a−i}). Henceforth

we will denoteui({a}) asui(a). The utility of a game, on the other hand, is the combined

utility of the action profilea = (a1, ..., aI) jointly selected by the players in the game,

mathematically denoted byu(a1, ..., aI), whereI is the cardinality of setP .

Another type of game is theextensive gamein which there is a sequence of interactive

actions of the players. In that situation, theaction ai for player i, is replaced byσi, the

strategyfor that player, which is a complete algorithm for playing the game, implicitly

including all actions of that player for every possible situation throughout the game. The

utility function also assigns a payoff to playeri for each joint strategy of all the players,

i.e., ui({σ}) = ui(σ) = ui({σi, σ−i}).

75
In any strategic game, rational players always try to maximize their outcomes by

choosing the actions which seem appropriate based on their own utility and the actions

of others. There are several techniques to study the equilibrium condition of games given

information about agent preferences, rationality, and information available to agents about

each other. One of the most widely used technique to find the expected outcome for the

overall game was proposed by Nash [119], and the corresponding outcomes are called Nash

equilibria. Nash equilibrium states that, if all the players adhere to an equilibrium condi-

tion, no single player can do any better by deviating from thenorm, as long as the other

players do not deviate.

Definition 4.2.2 (Nash Equilibrium). A Nash equilibrium (NE) of a strategic game is a

strategy profileσ∗ ∈ A such that for every playeri ∈ P we have

ui({σ∗
i , σ

∗
−i}) ≥ ui({σi, σ

∗
−i})

Therefore, Nash equilibrium defines a set of actions (an action profile) that captures a

steady state of the game in which no player can do better by unilaterally changing its action

(while all other players do not change their actions).

A more rigorous solution concept is known as the dominant strategy equilibrium. In a

dominant strategy equilibrium the players do not decide on their strategy based on others’

strategies; rather they choose the one which seems to be the best from its set of actions,

irrespective of what others are choosing.

Definition 4.2.3 (Dominant-strategy Equilibrium). Strategyσ∗
i is a dominant strategy

equilibrium if, for all possible strategies of other agents, σ∗ is the best i.e.

ui(σ
∗
i , σ−i) ≥ ui(σ

′
i, σ−i) for all σ∗

i 6= σ′
i,

The most important difference between the Nash equilibria and the dominant strategy

equilibria is that the latter maximizes the utility of the playeri independent of the strategies

76
of other agents.

Prisoner’s Dilemma A classical example of a strategic game is the Prisoner’s

dilemma. There are two players, each of whom has two actions to choose from: to confess

or to lie. The payoffs corresponding to each action are shownin Table 4.1. If they both con-

fess, each will be sentenced to two years in prison. If only one of them confesses, he will

be freed, but his confession will be used to convict the otherto a three year imprisonment.

If neither confesses, they will both receive a one year sentence due to some minor offense.

The payoffs can be seen as the number of years that each playeravoids spending in prison,

out of a maximum of three. In this case each player is better off by confessing since if he

stays quiet, and the other confesses, he may be convicted forthe maximum of three years.

The Nash equilibrium is therefore the case when both confess. Note that however, if both

do not confess, they receive the minimum prison term of one year. In this case we say that

the best strategy does not become the Nash equilibrium.

Table 4.1. Payoff table for prisoners dilemma
Player 2

Don’t confess Confess

Don’t confess 1,1 0,3
Player 1

Confess 3,0 2,2

4.2.2 Repeated Games

In repeated (iterated) games the same game (called the stagegame), is repeatedly

played in rounds, and the players remember what has happenedin the past. So, their

actions may depend on the accumulated history of past actions. Generally, the iterations

can last for a finite sequence or infinite sequence often referred to as finite repeated games

or infinite repeated games. The payoff of the repeated game isa function of the sequence of

77
payoffs of the stage games. One of the most widely used examples is the iterated prisoner’s

dilemma whereby the original Nash equilibrium of both confessing for a single stage game

can be tweaked into a neither confessing scenario by applying sufficient incentives for each

successive stage. Repeated games are often used in practicewhen the outcome is generally

stable after a few iterations, rather than at one go. In thesecases, the players are often

interested in maintaining good behavior over repeated trials; since otherwise if they defect

they may get caught and penalized for successive rounds. In this research we are interested

in designing a repeated game for a distributed environment and designing a mechanism to

prevent collusion in such an environment.

4.2.3 Mechanism Design

“If game theory strives to understand rational behavior in competitive situations, the

scope of mechanism design (an important and elegant research tradition, very extensive in

both scope and accomplishment, and one that could alternatively be called “inverse game

theory”) is even grander: Given desired goals (such as to maximize a society’s total wel-

fare), design a game (strategy sets and payoffs) in such a clever way that individual players,

motivated solely by self-interest, end up achieving the designer’s goals.” - Christos Pa-

padimitriou [131]. Mechanism design is a sub-field of economics and game theory which

studies the art of designing rules of a game to achieve a specific outcome. This is done by

setting up a structure in which each self-interested playerhas an incentive to behave as the

designer intends. Mechanism design has been used in many domains including electronic

market design, distributed scheduling problems, Internetapplications and online auctions.

MasColell et al. [111] and Varian [153] provide through surveys on the topic of mechanism

design.

Definition 4.2.4 (Mechanism). A mechanismM consists of two components – a set of

strategy profilesσ = (σ1, . . . , σn) and an outcome ruleo which maps the strategy setσ to

78
the set of outcomesO i.e. o : σ1 × · · · × σn → O. o(σ) is the outcome of the strategy

function for strategyσ. Formally, it is denoted asM = (σ1, ..., σn, o(·)).

In a setting withn players, where each player has a private typeti ∈ Ti associated with

it, the function of a mechanism is to solve a decision problemthat affects all the players.

There is a setO of possible outcomes and the desired outcome depends on constraints

which are defined by a social choice functions(ti) : T1 × · · · × Tn → O defined on the

type of the player.

Definition 4.2.5 (Mechanism design). Given a game induced byM, mechanism design

refers to finding a solution to the social choice functions(ti) under equilibrium conditions

ofM. Mathematically, this is equivalent to finding the set of{σ∗
1(t1), ..., σ

∗
n} such that

o(σ∗
1(t1), ..., σ

∗
n(tn)) = s(ti), for all ti ∈ T .

In many problem settings, finding an optimal outcome is an NP-hard combinatorial

optimization problem. Algorithmic mechanism design [120]pays careful attention to the

computational aspects of mechanism design and makes the problem tractable by introduc-

ing approximations without destroying game theoretic properties of the mechanism. To

address the issues of high communication cost in applying centralized polynomial-time

algorithmic mechanism design to Internet -like computation problems Feigenbaumet al.

[58] proposed distributed algorithmic mechanism design for a multi-cost sharing problem.

Algorithmic mechanism design has been researched both in centralized and distributed

computation in the theoretical computer science community[140] and the multi-agent sys-

tems community [132].

4.3 Game Theory in Privacy and Security

Game theory has been used extensively in multi-agent systems, electronic commerce,

network performance optimization, and distributed computational scenarios such as peer-

to-peer systems, where cooperation among the participating entities amidst varied and often

79
conflicting personal interests is desired. Kunreuther and Heal [97] discuss a practical se-

curity problem called theInterdependent Security (IDS)and propose several policy-based

recommendations to deal with free riding [72] in collaborative environments. Kearns and

Ortiz [90] deal with the computability of Nash equilibria ofIDS games and present several

algorithms for the same. The IDS model is closely related to privacy preserving data mining

using secure multi-party computation where rational agents are motivated to be free riders.

Halpern and Teague [70] consider the problem of secret sharing and multi-party computa-

tion among rational agents. Abraham et al. [1] introduce thek-resilient Nash equilibrium

and offered a synchronousk-resilient algorithm for solving Shamir’s secret sharing prob-

lem. Zhaet al. [168] uses game theory for measuring privacy in existing privacy preserving

data mining algorithms. Agrawal et al. [10] address the generalized problem of honest in-

formation sharing where the idea is to make sure that all the entities get to know only the

correct result of the query without any additional information. The authors pose the prob-

lem as a game theoretic problem where each entity in the database is a player in the game.

who either play honestly, or deviates from the protocol. They show that, in the absence of

a penalizing scheme, the Nash equilibrium and dominant strategy equilibrium of the game

is the situation where all players cheat. Introduction of anauditing device for checking for

and penalizing bad behavior forces the system to a desired equilibrium, depending on the

amount of penalty and the frequency of audits. Jiang et al. [83] propose a game theory

based accountable computing framework for detecting malicious adversaries in polyno-

mial time. Recently, Layfield et al. [98] use algorithmic game theory principles to ensure

truthfulness of participating entities in a distributed secure computation environment using

non-participation techniques.

80
4.4 Distributed Privacy Preserving Data Mining as Games

In a multi-party data mining application the privacy concerns of the different partici-

pating entities vary along with their ability to protect their private data. The participants are

either honest or dishonest depending on whether they preferto follow the protocol or cheat.

Depending on the type of participants, their preferred strategies are different. Sometimes,

multiple parties can form a colluding group to reveal someone’s private information. This

scenario can be thought of as an-player game where the protocol to be followed dictates

the rules of the game, the participants are the players and their chosen strategies decide the

final outcome of the game.

4.4.1 Game Theoretic Framework

Let V = {v1, v2, · · · vn} be a collection ofn different nodes where each node rep-

resents a party with some privacy sensitive data. In a multi-party privacy preserving data

mining environment, each party has certain responsibilities in terms of performing their

computations, communicating correct values to others and protecting the privacy of the

data. Depending on the characteristics of these participants and their personal objectives,

they either perform their duties or not. Sometimes, they even collude with others to reveal

someone’s private information.

Consider a privacy preserving data mining algorithm in which thei-th node adopts a

strategyMi for computation. Letci,m(Mi) be the cost associated withMi. Similarly, letRi

be nodei’s strategy for communication with other nodes (receive andsend messages). Let

the cost associated with the node’s communication strategybeci,r(Ri). Although these are

the basic actions associated with a distributed data miningprotocol, a node, depending on

its characteristics, might indulge in additional activities such as collusion with other nodes.

Let k be the number of nodes in the system that collude. Let thei-th node adopt a strategy

Di for collusion. Also letci,d(Di) be the benefit that nodei gets by colluding with the

81
otherk − 1 nodes in the system. A rational player’s strategy choices would be such that it

maximizes its own objectives, given its belief about how theother players are going to play.

In general, any player’s objective function can have several parameters. Depending on how

these parameters interact, the objective function can be linear, quasi-linear, quadratic etc.

with respect to the parametersMi, Di andRi. The cost functions can be either linear or

nonlinear in nature with respect to their parameters. In this research, we assume that the

objective function is a linear combination of the cost functions with respect to the weights.

Each player’s optimal strategyσi for the game would be the solution to the optimization

problem

ui(σi) = wi,dci,d(Di)
︸ ︷︷ ︸

threat to data privacy

−{wi,mci,m(Mi) + wi,rci,r(Ri)}
︸ ︷︷ ︸

total cost incurred

, (4.1)

wherewi,d, wi,m, andwi,r are the weights (importance) associated with the privacy threat,

and cost of computation and communication respectively forthe i-th node. The threat to

data privacy is actually the negation of the utility or gain obtained by adapting collusion

strategyDi. The optimization problem is local to each player and the solution depends on

local constraints that each player has in terms of cost and privacy threat.

For any distributed heterogenous multi-party data mining scenario, there might exist

dishonest participants. They may collude with other dishonest participants to reveal the

data of the good nodes. In the next section we describe a possible way of designing pri-

vacy preserving protocols which can converge to a desired working condition without any

centralized control.

4.4.2 Mechanism Design for Privacy Protection

Mechanism design (structuring incentives so as to induce the desired behavior of self-

ish agents) [120] provides a way of modifying a privacy preserving algorithm such that

82
no node has an incentive to breach the privacy. For distributed privacy preserving algo-

rithms using secure multi-party computations, semi-honesty is one such desired behavior

of the participants. Detection of collusion and subsequentenforcement of semi-honesty in

distributed computation environments can be achieved by one of the ways described below:

• Centralized Control: In this scheme there is a central authority who is always in

charge of implementing the penalty policy. Whenever a node is identified to have

colluding intentions, the central authority penalizes theperpetrator. This scheme is

relatively easy to implement. However, it requires global synchronization. Such

global synchronization may create a bottleneck and limit the scalability of a dis-

tributed system.

• Asynchronous Distributed Control Fortunately, in games like this whenever there

is a solution with a mediator, there is also a solution without one. It has been shown

[20] that it is possible to achieve desired behavior withouta mediator as long as

there is a proper strategy to penalize lack of compliance. A distributed protocol

for penalizing policy violations requires a distributed control mechanism. Such an

algorithm may penalize colluding nodes in such as way that nonode has incentive

to deviate from the protocol and collude, so that when the protocol terminates, many

bad nodes convert to good ones.

To achieve a system with no collusion, the game players can adopt a punishment strat-

egy to threaten potential deviators. This approach may not work if the parties perceive that

the possibility of getting caught is minimal or if the probability of there being a subsequent

round of game play is zero. One may design a mechanism to penalize colluding nodes in a

number of ways:

1. Policy I: Remove the party from the application environment becauseof protocol

violation. Although it may work in some cases, the penalty may be too harsh since

83
usually the goal of a privacy preserving data mining application is to have everyone

participate in the process and faithfully contribute to thedata mining process.

2. Policy II : Introduce a general penalizing scheme based on one’s belief about whether

there are violators. This policy does not try to identify violators, but tries to bring

down the overall gain of the colluders in the system, therebyrelying on the rational

behavior of the players to change for good in the lack of any advantage. Letk′ (an

estimate ofk, actual number of dishonest nodes) be the estimate of threatto the

system. Then for policy II, the modified utility function is given by

ũi(σi) = ui(σi)− wp × k′ (4.2)

wherewp > 0 is the weight associated with the penalty. The last term in the equation

accounts for the penalty imposed by the honest nodes. Obviously, such a penalizing

scheme works for repeated games, where bad nodes turn good insuccessive rounds

of the game.

The following steps give a formal description of the mechanism design process.

Step 1 Choose a data mining protocol.

Step 2 Choose a privacy modelP.

Step 3 Find the number of bad nodes or violators. When there is no feedback from the

system about the type of individual players(an open-loop problem), the exact number

of bad nodes is not known. In that case, a peer needs to estimate the number of

violators ask
′
based on heuristics and/or initial information about the system.

Step 4 Based on the estimate of the number of violators and the chosen privacy model,

compute the utility of collusionUcollusion and the cost of the protocolUcost.

84
Step 5 Compute utility for a good node. Since a good node does not collude by definition,

its utility is negative of the cost of the protocol and the cost of protecting the data

privacy, added to the utility of the data mining resultsi.e. Ugood = −Ucost + Uresult.

For a dishonest node, there is also the utility of collusion.and the overall utility is

Ubad = Ucollusion − Ucost + Uresult.

Step 6 Design a penalty scheme such that the utility of the bad node becomesUbad =

Ucollusion−Ucost+Uresult−Penalty. In order for the bad nodes turn good,Penalty ≥
Ucollusion. Under such a scheme, rational nodes with the intention to collude will not

collude in the lack of any advantage.

Step 7 Apply this amount of penalty in each iteration of the iterative game.

Table 4.2. Payoff table for secure computation with penaltyfor a 2-player game.
Player 2

H C

H B1 − U
(0)
c − P (0) + δ, B2 − U

(0)
c − P (0) + δ B1 − U

(1)
c − P (1) + δ, B2 + U

(1)
c − P (1)

Player 1
C B1 + U

(1)
c − P (1), B2 − U

(1)
c − P (1) + δ B1 + U

(2)
c − P (2), B2 + U

(2)
c − P (2)

Proof of Nash Equilibrium of Penalty Mechanisms Consider a2-player game

where each node has either of the two strategies two strategies honest (H) (good nodes) or

cheat (C) (bad nodes).Bi denotes the payoff of participating in the basic protocol for the

i-th node.U (b)
collusion denotes the additional utility of cheating when there areb bad nodes,

and is thus subtracted from good nodes and added to cheaters.In this section we replace

U
(b)
collusion by U (b)

c due to ease of representation. It is obvious thatU
(0)
c = 0. δ denotes the

additional payoff if a node does not cheat. From Table 4.2, itis evident that both good and

bad nodes are penalized by an amountP (b), whereb refers to the current number of bad

nodes. It is generally assumed that the utility of cheating is more than that of being honest,

i.e. Uc > 0. By an appropriate choice ofδ, it is possible to sufficientlyincentivizea node

85
to turn honest. In other words, if

B1 − U (1)
c − P (1) + δ > B1 + U (2)

c − P (2)

⇒ δ > U (1)
c + U (2)

c + P (1) − P (2),

then nodes do better by being honest than by colluding.

Now, let us imagine there aren players in a game. We map it to the 2-player table by

noting that player 1 in this case is not one player but rathern − k players who are honest

to start with. Player 2 denotes the remaining set ofk players who are all bad (C) at the

beginning but gradually change to honest (H) as the game proceeds (2k possibilities in

total). Thus we only considern-tuples in our game and depict them as,

H1, H2, . . . , Hn−k
︸ ︷︷ ︸

n−k

∗ ∗ ∗ · · · ∗
︸ ︷︷ ︸

k

where each wildcard character ‘∗’ can take eitherH orC.

Table 4.3. Payoff table for secure computation with penaltyfor ann-player game.
Player 1

H1, H2, . . . , Hn−k

Hn−k+1, Hn−k+2, . . . , Hn (B1, B2, . . . , Bn−k), (Bn−k+1, Bn−k+i+1, . . . , Bn)

Hn−k+1, . . . , Hn−k+i, (B1 − U
(1)
c − P (1), B2 − U

(1)
c − P (1), . . . , Bn−k − U

(1)
c − P (1))

Cn−k+i+1, Hn−k+i+2 . . . , Hn (Bn−k+1 − U
(1)
c − P (1), . . . , Bn−k+i+1 + U

(1)
c − P (1),

Bn−k+i+2 − U
(1)
c − P (1) + δ, . . . , Bn − U

(1)
c − P (1))

Player 2
Hn−k+1, . . . , Hn−k+i, Cn−k+i+1, (B1 − U

(2)
c − P (2), B2 − U

(2)
c − P (2), . . . , Bn−k − U

(2)
c − P (2)),

Cn−k+i+2, Hn−k+i+3 . . . , Hn (Bn−k+1 − U
(2)
c − P (2), . . . , Bn−k+i+1 + U

(2)
c − P (2),

Bn−k+i+2 + U
(2)
c − P (2), . . . , Bn − U

(2)
c − P (2))

...
...

Cn−k+1, . . . , Cn (B1 − U
(k)
c − P (k), B2 − U

(k)
c − P (k), . . . , Bn−k − U

(k)
c − P (k)),

(Bn−k+1 + U
(k)
c − P (k), . . . , Bn + U

(k)
c − P (k))

Since this is a repeated game, a state represents an iteration of the game and it should

be noted that no two states of the game can occur at the same time. Bi − U
(b)
c denotes

the payoff of thei-th honest node whileBi + U
(b)
c denotes the payoff of thei-th bad node,

86
whereU (b)

c denotes the additional utility of cheating when there areb bad nodes. Before

we prove the equilibrium state of this iterative game, we define some notations.

Definition 4.4.1. [Threshold utility] The maximum amount of resources available to any

node for performing the computation is termed as threshold utility, denoted byti.

The payoff of the basic protocol,

Bi = Utility of result (Ur) - Cost of executing protocol (Cp) - Threshold utility (ti)

Therefore, the payoff of an honest node can be written as,

Payoff of an honest nodeGi = Payoff of basic protocol (Bi) - Utility of cheating (U (b)
c)

Similarly, the payoff of a dishonest node can be written as,

Payoff of a dishonest nodeFi = Payoff of basic protocol (Bi) + Utility of cheating (U (b)
c)

Since different nodes in the system can have different thresholds,Gi andFi can vary across

nodes. However, it is a rational assumption thatFi > Gi, ∀i. In an asynchronous distributed

control environment, when a penalty mechanism is introduced, it reduces the payoffs of

both the honest and the bad nodes by the same amount.P (b) denotes the penalty whenb

bad nodes are present in the system andb varies fromk to 0. In order to make nodes change

from bad to good, one must increase the penalty at each successive rounds. This is because,

for bad nodes whose utility satisfyFi − P (b) > 0, will only turn goodi.e.Fi − P (b) < 0, if

P (b) increases and the honest stateGi − P (b) is better than the current state. As it turns out

thatGi−P (b) < Fi−P (b), we can see that nodes will have no incentive to turn good. Using

an additional incentiveδ, we can ensure that the honest state offers a higher payoff than the

dishonest state. Also, it is important to note that a state ofthe game play withb out ofk bad

nodes currently cheating, can generate
(

k
b

)
possible arrangements of the bad nodes. Each

of these arrangements will have the same penalty for each of the honest nodes and each of

the cheating nodes and therefore we do not show these as separate states in Table 4.3. The

87
iterated game proceeds from bottom to top in the table,i.e. our goal is to make sure that

starting fromk bad nodes, the system converges to 0 (zero) bad nodes. In other words, we

intend to design a mechanism to produce a repeated game such that at every iteration of the

game, the Nash Equilibrium of any cheating node is to unilaterally change to good. Below

we state a theorem which determines the amount of incentiveδ that needs to be given to

each honest node to achieve this.

Theorem 4.4.1.GivenFi > Gi, ∀i = 1 . . . k and ∆Pb+1 = P (b) − P (b+1), whereP (b)

denotes the penalty forb cheating nodes, the Nash Equilibrium in any state of the gameis

that any cheating nodei turns good irrespective of other players’ decisions, if

δ > U (b)
c + U (b+1)

c + ∆Pb+1

.

Proof. Using Table 4.3, consider the first round of the game (i.e. the last row) and any

bad node whose payoff isBi + U
(b+1)
c − P (b+1). In the next round if it becomes good, its

payoff in the honest state will beBi − U (b)
c − P (b) + δ. In order for this node to turn good

unilaterally, the payoff must increase at the new state. Nowfrom the given condition onδ,

δ > U (b)
c + U (b+1)

c + ∆Pb+1

⇒ δ > U (b)
c + U (b+1)

c + P (b) − P (b+1) [using∆Pb+1 = P (b) − P (b+1)]

⇒ Bi − U (b)
c + P (b) + δ > Bi + U (b+1)

c − P (b+1)

Therefore, if we can guarantee thatδ > U
(b)
c +U

(b+1)
c +∆Pb+1 and the penalty at successive

rounds increase by an amount∆Pb+1, any cheating node will have higher payoff by turning

honest and will decide to do so.

The following lemma proves that the only Nash equilibrium ofthe distributed compu-

88
tation protocol with appropriate penalty is the scenario when all nodes become good.

Lemma 4.4.2. Any penalty mechanism satisfying Theorem 4.4.1 will converge to the

H1, H2, . . . , Hn statei.e. all nodes will become honest. Furthermore assuming that thresh-

oldst1, . . . , tn are known and only one bad node becomes good in each round, theamount

of penalty needed at any round in which there areb bad nodes is given by,

P (b) > Bi + U (b)
c , where nodei changes its state.

Proof. This lemma can be proved by induction.

Base case(whenk=1):

Looking at row 2 of Table 4.3, we see that for noden− k + i+ 1 to change to good in the

next round,

1. its utility must go below 0i.e.

Bn−k+i+1 + U (1)
c − P (1) < 0⇒ P (1) > Bn−k+i+1 + U (1)

c

2. the utility at the next state (good) should be greater thanthe current one,

Bn−k+i+1 > Bn−k+i+1 + U (1)
c − P (1) < 0⇒ P (1) > U (1)

c

Combining these two, we see thatP (1) > Bn−k+i+1+U
(1)
c is sufficient for the (n−k+i+1)-

th node to turn good.

Any other case(k = b):

Here we assume that the lemma holds fork = b bad nodes and prove that the it holds

for k = b− 1 nodes.

Let us analyze any nodei which is among the current bad nodes. Its payoff at the

89
current round is,

Bi + U (b)
c − P (b),

which is negative if

P (b) > Bi + U (b)
c .

Therefore applying an amount of penalty equal toP (b) will ensure that the payoff of this

node will go below 0. Moreover, the payoff when it becomes good is given by

Bi − U (b−1)
c − P (b−1) + δ.

By choosingδ following Theorem 4.4.1, we can make sure that it will have a higher payoff

if it turns good in the next state of play.

Since in each step of the induction process, one node will turn from bad to good, after

exactlyk number of rounds, all nodes will become good.

If we know all theti’s, at each state we can select the bad node with the highest value

of ti and set the penalty using Lemma 4.4.2. This will ensure that exactly k number of

rounds will be needed for all nodes to turn good.

The game theoretic framework discussed in this section can be used to analyze and

develop no-collusion versions of many existing privacy preserving data mining algorithms.

The input to this framework will be specifications for the objective function — functional

representation of the threat based on the model of privacy for the system and the calculated

communication and computation cost. It should be noted thatin each case, the mechanism

designed would be different depending on all of the above factors. After this general frame-

work description, we now illustrate our theory with a specific example, viz. the secure sum

protocol. We have modified the standard secure sum protocol and developed a mechanism

for this protocol which ensures that by applying sufficient penalty to the system we can

make the system evolve to a zero collusion state iteratively.

90
4.5 Illustration: Secure Sum with Collusion under Bayes Optimal Privacy

The secure sum protocol [36, 142] computes the sum of values of n different nodes

without disclosing the local value of any node. It has been widely used in privacy preserv-

ing distributed data mining as an important primitive,e.g., privacy preserving association

rule mining on horizontally partitioned data [85],k-means clustering over vertically par-

titioned data [150] and many others. In this section we first present the Bayes optimal

privacy model and then derive the threat associated with data privacy for a secure sum with

k colluding nodes.

4.5.1 Model of Privacy

Given the optimization problem, the privacy preserving data mining algorithm re-

quires a model of privacy for measuring the threat to each party’s private data. Here we

have extended the Bayes optimal model of privacy [109] for distributed heterogenous en-

vironments.

The Bayes optimal model of privacy uses prior and posterior distribution to quantify

privacy breach. LetX be a random variable which denotes the data value at each node. The

value at nodevi is denoted byxi. The prior probability distribution isfprior = P (X = xi).

Once the data mining process is executed, the participants can have some extra information.

Given this, we define the posterior probability distribution asfposterior = P (X = xi|B),

whereB represents the extra information available to the adversary at the end of computa-

tion. There are several ways for quantifying the Bayes optimal privacy breach.

Definition 4.5.1(ρ privacy breach). : Let fprior andfposterior denote the prior and posterior

probability distribution ofX. ρ privacy breach occurs when the difference between the two

distributions exceed the thresholdρ i.e., fposterior − fprior ≥ ρ.

Definition 4.5.2 (ρ1-to-ρ2 privacy breach). [55]: Let fprior andfposterior denote the prior

91
and posterior probability distribution ofX. Theρ1− to−ρ2 privacy breach happens when

fprior ≤ ρ1 andfposterior ≥ ρ2, where0 < ρ1 < ρ2 < 1.

As noted in [109], any privacy definition which quantifies theprivacy breach in terms

of principle 1 or 2, is known as the Bayes optimal privacy model. However, theseρ1−to−ρ2

privacy models are specific to a global model of privacy uniformly accepted by all data

owners in the system. Below, we extend this definition to a distributed computing scenario.

Definition 4.5.3. [Multi-party ρ1-to-ρ2 privacy breach] Given dataxi at vi, privacy breach

occurs ifP (X = xi) = f
(i)
prior ≤ ρ1i andP (X = xi|B) = f

(i)
posterior ≥ ρ2i. Multi-party

ρ1 − to − ρ2 privacy breach occurs when the constraints are violated forany peer in the

networki.e. ∃i, such thatf (i)
prior ≤ ρ1i andf (i)

posterior ≥ ρ2i, where0 < ρ1i < ρ2i < 1.

Note that the above definition is per data of a peer. If a peer has more than one data

value, the multi-party definition needs to be satisfied for each data value. Moreover, in Def-

inition 4.5.3, the posterior probabilities of each peer caneither be dependent or independent

of each other. If the peers share the extra information (B), their posterior distributions are

also related. Since in our framework each peer solves the optimization problem locally, the

dependence or the independence of the posterior probabilities does not change the privacy

requirements.

In the next few sections we design a penalty mechanism for a sequence of secure sum

computations under the multi-party(ρ1 − to − ρ2) privacy model. We will show that the

semi-honest assumption of the secure sum protocol is sub-optimal and design a modified

secure sum computation algorithm that uses a penalizing scheme to enforce convergence

to the desired Nash equilibrium.

4.5.2 Secure Sum Computation

Suppose there aren nodes, each with a valuexj , j = 1, 2, . . . , n. It is known that the

sumx =
∑n

j=1 xj (to be computed) takes an integer value in the range[0, N − 1]. The

92
nodes are arranged in a ring topology as defined below.

Definition 4.5.4(Ring Network). Given a collection of nodes{v1, v2, . . . , vn}, a ring net-

work is a network topology in which each node connects to exactly two other nodes, i.e.

∀i = 2 . . . n− 1, Γ1(vi) = {vi−1, vi+1}, Γ1(n) = {vn−1, v1}, andΓ1(1) = {vn, v2}.

The basic idea of secure sum is as follows. Assuming nodes do not collude, node

1 generates a random numberR uniformly distributed in the range[0, N − 1], which is

independent of its local valuex1. Then node 1 addsR to its local valuex1 and transmits

(R + x1) mod N to node 2. In general, fori = 2, . . . , n, nodei performs the following

operation: receive a valuezi−1 from previous nodei − 1, add it to its own local valuexi

and compute its modulusN . In other words,

zi = (zi−1 + xi) mod N = (R +
i∑

j=1

xj) mod N,

wherezi is the perturbed version of local valuexi to be sent to the next nodei + 1. Node

n performs the same step and sends the resultzn to node 1. Then node 1, which knowsR,

can subtractR from zn to obtain the actual sum. This sum is then broadcast to all other

nodes.

The secure sum computation algorithm expects each party to perform some local com-

putation. This involves generating a random number (for theinitiator only), one addition,

and one modulo operation. The node may or may not choose to perform this computation.

This choice will define the strategy of a node for computation. The secure sum computa-

tion algorithm also expects a party to receive a value from its neighbor and send out the

modified value after the local computation. This party may ormay not choose to do so.

This choice can be used to define the strategy for communication. The total cost incurred

by a peer is the sum of the costs of computations and communication performed and there-

fore choice of strategies in both these dimensions is an optimization decision that each peer

93
needs to make.

4.5.3 Threat to Data Privacy or Utility of Collusion

The secure sum computation algorithm assumes semi-honest parties who are only

interested in the end result and do not indulge in collusion.This assumption is not re-

alistic since any dishonest participant may want to colludewith others to gain additional

information. Similarly, an honest participant would estimate presence of such dishonest

participants and take measures to protect their data according to their estimated threat.

Definition 4.5.5. [Colluding group] Given a collection of nodesv1, . . . , vn, arranged in

a ring topologyv1 → v2 → · · · → vn → v1, let k ≥ 2 be the number of nodes who are

interested in exchanging information among them to disclose other nodes’ data. We call

such a group as a colluding group or simply colluders.

Let us assume that there arek (k ≥ 2) nodes acting together secretly to achieve a

fraudulent purpose. Letvi be an honest node who is worried about privacy of its dataxi.

Let vi−1 be the immediate predecessor ofvi andvi+1 be the immediate successor ofvi. The

possible collusion that can arise are:

• If k = n− 1, then the exact value ofxi will be disclosed.

• If k ≥ 2 and the colluding nodes include bothvi−1 andvi+1, then the exact value of

xi will be disclosed.

• If n− 1 > k ≥ 2 and the colluding nodes contain neithervi−1 nor vi+1, or only one

of them, thenxi is disguised byn− k − 1 other nodes’ values.

The first two cases need no explanation. Now let us investigate the third case. Without

loss of generality, we can arrange the nodes in an order such that v1v2 . . . vn−k−1 are the

94
honest sites,vi is the node whose privacy is at stake andvi+1 . . . vi+k form the colluding

group. We have
n−k−1∑

j=1

xj

︸ ︷︷ ︸

denoted byX

+ xi
︸︷︷︸

denoted byY

= x−
i+k∑

j=i+1

xj

︸ ︷︷ ︸

denoted byW

,

whereW is a constant and known to all the colluding nodes. Now, it is clear that the collud-

ing nodes will knowxi is not greater thanW , which is some extra information contributing

to the utility of the collusion. To take a further look, the colluding nodes can compute the

posterior probability ofxi and further use that to launch a maximum a posterior probability

(MAP) estimate-based attack. The posterior probability mass function (PMF) ofxi is as

follows:

fposterior(xi) = fY (y) = Pr{Y = y}, (4.3)

whereY = W − X. X is a random variable and it is defined asX =
∑n−k−1

j=1 xj . The

constantW is defined asW = x−∑i+k
j=i+1 xj . BecauseX is a discrete random variable, it

is easy to prove that

fY (y) = fX(x), (4.4)

wherex = W − y.

To computefX(x), we can make the following assumption about the adversarialpar-

ties’ prior knowledge.

Assumption 4.5.1.Eachxj (j = 1, . . . , n− k) is a discrete random variable independent

and uniformly taking non-negative integer values over the interval{0, 1, . . . , m}. There-

fore,X is the sum of(n − k − 1) independent and uniformly distributed discrete random

variables.

95
Note that using uniform distribution as the prior belief is areasonable assumption be-

cause it models the basic knowledge of the adversaries. Thisassumption was also adopted

by [149] where a Bayes intruder model was proposed to assess the security of additive

noise and multiplicative bias. Now let us computefX(x).

Theorem 4.5.2.Let Λ be a discrete random variable uniformly taking non-negative in-

teger values over the interval{0, 1, . . . , m}. Let Θ be the sum ofs independentΛ. The

probability mass function (PMF) ofΘ is given by the following equations:

Pr{Θ = θ} =
1

(m+ 1)s

r∑

j=0

(−1)j

(
s

j

)(
s+ (r − j)(m+ 1) + t− 1

(r − j)(m+ 1) + t

)

,

whereθ ∈ {0, 1, . . . , ms}, r = ⌊ θ
m+1
⌋, andt = θ − ⌊ θ

m+1
⌋(m+ 1).

Proof. The probability generating function ofΛ is

GΛ(z) = E[zΛ] =
1

m+ 1
(z0 + z1 + · · ·+ zm).

Therefore, the probability generating function ofΘ is

GΘ(z) = (GΛ(z))s =
(z0 + z1 + · · ·+ zm)s

(m+ 1)s

=
(1− zm+1)s

(1− z)s(m+ 1)s
.

The probability mass function (PMF) ofΘ is computed by taking derivatives ofGΘ(z):

Pr{Θ = θ} =
G

(θ)
Θ (z)

θ!

∣
∣
∣
∣
∣
z=0,

whereG(θ)
Θ (z) is theθ-th derivative ofGΘ(z).

In practice, it is probably not easy to computeG(θ)
Θ (z). Instead, we can expandGΘ(z)

96
into a polynomial function of degreems. The coefficient of each termzt, t = 0, . . . , ms in

the expanded polynomial gives the probability thatΘ = t.

To expandGΘ(z), let us first leave out the factor 1
(m+1)s . Newton’s generalized bino-

mial theorem tells us that 1
(1−z)s =

∑∞
t=0

(
s+t−1

t

)
zt. Hence,

(1− zm+1)s

(1− z)s
=

(
s∑

j=0

(
s

j

)

z(m+1)j(−1)j

)(∞∑

t=0

(
s+ t− 1

t

)

zt

)

.

The above equation can be written as follows:

(1− zm+1)s

(1− z)s
=

∞∑

t=0

(
s+ t− 1

t

)

−
(
s

1

) ∞∑

t=0

(
s+ t− 1

t

)

z(m+1)+t

+

(
s

2

) ∞∑

t=0

(
s+ t− 1

t

)

z2(m+1)+t − ...

Therefore, the coefficients of the above polynomial have thefollowing properties: fort =

0, 1, . . . , m, we have

• the coefficient ofzt is
(

s+t−1
t

)
,

• the coefficient ofz(m+1)+t is
(

s+(m+1)+t−1
(m+1)+t

)
−
(

s
1

)(
s+t−1

t

)
,

• the coefficient ofz2(m+1)+t is
(

s+2(m+1)+t−1
2(m+1)+t

)
−
(

s
1

)(
s+(m+1)+t−1

m+1+t

)
+
(

s
2

)(
s+t−1

t

)
,

• etc.

In general, fort = 0, 1, . . . , m andr = 0, 1, . . . , the coefficient ofzr(m+1)+t is

r∑

j=0

(−1)j

(
s

j

)(
s+ (r − j)(m+ 1) + t− 1

(r − j)(m+ 1) + t

)

Given the above results, the probability mass function (PMF) of Θ is:

Pr{Θ = θ} =
1

(m+ 1)s

r∑

j=0

(−1)j

(
s

j

)(
s+ (r − j)(m+ 1) + t− 1

(r − j)(m+ 1) + t

)

,

97
whereθ ∈ {0, 1, . . . , ms}, r = ⌊ θ

m+1
⌋, andt = θ − ⌊ θ

m+1
⌋(m+ 1).

According to Theorem 4.5.2, the probability mass function (PMF) ofX is

fX(x) = Pr{X = x}

=
1

(m+ 1)(n−k−1)

r∑

j=0

(−1)j

(
(n− k − 1)

j

)(
(n− k − 1) + (r − j)(m+ 1) + t− 1

(r − j)(m+ 1) + t

)

,(4.5)

wherex ∈ {0, 1, . . . , m(n− k − 1)}, r = ⌊ x
m+1
⌋, andt = x− ⌊ x

m+1
⌋(m+ 1). Combining

Eq. 4.3, 4.4 and 4.5, we get the posterior probability ofvi:

fposterior(vi) =
1

(m+ 1)(n−k−1)

r∑

j=0

(−1)j

(
(n− k − 1)

j

)(
(n− k − 1) + (r − j)(m+ 1) + t− 1

(r − j)(m+ 1) + t

)

,

wherex = W−xi andx ∈ {0, 1, . . . , m(n−k−1)}. r = ⌊ x
m+1
⌋, andt = x−⌊ x

m+1
⌋(m+1).

Note that here we assumexi ≤W , otherwisefposterior(xi) = 0. This posterior can be used

to quantify the privacy breach:

ψ(xi) = Posterior Probability- Prior Probability = fposterior(xi)−
1

m+ 1
(4.6)

Note that, when computing this posterior probability, we model the colluding nodes’ belief

of each unknownxj (j = 1, . . . , n − k − 1) as a uniform distribution over an interval

{0, 1, . . . , m}. This assumption has its roots in the principle of maximum entropy, which

models all that is known and assumes nothing about what is unknown, in that case, the only

reasonable distribution would be uniform.

Probability of the sum of discrete random variables can alsobe derived using the

probability density function (PDF) for the Gaussian distribution. LetΘ denote the sum ofn

98
independent discrete random variables, and assume thatΘ takes consecutive integer values.

Let µ = E(Θ) andσ2 = V ar(Θ). For sufficiently large values ofn, Θ is approximately

Gaussian. Using the standard continuity correction,

Pr{Θ = θ} = Pr{θ − 0.5 < N(µ, σ2) < s+ 0.5}.

Calculating a midpoint approximation using a single subinterval, the Gaussian PDF ap-

proximation is obtained, which is

Pr{Θ = θ} =
1√
2πσ

e−(θ−µ)2/2σ2

.

In the settings of Theorem 4.5.2,µ = nm/2 andσ2 = nm(m+ 2)/12.

The derived posterior probability can be used to quantify the utility of collusion (for

dishonest nodes) or the threat to data privacy (for honest nodes). Figure 4.1 shows a plot

of the utility of multi-party secure sum as a function of the distribution of the random

variableW − xi and the size of the colluding groupk. It shows that the utility increases

with increase ink. This implies that in a realistic scenario for multi-party secure sum

computation, nodes will have a tendency to collude. Therefore the no-collusion (k = 1)

assumption of the classical secure sum protocol is sub-optimal.

Figure 4.2 shows a plot of the modified objective function forsecure sum with penalty

(equation 4.2) ask increases. We have takenwp = 1. It shows that the globally optimal

strategies are all fork = 1. Note that for the no penalty secure sum, the optimal strate-

gies are fork > 1, hence it naturally leads to collusion. In the next section we describe a

modified secure sum algorithm incorporating penalty for colluding nodes. It can be noted

here that this approach is different from Shamir’s secret sharing approach [144] or Be-

naloh’s secret sharing homomorphism [21] since these schemes require a maximum size of

the collusion group in order to guarantee a secret computation. Chor and Kushilevitz [35]

99

0
10

20
30

40
50

60
70

0
2

4
6

8
10

0

0.05

0.1

0.15

0.2

Random variable (x)Size of colluding group (k)

U
til

iit
y

fu
nc

tio
n

f(
x)

FIG. 4.1. Overall utility for classical secure sum computation. The optimal strategy takes
a value ofk > 1

0
10

20
30

40
50

1
2

3
4

5
6

75

80

85

90

95

100

105

Random variable (x)Size of colluding group (k)

U
til

ity
 fu

nc
tio

n
f(

x)

FIG. 4.2. Overall utility for secure sum computation with punishment strategy. The
optimal strategy takes a value ofk = 1.

100
also proposed an oblivious transfer protocol for computingthe modular sumx privately

amongn parties, usingn.⌈x+1
2
⌉ messages. Again, the privacy guarantee is with respect to

the semi-honest adversary model. We, on the other hand propose a Bayes optimal privacy

preserving sum computation algorithm.

4.6 Secure Sum with Penalty Algorithm

Consider a network ofn nodes where a node is either honest (good) or colluding (bad).

Bad nodes collude to reveal other nodes’ information while the good nodes follow the

protocol and work out a penalty mechanism to punish colluding nodes to protect the privacy

of their data. We can reasonably assume that honest nodes do not care for their payoff

and are interested in protecting the privacy of their data where cheating nodes are only

interested in maximizing their payoffs. Here we describe the secure sum with penalty (SSP)

algorithm presented in Algorithm 3. The distributed environment consists of a registration

system which keeps track of the number of honest and dishonest nodes and helps sustain the

operations of the honest nodes. As discussed earlier, the algorithm comprises of a number

of secure sum computations. The steps of the algorithm are asfollows:

Solution of the optimization problem to decide penaltyThe optimization problem for

this setup consists of the threat measure for data privacy (based on the Bayes optimal

model) and the total cost. Each honest node has a predefined requirement of the value

of ρ1 andρ2 for the multi-partyρ1 − to− ρ2 privacy breach which is part of the optimiza-

tion problem. For nodei, the bounds areρ1i andρ2i. Each node solves the optimization

problem locally for each round of the secure sum based on the values ofρ1 andρ2 for that

round whereρ2 for a round ismaxi{ρ2i} for that round. The algorithm guarantees that

the node with the highest privacy requirement is satisfied. Privacy comes at a high cost —

the cost constraints for nodes with lesser privacy requirements may be violated as a result.

Therefore, we make the assumption that there is a minimum cost constraint that each node

101
Algorithm 3 : Secure Sum with Penalty (SSP)

Input of node vi: (i) Size of the network (n), (ii) Complete ring overlay topology (previous and
next neighbors), (iii) Initial type (NODETYPE = ‘H’ or ‘C’),(iv) Data vectorxi,j , (v) Payoff
thresholdti, (vi) Metrics for calculating personal payoffGi (for NODETYPE = ‘H’) or Fi (for
NODETYPE = ‘C’), (vii) Only one node with NODETYPE = ‘H’ designated asInitiator and has
flag done, (viii) A registration system (system administrator) thatallows honest nodes to register at
the beginning of the protocol or between rounds. It also provides resources to honest nodes so that
they can sustain operations.
If NODETYPE= ‘H’

Random shares ofvi (randSharesList) based on the estimate of colluding nodes (k′)
else if NODETYPE = ‘C’

List of all other colluders in the system (colludeList)
Output of node vi: Correct vector sum
Initialization:

IF NODETYPE= ‘C’
Initialize colludeList
Exchange sum of elements in colludeList

ELSE IF NODETYPE= ‘H’
Split the local dataxi into O(k′) random shares
Initialize randSharesList

END IF
IF node isInitiator

Setdone to FALSE
Send its dataxi after adding a random number and performing a modulo operation

END IF
On receiving a message:

IF node isInitiator
IF sum from last round is same as current round

Send sum to all nodes
Setdone to TRUE

ELSE
Proceed to next iteration of the same computation

END IF
ELSE IF randSharesList!=NULL

Select next data share from randSharesList
Forward received data and new share to next neighbor

END IF
On completion of every secure sum computation:

IF NODETYPE = ‘C’
Compute payoff (Fi) = Result utility - protocol cost + collusion utility - threshold utility -

penalty
IF Fi < ti

Verified = Registration(ti); //call to Registration algorithm
END IF
IF Verified = TRUE

Set NODETYPE = ‘H’;
END IF

ELSE IF NODETYPE = ‘H’
Compute payoff (Gi) = Result utility - protocol cost - collusion utility -ti - penalty
Solve the optimization problem again to find a newk′

END IF

102

Algorithm 4 : Registration System (RegSys)

Input:

• Thresholds (t1, . . . , tm) of all nodes who report

• Metrics for calculating personal payoffGi (for NODETYPE = ‘H’) or Fi (for NODETYPE = ‘C’),

• A List of previously reported bad nodes.

Output: A verification of honest reporting for each of the m nodes
Steps:

• SetVerified to FALSE for each of them nodes.

• Each ofm nodes submits bid (their owntis) for winning an auction where the lowest bidder wins
and earns a payment equal to the difference of the lowest and the second lowest bid.

• Sort thresholdst1, . . . , tm.

• Without loss of generality lett1, . . . , th be the nodes whose thresholds are such that their utilities are
less than 0i.e. t1, . . . , th = {ti : ti < Ur − Cp − U

(m−h)
C }.

• Remove all nodes fromList which belong tot1, . . . , th i.e. List← List \ {t1, . . . , th} and set their
Verified to TRUE.

• Select nodestmin andtmin+1 whose bids are minimum and second minimum.

• IF tmin /∈ List
Give tmin+1 − tmin incentive to the winner.

END IF

• Add all dishonest nodes to current dishonest list:List← List ∪ {th+1, . . . , tm}.
• ReturnVerified for each of them nodes.

103
agrees to abide by before joining the protocol. Such an assumption is not unrealistic since

most nodes in a network will have the minimum amount of resources to execute a protocol.

The outcome of the solution to the optimization problem is anestimate of the size of the

colluding groupi.e. k′. This estimate is different for each node.

Registration of nodesThe distributed computing environment relies on an online registra-

tion system for keeping track of the number of good and bad nodes in the system. During

initialization, only good nodes register there since registration requires paying the regis-

tering system and the colluding nodes would not want to lose aportion of their payoff in

paying for the registration since registering during the initialization phase does not offer

any incentives.

Privacy preserving sum computationTo penalize colluding nodes, each good node splits

its local data intoηik
′
i equal shares whereηi ≥ 1. The privacy preserving sum computation

follows the ring topology based secure sum algorithm, except that every sum computation

now requiresmaxi{ηik
′
i} rounds of sum computation where each good node randomly

sends one of theirηik
′
i shares. After every complete sum computation, the cheatingnodes

compute their payoffs (Fi). The ones for whichFi ≤ 0, request to register as honest nodes

for getting an incentive in the next round.

Registration verification For any subsequent round of registration, the registrationsystem

verifies the requests sent to it by the nodes as genuine or fake. This is done using a Vick-

ery auction mechanism [154] described in Algorithm 4. The registration system makes the

requesting nodes bid for an incentive of more resources (lesserti) using their current thresh-

old utilities tis. Arguably, the nodes that are falsely bidding for getting the extra incentive

to increase their payoff in subsequent rounds will not overbid because the lowest bid will

make them the winner. They would also not underbid because, hoping nobody else under-

bids, they would be able to maximize their winnings by bidding using their truetis. Using

this mechanism the registration system makes sure every requesting node truly reports their

104
tis. Since all other metrics for calculating the payoff for anynode is common knowledge,

the registration system can verify which nodes are honestlyrequesting to change to good

due to their payoffs becoming 0 or negative in the current round. The registration system

adds all these nodes to the list of honest nodes and gives themδ incentive to sustain their

operation in subsequent rounds. It also keeps a note of all winners from all previous rounds

which deter them from coming back again to the registration system, unless turning good.

Subsequent sum computationsAfter all the above steps, a new sum computation starts

and all of the above steps are executed again, only with an increased penalty at every

iteration. The protocol works when there is a non-zero probability of a subsequent round

of sum computation. In our context, this implies that different nodes in the system have

varying lengths of data vectors and also the number of splitsof data for any one entry in

the vector varies across the good nodes. In any round, if a node does not have any more

data, it adds zero to the sum and sends it forward. At the end ofevery complete sum

computation, if the initiator (ring leader) finds that the sum is same as that of the last round,

then no further secure sum computations are started. The SSPprotocol terminates after

max(length of data vector) rounds of sum computation.

In this thesis we make the assumption that once a bad node turns good, it never turns

bad again. This can be explained using theδ incentive received by the honest nodes from

the registration system. Thus, at the end of any round, some nodes turn from bad to good.

For every new round the good nodes solve the optimization problem based on their belief

of the threat and the cost to get a value ofk′i. It then uses this new value ofk′i to split its

data for this round. When the SSP algorithm stops aftermax(length of data vector), the

number of bad nodes in the system reduce although they may notbe completely eliminated.

A detailed study of the analytical bounds is provided in the next section.

105
4.7 Analysis of the SSP Algorithm

In this section we analyze the performance of the secure sum with penalty algorithm.

We first show in the following proof that the algorithm converges to the correct result at the

end of computation. Then we discuss the equilibrium state. Finally, we analyze the privacy

of the SSP algorithm based on our definition of privacy.

4.7.1 Correctness Analysis

Although the SSP algorithm constitutes of multiple secure sums being executed se-

quentially, we analyze the correctness with respect to onlyone secure sum. Correctness

of one secure sum implies correctness of multiple secure sums and hence of the SSP algo-

rithm.

Lemma 4.7.1.For any single secure sum, SSP algorithm converges to the correct sum in

O(nk′) time. Heren is the total number of nodes in the network andk′ = maxi{ηik
′
i},

wherek
′

i is the estimate of the size of the colluding group byvi andn ≥ 1.

Proof. The basic idea behind this proof is that sum computation is decomposable, and the

order of addition of individual shares does not change the sum. For computing one secure

sum, let the sequence of numbers for peersv1, v2, . . . , vn be:

x1
︸︷︷︸

η1k′
1parts

, x2
︸︷︷︸

η2k′
2parts

, . . . , xn
︸︷︷︸

ηnk′
nparts

Since computation takes place in a ringv1 → v2 → · · · → vn → v1, each round takes

O(n) time. Now based on SSP, nodevi splits its data intoηik
′
i (k′i > 1, ηi ≥ 1) shares and

requiresηik
′
i rounds of computation to compute the total sum. The sumS can be written

106
as:

S = x1 + · · ·+ xn

=
x1

η1k′1
+ · · ·+ x1

η1k′1
︸ ︷︷ ︸

η1k′
1times

+ · · ·+ xn

ηnk′n
+ · · ·+ xn

ηnk′n
︸ ︷︷ ︸

ηnk′
ntimes

Thus the sum is invariant under such decomposition and ordering.

In each round, whenever a node receives a message, it adds oneof its ηik
′
i shares. If

all its shares have been added up, this node simply inputs a zero. This process will continue

k′ = maxi{ηik
′
i} roundsi.e. as long as at least one of the nodes will have a share to add.

Therefore the total time required is given by:

n×maxi{ηik
′
i} = n× k′

Therefore, the overall time required is bounded byO(nk′).

Lemma 4.7.2.The Vickery auction ensures that the optimal payoff is achieved only if each

node reveals its correct thresholdti.

Proof. Let b1, . . . , bm be the bids of them nodes going into the registration system. We

can write the payoff of any node as,

Payoff ofvi =

minj 6=i bj − bi if bi < minj 6=iti

0 otherwise

For any node, the following two cases can occur:

Overbid (bi > ti): No node will overbid since the lowest bidder wins. If it bids less,i.e.

minj 6=i bj > bi, it wins. On the other hand ifminj 6=i bj < ti it loses. So the payoffs

in these two cases are the same. Ifti < minj 6=i bj < bi, truthful strategy wins the

auction. Therefore, overbidding is dominated bidding truthfully.

107
Underbid bi < ti: If minj 6=i bj > ti, it wins the auction. Ifminj 6=i bj < bi it loses. So the

payoffs in these two cases are the same. Ifbi < minj 6=i bj < ti then underbidding

wins the auction. However, the payoff is less in this case compared to truth telling.

Therefore, underbidding is dominated by truthful reporting as well.

4.7.2 Performance Analysis

In this section, we present two results: (1) the probabilityof a bad node turning into a

good node, and (2) the probability that at the end ofr iterations,ϑ colluding nodes remain

in the system.

Lemma 4.7.3. Let thresholds of the nodes be normally distributed with parametersµ, σ.

Then the probability(hij) of a nodei becoming good when currently there areb bad nodes

in roundj in the system is given by

hij = 1− Φ
(

Ur−Cp+U
(b)
c −P (b)−µ
σ

)

whereΦ(·) is the area under the standard normal curve andwp is the weight associated

with the utility of collusion as discussed before.

Proof. In order for a node to turn good we know that, its payoff shouldbe less than 0.

108
Therefore,

hij = P (Nodei becomes good)

= P (Payoff ofi < 0)

= P (Bi + U (b)
c − P (b) < 0)

= P (Ur − Cp − ti + U (b)
c − P (b) < 0)

= P (ti > Ur − Cp + U (b)
c − P (b))

= P

(

ti − µ
σ

>
Ur − Cp + U

(b)
c − P (b) − µ
σ

)

= 1− Φ

(

Ur − Cp + U
(b)
c − P (b) − µ
σ

)

(4.7)

The next lemma bounds the probability of maximumϑ colluding nodes remaining in

the network at the end of roundr.

Lemma 4.7.4.The probability that at the end ofr iterations,ϑ colluding nodes remain in

the system is given by,

h =
k−ϑ∏

i=1

[
r∑

g=1

hig

g−1
∏

ℓ=1

(1− hiℓ)

]

wherehi∗ is given by Lemma 4.7.3 andk is the initial number of colluding nodes.

Proof. Since initially the system started withk colluding nodes and the target is to reach

ϑ number of colluding nodes, it must be true thatk − ϑ number of nodes become good

in theser rounds. Now, all of thesek − ϑ nodes must have become good in one of ther

109
rounds. Therefore, for a fixed nodei, we can write the probability that it becomes good as

hi = Probability that it becomes good either in round1 or round2 or ... roundr

= hi1 + (1− hi1)hi2 + (1− hi1)(1− hi2)hi3 + ...+ (1− hi1)(1− hi2)...(1− hi(r−1))hir

=
r∑

g=1

hig

g−1
∏

ℓ=1

(1− hiℓ)

wherehij = Φ
(

Ur−Cp+U
(b)
c −P (b)−µ

σ

)

is the probability of thei-th peer becoming good at

roundj havingb bad nodes. Since the nodes execute independently, the totalprobabilityh

is given by

h = h1 × h2 × ...× hk−ϑ

=

k−ϑ∏

i=1

[
r∑

g=1

hig

g−1
∏

ℓ=1

(1− hiℓ)

]

(4.8)

Lemma 4.7.5.Lethi1 be the probability of thevi-th node becoming good at round 1. Given

that the system started withk bad nodes, and it converged toϑ bad nodes, the expected

number of rounds is given by,
1

∏k−ϑ
i=1 hi1

with variance
k−ϑ∏

i=1

(
2− hi1

h2
i1

)

−
k−ϑ∏

i=1

1

h2
i1

Proof. Assuming that at each round the penalty induced is the same, we get the probability

that nodevi becomes good in roundr as,

P (Xi = r) = hi = (1− hi1)
r−1hi1.

110
Therefore,Xi follows a geometric distribution with the following mean and variance:

E(Xi) =
1

hi1

V ar(Xi) =
1− hi1

h2
i1

Now for k − ϑ bad nodes turning good, we can write their joint distribution as (assuming

independence of decision making by all nodes),

P (X1 = r, . . . , Xk−ϑ = r) = P (X1 = r)× · · · × P (Xk−ϑ = r).

Therefore the expected number of roundsr beforek−ϑ nodes turn good can be written as,

E[X1, . . . , Xk−ϑ] = E[X1] . . . E[Xk−ϑ] =
1

∏k−ϑ
i=1 hi1

wherehi1 = 1− Φ
(

Ur−Cp+U
(k)
c −P (k)−µ
σ

)

.

Similarly, the variance of the joint distribution can be written as,

V ar[X1, . . . , Xk−ϑ] = E2[X1, . . . , Xk−ϑ]− [E[X2
1 , . . . , X

2
k−ϑ]]

= E2[X1] . . . E
2[Xk−ϑ]−E[X2

1] . . . E[X2
k−ϑ]

=

(
1− h11

h2
11

+
1

h2
11

)

× · · · ×
(

1− h(k−ϑ)1

h2
(k−ϑ)1

+
1

h2
(k−ϑ)1

)

− 1

h2
11

× · · · × 1

h2
(k−ϑ)1

=

k−ϑ∏

i=1

(
2− hi1

h2
i1

)

−
k−ϑ∏

i=1

1

h2
i1

Note that in this derivation we have assumed that the penaltyremains the same for all

the iterations. This can be relaxed; however in that case thedistribution no longer remains

geometric and there might not exist closed form expressionsfor the expected number of

111

Table 4.4. Payoff table for three-party secure sum computation.
A B C Payoff Payoff Payoff

(No Penalty) (Policy I) (Policy II)
G G G (5, 6, 7) (5, 6, 7) (5, 6, 7)
G G B (5, 6, 7) (4, 5, 0) (3, 8, 5)
G B B (5, 7, 8) (0, 0, 0) (2, 7, 8)
B B B (0, 0, 0) (0, 0, 0) (0, 0, 0)

rounds in that case.

4.7.3 Equilibrium Analysis

In order to analyze the stability of the modified secure sum algorithm, we will use the

concept of Nash equilibrium. An illustration is presented in the next section.

Nash Equilibrium Illustration for a 3-node Network The idea described in the

last section can be further explained using a simple example, illustrated in Table 4.4.

Consider a game with a mediator where each party first contacts the mediator and

declares their intention to be a good node (follow protocol)or bad party (intending to

collude). When there is no penalty for misbehavior, everyone will benefit by colluding

with others. This will result in all bad nodes colluding witheach other in order to violate

the privacy of the good nodes. Now, let us consider the scenarios where the mediator will

penalize using either Policy I or Policy II (Section 4.4.2).The mediator can enforce Policy

I since everyone reports their intentions to the mediator. It can also easily enforce Policy II

by simply countingk, the total number of colluding nodes. Table 4.4 shows the payoffs for

different penalty policies. For this table we assume the following values of the parameters:

B = 8, t1 = 3, t2 = 2, t3 = 1, U
(1)
c = 0, P (1) = 2, P (2) = 1, U (1) = 2. Also δ for

row 2 is 4. This gives us the values as shown in the table. When there is no penalty, all

scenarios with two bad parties and one good party offer the highest payoff for the colluding

parties. Therefore, collusion with other nodes always becomes the highest paying strategy

112
(the dominant strategy [70]) for any node in the network. Also, we observe that the payoff

for bad nodes always decreases if it becomes good, assuming the status of all other nodes

remain unchanged. So the Nash equilibrium in the classical secure sum computation is

the scenario where the participating nodes are likely to collude. Note that, the three-party

collusion is not very relevant in secure sum computation since there are all together three

parties and there is always a node (the initiator) who wants to protect the privacy of its data.

For both policies I and II the Nash equilibrium corresponds to the strategy where none of

the parties collude. For policy II if any node deviates from being good, the communication

and computation cost increasek′ (O(k)) fold due to the data being split into shares. This

acts as the penalty. The incurred penalty, in addition to theδ amount a good node gets by

becoming good, is not compensated by the benefit gained out ofthe collusion. For nodeB

in the table, when it goes from row 3 to row 2, its payoff increases from 7 to 8. So it changes

from bad to good, irrespective of the strategy of other players. This result will trigger other

changes because in this case, the collusion utility of the other bad node will decrease while

the penalty will increase. Therefore its strategy will be toturn good. Therefore all good

will be the Nash equilibrium.

Lemma 4.7.6.For the SSP algorithm, assuming that the benefit from cheating is more than

not cheating, (i.e. Fi > Gi), and given an extra incentiveδ > U
(b)
c + U

(b+1)
c + ∆Pb+1 to

the honest nodes,σ(H,H, ..., H) is the only NE, where∆Pb+1 = P (b) − P (b+1).

Proof. Using the same proof technique as Lemma 4.4.2, we can prove that (H,H, ..., H)

is the only NE.

We would like to point out here that in the absence of any feedback regarding the num-

ber of dishonest nodes in the system, it is not possible to design a penalty sufficiently higher

for forcing all bad nodes to change to good. In that case we will not have aσ(H,H, ..., H)

equilibrium state; ratherε number of bad nodes will remain in the system. We have demon-

strated this experimentally in Section 4.8. This is realistic since, turning all nodes to good

113
often cannot be achieved due to high cost constraints. However, even in this case, the

multi-partyρ1 − to− ρ2 privacy is satisfied for every peer as we show next.

4.7.4 Privacy Analysis

The SSP algorithm framework presented in this chapter can beused with many dif-

ferent privacy models. This is because the algorithmic framework is itself independent of

the privacy model. The only place where privacy model is usedis in calculating the threat

to data privacy. In this thesis, we have used the Bayes optimal privacy model or the multi-

partyρ1− to− ρ2 privacy model, though we claim that many other models of privacy such

ask-anonymity,ℓ-diversity, orǫ-differential privacy can be used.

In order to prove that the SSP algorithm is privacy preserving, it is sufficient to show

that multi-partyρ1 − to − ρ2 privacy constraints are satisfied for every peer if the SSP

algorithm converges with all honest nodes.

Lemma 4.7.7.The SSP algorithm is multi-partyρ1−to−ρ2 privacy preserving if all nodes

become honest.

Proof. For peervi, let ρ1i andρ2i denote the upper bounds on the prior and posterior prob-

ability distributions respectively. When the algorithm converges with all good nodes,k

becomes 0. In this case,f (i)
posterior(0) = 0 < ρ2i. Thus, independent of the initial number

of bad nodesk, in the termination state, multi-partyρ1 − to− ρ2 is guaranteed by the SSP

algorithm.

As pointed out in the earlier section, in the absence of any feedback, we cannot guar-

antee that all bad nodes will be purged from the system. Henceit suffices to say that in

those cases whereϑ bad nodes remain,f (i)
posterior(ϑ) is not guaranteed to be less thanρ2i.

As a consequence, multi-partyρ1 − to− ρ2 might not hold in these situations.

114
4.8 Experiments

In this section we describe the results obtained by simulating the SSP algorithm for

different network and collusion sizes.

4.8.1 Overview of the Simulation Set-Up

We have used the Distributed Data Mining Toolkit (DDMT)2 developed by the DI-

ADIC research lab at UMBC. We set up a simulation environmentcomprised of a network

of n nodes where a node can either be good or bad. We have experimented with an-node

network on which we have overlayed a ring topology. All experiments reported here are

initiated with 50% (k=n/2) colluding nodes. The nodes in the network have vectors of

different sizes. Therefore, a series of secure sum computations take place and no node in

the system knows when the computation is going to stop. However, for our experiments

we have studied the performance of the algorithm for 50 rounds. How many iterations each

secure sum computation requires, is determined by the penalty decided at the beginning

of each round. For every round of secure sum computation, every node solves the opti-

mization problem locally and decides on a value ofk′i and splits its data intok′i parts. Each

round of secure sum requiresmax{k′i} number of iterations (assumingηi = 1, ∀i). The bad

nodes in the system form one single colluding group. The threshold utility ti of any node

is selected as a random number between[c1, c2] wherec1 andc2 are two arbitrary constants

for each node.

4.8.2 Measurement Metrics

After every round of the secure sum protocol (i.e. after every one of the 50 sum

computations), we measure the following quantities:

2http://www.umbc.edu/ddm/wiki/software/DDMT/

115
• Utility of result (Ur): This measures the utility that any node in the system gets by

computing the correct result.

• Cost for executing basic protocol (Cp): This includes messages sent and computa-

tional expense incurred by all nodes (such as addition and modulo operation) for

executing the basic secure sum protocol. We assume that eachmessage transmission

and computation costs one unit.

• Utility of collusion (U (b)
c): This is the extra utility that any dishonest node gets as a

result of collusion withb − 1 other colluders. It is computed using the formula in

Eqn. 4.3.

• Penalty (P (b)): This is the amount of penalty that is necessary for bad nodes to turn

good applied in the round in which there areb bad nodes before the application of

the penalty.

The total utility of the basic protocolBi is,

Bi = Ur − Cp − ti

The utility of the bad nodes is given by,

Fi = Bi + U (b)
c

The utility of the good nodes is given by,

Gi = Bi − U (b)
c

We do not use the penalty termP (b) in these expressions since for the SSP algorithm

the penalty is given in terms of increased communication andcomputation cost and is

therefore counted as part ofCp.

116
After every round each node measures the above utilities. Inorder to bring these

utilities in the same range of values, we normalize the messages for both bad and good node

between 0 and 1. In our experiments since we know how many messages are exchanged by

all peers, we can easily perform the normalization. In practice, each peer can independently

do this normalization without any input from other peers. Ifthe utility of a bad node falls

below 0, it changes to a good node from the next round onward. But in order to do this

it needs to get an incentive such that its payoff in the next round becomes better than the

current round. The registration system ensures (using Vickery auctions) that all nodes

report their correct utility in order to get the added incentive. The registration system also

keeps track of the cheating nodes who try to falsely report themselves as honest.

4.8.3 Results

We have experimented with two different network sizes : 100 nodes and 500 nodes.

For each experiment we have assumed that 50% of the network consists of colluding nodes.

We plot the decreasing number of colluding nodes with successive rounds of secure sum

computation.

In Figure 4.3 we have shown how the number of colluding nodes decreases with suc-

cessive rounds of secure sum computation. We observe that the rate of decrease is gradual

though not uniform for both the sizes of the network. This is because in every round we

increase the penalty and so a number of nodes change from bad to good. Since in the exper-

iment we do not have any idea of the thresholds, we have observed in all our experiments

there are certain rounds in which no bad node changes while inothers the change may be

by more than one. We have observed the same change profile for both the network sizes.

117

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

Number of rounds

N
um

be
r

of
 b

ad
 n

od
es

500 node network
100 node network

FIG. 4.3. Decrease in the number of colluding nodes in the network over successive
rounds of secure sum computation.

4.9 Conclusions

Many of the existing privacy preserving data mining algorithms often assume that the

parties are well-behaved: they abide by the protocols as expected and do not collude. But in

reality most people involved in such computations are self-interested (rational) agents. In

this chapter we formulate the privacy preserving distributed data mining problem as a multi-

party game where each party tries to maximize its own objective. We consider the multi-

party secure sum computation problem for illustrating thisgame theoretic formulation.

Using this framework, we show how the assumption of semi-honesty is sub-optimal for the

traditional secure sum computation algorithm. We then present a variant of this algorithm

(SSP) that penalizes the violators in a decentralized fashion. We provide mathematical

results for analyzing the performance of the algorithm. In deriving these results we have

made certain assumptions:

• First, we assume that the data distribution in the secure sumprotocol is uniform in

118
order to derive an expression for the threat model that we have used throughout this

chapter. A different choice of the data distribution (such as gaussian, poisson, etc.)

is possible leading to a different threat model and as a result a different objective

function.

• Secondly, we assume that the nodes work independently in deciding whether to

change from bad to good. The only dependence among them is forsharing data in

case of colluders. This assumption is used for deriving the probability of ϑ number

of bad nodes remaining in the system afterr rounds (Lemma 4.7.4). It is a reasonable

assumption to some extent for certain distributed applications, however an alternative

expression involving joint decisions by colluders would beinteresting to study.

• We have also assumed that nodes which turn from bad to good do not turn bad again.

We have strengthened this assumption using theδ incentive from the registration

system. However, in the lack of such a system, a deviation from this assumption

might make our SSP algorithm vulnerable to collusions.

Although in this thesis we have used Bayes optimal privacy based multi-partyρ1− to− ρ2

model, this can be easily replaced by other privacy models inthe literature. Finally, we have

simulated a ring topology and conducted experiments to verify the analytical results. Our

results corroborate the claim that the equilibrium, in the case of secure sum with penalty

algorithm shifts to the more desirable state ofϑ colluding nodes. In the next two chapters

we see how we can extend this framework to perform different distributed data mining

tasks in a privacy preserving manner.

119

Chapter 5

PRIVACY PRESERVING DISTRIBUTED SUM

COMPUTATION AND ITS APPLICATIONS

5.1 Introduction

The privacy preserving sum computation algorithm described in Chapter 4 can be used

in variety of distributed data aggregation applications. In this chapter we propose a scal-

able, local privacy preserving algorithm for distributed P2P data aggregation. Unlike most

multi-party privacy preserving data mining algorithms, this approach works in an asyn-

chronous manner through local interactions and therefore,is highly scalable. It particularly

deals with the distributed computation of the sum of a set of numbers stored at different

peers in a P2P network. We develop a distributed averaging technique that uses secure sum

computation as a building block. The algorithm is provably correct and asymptotically con-

verges to the globally correct result without the peers having to communicate with every

other peer in the network and without having to disclose their privacy sensitive information

to other peers. The optimization-based privacy preservingtechnique for computing the sum

allows different peers to specify different privacy requirements without having to adhere to

a global set of parameters for the chosen privacy model. Unlike most secure multi-party

computation protocols, our algorithm does not assume semi-honest adversary. We prove

that this algorithm, though not secure, is privacy preserving according to the Bayes optimal

120
model of privacy. Since distributed sum computation is a frequently used primitive, the

proposed approach is likely to have significant impact on many data mining tasks such as

multi-party privacy preserving clustering, frequent itemset mining, and statistical aggre-

gate computation. We show how the algorithm can be adapted for a web advertisement

popularity ranking application and also a distributed privacy preserving feature selection

algorithm.

The rest of this chapter is organized as follows. In Section 5.2 we give a description of

our approach using some of the building blocks described in the earlier chapters. In Section

5.5 we formally describe the privacy preserving distributed sum computation algorithm

and analyze its performance in Section 5.6. We demonstrate the empirical performance

of our approach in Section 5.7. Finally, in Section 5.8 we discuss two applications of

our algorithm: a web advertisement ranking application followed by a feature selection

application. We conclude the chapter in Section 5.9.

5.2 Algorithm Overview

To the best of the authors’ knowledge, there does not exist any privacy preserving

asynchronous algorithm for sum computation. The secure sumprotocol [36] solves a sim-

ilar problem but is highly synchronous. There exist severalsolutions to asynchronous dis-

tributed averaging, but are not privacy preserving such as [113, 143]. Also, the distributed

averaging techniques based on the Laplacian of the network topology assume a symmetric

graph topology. However, in our framework we allow different nodes in a network to spec-

ify their own privacy value bringing in the concepts of personalized privacy as discussed

in Chapter 3. This leads to an asymmetric network topology, as discussed later. Therefore,

we propose a new variation of the distributed averaging algorithm described in Chapter 3.

Combining this newer variation of the distributed averaging with the secure sum protocol

in a small neighborhood of a peer, we propose a privacy preserving sum computation al-

121
gorithm which (1) asymptotically converges to the correct result and (2) being only locally

synchronous, scales well with the network size. Note that the average computation problem

can be converted to a sum computation problem by scaling up the data of each peer by the

total number of peers.

Notations: It can be recalled from the previous discussion that,v1, v2, . . . , vn is the set of

peers connected to each other by an underlying communication infrastructure. The network

can be viewed as a graphG = (V,E), whereV = {v1, v2, . . . , vn} denotes the set of

vertices andE denotes the set of edges.Γα(i) denotes the set of neighbors ofvi at a

distance ofα from vi and|Γα(i)| denotes the size of this seti.e. the number of neighbors in

theα-neighborhood. Further, letΩn×n denote the connectivity matrix or topology matrix

of G representing the network where

ωij =

− |Γi,1| if i, j ∈ E , i = j

1 if i, j ∈ E , i 6= j

0 otherwise

Let X1,X2, . . . ,Xn denote the real-valued data vectors, each of sizep for each peer.

For peervi, xij is the j-th, (j = 1, . . . p) element of the data vectorXi. Let X be the

random variable for the distribution ofxij . Let xj denote the global sum of thej-th data

elementxij . Finally, letτ ∗i denote the size of the ring that peervi forms for the secure sum

computation.

We now define the steps of the distributed privacy preservingsum computation algo-

rithm.

Define Privacy Requirement: Our solution is based on the concept of personalized pri-

vacy in which each node is allowed to choose its own privacy model. As an example, we

use the Bayes privacy model. We say that our algorithm is privacy preserving if it satisfies

the multi-partyρ1−to−ρ2 privacy requirement as defined in Section 4.5.3. In the SSP algo-

rithm discussed in Chapter 4, due to a single ring topology inthe network, the multi-party

122
ρ1-to-ρ2 became uniform for all nodes whereρ1 was fixed (based on uniform distribution

assumption) andρ2 wasmax(ρ2i). Therefore, for personalized privacy each peer in the

system decides how much threat it is willing to tolerate and defines its own values ofρ2 for

the multi-partyρ1 − to − ρ2 privacy. In Section 5.3 we analyze how optimization can be

used to calculate the privacy requirement of each node and how the threat changes in the

presence of multiple rings.

Ring Formation: After deciding on the privacy value, each node forms its ringfor the

secure sum protocol. This is done by sending invitations to other nodes in the network to

join its ring. Every node in the system is the initiator of itsown ring. It should be noted

here that if a node accepts an invitation to join someone’s ring, it does not imply that this

node also invites that node to join its ring. This leads to an asymmetric network topology

which means peervi is the neighbor ofvj does not imply thatvj is also the neighbor ofvi.

Section 5.5.1 gives a detailed description of the ring formation algorithm.

Privacy Preserving Sum Computation in Local Ring: After the rings are formed, the

nodes then compute the sum in their own rings by following a secure sum computation-

like protocol which uses distributed averaging for an asymptotic convergence to the global

sum. To address the issues of asymmetric network topology wemodify existing distributed

averaging techniques and propose a modified update rule which is discussed in details in

Section 5.4.

Therefore, our proposed algorithm uses multiple local sum computation protocols

with different ring sizes, one for each node in the network. This approach addresses two

issues: (1) it proposes a solution to privacy preservation in heterogenous environments and

(2) it avoids creating a single large synchronous ring for sum computation which makes

the algorithm scalable for large-scale distributed systems. The sum computation does not

claim to be a secure protocol by getting rid of the semi-honest assumption, but still is

privacy preserving.

123
The distributed averaging based sum computation can be combined with the penalty

mechanism described in Chapter 4 to reduce the number of colluding nodes in the system.

However, since we already start with a ring size that is sufficient to guaranteeρ1-to-ρ2

privacy for each peer, we leave out the penalty mechanism from most of our discussion in

this chapter except the L-PPSC algorithm description. It should be noted that the penalty

mechanism can be introduced in all the algorithms describedin this chapter, if required.

5.3 Privacy Preservation as Optimization

It can be recalled from Section 4.5.3 that for secure sum withcollusion, the threat to

data privacy can be defined as:

threat = Posterior − Prior = fposterior(xij)−
1

m+ 1
(5.1)

where the posterior probabilityfposterior(xij) (alsoρ2 for our model of privacy) can be

defined as

fposterior(xij) =
1

(m+ 1)(τ−k−1)

r∑

p=0

(−1)p

(
τ − k − 1

p

)

×
(
τ − k − 1 + (r − p)(m+ 1) + t− 1

(r − p)(m+ 1) + t

)

(5.2)

whereτ is the size of ring,m is the range of thexij , k is the number of colluders in

the system,zj = W − xij and z ∈ {0, 1, . . . , m(τ − k − 1)}. r = ⌊ zj

m+1
⌋, and t =

zj − ⌊ zj

m+1
⌋(m+ 1). Note that here we assumexij ≤W , otherwisefposterior(xij) = 0.

It can be observed from this threat measure that (1) ask increases, the posterior prob-

ability increases, and (2) asτ increases, the posterior probability decreases. This implies

124
that as the size of the network involved in the secure sum computation increases, the threat

decreases for a fixed size of the colluding group. Therefore,the privacy of the data of

the users in the secure sum depends on the initiator’s choiceof the size of the group (τ).

The choice ofτ can vary between 1 and the total number of nodesn. As the value ofτ

increases, the threat to a user’s data due to collusion decreases, assuming a constant per-

centage of colluding nodes in the network. However, increasing τ increases the overall

communication cost and synchronization requirements of the algorithm. Since the com-

munication cost increases linearly with the size of the secure sum ring, the multi-objective

optimization scalarization can be written as:

max
τ

[wti × threat(τ) − wci × cost(τ)]

subject to the following constraints:cost < ci andthreat < ti wherethreat(τ) is given

by Equation 5.1 andcost(τ) = wc × c × τ . c is the proportionality constant andci and

ti are constants for every peer and denote the cost threshold and privacy threshold that

each peer is willing to withstand. This is a multi-objectiveoptimization problem where

the threat increases while the cost decreases with increasing τ . Below is a solution to this

optimization problem.

Lemma 5.3.1.Given the thresholds for threatti and costci, the solution to the optimization

problem

max
τ

[wti × threat(τ) − wci × cost(τ)]

is given by

1 + k +
log(wti)− log(ti)

log(m+ 1)
≤ τ ∗i ≤

ci
wci × g

125
Proof.

h(τ) =
r∑

q=0

(−1)q

(
τ − k − 1

q

)(
τ + t− k − 2 + (r − q)(m+ 1)

(r − q)(m+ 1) + t

)

Now, we know that fora ≥ b,
(

a
b

)
≥ 1. Therefore,

h(τ) ≥ 1.

Using the constraint,threat ≤ ti we know that

wti

(m+ 1)(τ−k−1)
× h(τ) ≤ ti

Using these results, we can write,

1 ≤ h(τ)

⇒ wti

(m+ 1)(τ−k−1)
≤ wti

(m+ 1)(τ−k−1)
× h(τ) ≤ ti

⇒ wti

(m+ 1)(τ−k−1)
≤ ti

⇒ (m+ 1)(τ−k−1) ≥ wti

ti

⇒ (τ − k − 1) log(m+ 1) ≥ log(wti)− log(ti)

⇒ τ ≥ 1 + k +
log(wti)− log(ti)

log(m+ 1)
(5.3)

Similarly, using the constraint on cost, we get

wci × g × τ ≤ ci

⇒ τ ≤ ci
wci × g

(5.4)

Using Equations 5.3 and 5.4, we get the optimal value ofτ (denoted asτ ∗i in accor-

126
dance with the rest of the chapter):

1 + k +
log(wti)− log(ti)

log(m+ 1)
≤ τ ∗i ≤

ci
wci × g

(5.5)

Now, depending on its personal preference, each peer can choose the number of nodes

(τ ∗i) for computing the sum in a privacy preserving fashion, evenin the presence of collud-

ing parties.

5.3.1 Threat Measure in Presence of Multiple Rings

Equation 5.2 gives us a measure of the threat when there is only one ring. In the

presence of multiple rings, a colluder can infer more knowledge about an honest node’s

data. In this section, we derive an expression for threat formultiple intersecting rings. For

simplicity, we consider the situation of only two intersecting rings. The case for multiple

rings can be analogously derived.

Let there ben1 nodes in ring 1 andn2 nodes in ring 2. The values at the nodes for the

two rings be arranged as follows:

Ring 1:
common

︷ ︸︸ ︷
x1,j → · · · → xc−1,j → xc,j →

not common
︷ ︸︸ ︷
xa,j → xa+1,j → · · · → xg,j

Ring 2:
common

︷ ︸︸ ︷
x1,j → · · · → xc−1,j → xc,j →

not common
︷ ︸︸ ︷
xb,j → xb+1,j → · · · → xh,j

For ring 1, let the colluding nodes bexc−1,j, xc,j, xa,j , xa+1,j. Similarly, for the other

ring, xc−1,j, xc,j, xb,j, xb+1,j are the colluding nodes. Let the number of common nodes be

c. Denoting the sum of the data values in the rings byC1 andC2, we can write,

x1,j + · · ·+ xc,j + xa,j + · · ·+ xg,j = C1

x1,j + · · ·+ xc,j + xb,j + · · ·+ xh,j = C2

127
Subtracting, we get

xa,j + · · ·+ xg,j − (xb,j + · · ·+ xh,j) = C1 − C2

Since the values of the colluders (xa,j , xa+1,j , xb,j, xb+1,j) are known to the colluding

group, we can even subtract these from the sum to be estimated. We are left with the

following expression:

xa+2,j + · · ·+ xg,j − (xb+2,j + · · ·+ xh,j) = C1 − C2 − (xa,j + xa+1,j + xb,j + xb+1,j)

LetC1 − C2 − (xa,j + xa+1,j + xb,j + xb+1,j) = C. We can now write,

xa+2,j + · · ·+ xg,j − (xb+2,j + · · ·+ xh,j) = C

Without loss of generality, let the node whose value is at threat bexg,j . Thus, we can

write,

xg,j
︸︷︷︸

denoted byZ

= C +

xb+2,j + · · ·+ xh,j
︸ ︷︷ ︸

denoted byX

−

xa+2,j + · · ·+ xg−1,j
︸ ︷︷ ︸

denoted byY

Note thatX andY are the sums ofn2 − c − 2 andn1 − c − 3 (leaving out the one to be

estimated) iid random variables respectively. Now sinceC is a constant, it can be shown

that,

P (Z = z) = P (X − Y = z)

=

(n1−c−3)m
∑

y=0

P (X − Y = z|Y = y)P (Y = y)

=

(n1−c−3)m
∑

y=0

P (X − y = z)P (Y = y)

=

(n1−c−3)m
∑

y=0

P (X = y + z)P (Y = y)

128
Using the result of Theorem 4.5.2, we can write the expression for P (Z = z) as,

P (Z = z) =

(n1−c−3)m
∑

y=0

1

(m + 1)(n2−c−2)

ry∑

j=0

(−1)j
(

n2 − c− 2

j

)

×
(

(n2 − c− 2) + (ry − j)(m + 1) + ty − 1

(ry − j)(m + 1) + ty

)

×

1

(m + 1)(n1−c−3)

qy∑

j=0

(−1)j
(

n1 − c− 3

j

)

×
(

(n1 − c− 3) + (qy − j)(m + 1) + sy − 1

(qy − j)(m + 1) + sy

)

wherey ∈ {0, 1, . . . , m(n1−c−3)}, ry = ⌊ y+z
m+1
⌋, qy = ⌊ y

m+1
⌋, ty = y+z−⌊ y+z

m+1
⌋(m+1),

andsy = y − ⌊ y
m+1
⌋(m+ 1).

Next we generalize this expression in the case of multiple intersecting rings having

colluders. Let there beε intersecting rings in the system. Further, let there be a common

node to all the ringsvi. We assume thatvi is honest and seek to determine the posterior

probability of its privacy breach. Our proof proceeds by taking two rings at a time and then

finding the probability of breach ofvi for those two rings. LetΛm,n(vi) denote the posterior

probability ofvi considering ringsm andn. In this case, since the posterior probabilities

are independent, we can write the overall posterior probability as:

Λ =

ε∑

m,n=1,m6=n

Λm,n(vi).

From the discussion in this section we can evaluateΛm,n(vi). This expression can then

be summed over all the possible rings to evaluate the final expression. Now that we have

analyzed the privacy implications of our multiple ring topology, we proceed to discuss the

distributed averaging technique that we have developed.

129
5.4 Distributed Averaging for Asymmetric Topologies

The distributed averaging technique that we are exploring asymptotically converges

to the global average. It can easily be used to compute the sumif each peer multiplies

its data by the total number of peers in the network. Therefore, for the given scenario,

each peervi contains a real numbern × xij wheren is the size of the entire network and

the objective is to compute∆j = 1
n

∑n
i=1 n × xij i.e. the sum of the numbers. There

exist several techniques in the literature to estimate the network size. Examples include

the capture-recapture method proposed by Maneet al. [110] and aggregate computation as

proposed by Bawaet al. [18]. Moreover at any time, the number of nodes in the network

can be estimated efficiently using heartbeat mechanisms or retransmissions as proposed in

[92]. From now on we assume that each entryxij of the data has been multiplied by the

total number of peers so that distributed averaging gives the global sum and not the global

average.

Let xij denote thej-th data of peervi. z(t)
j =

[

z
(t)
1j z

(t)
2j . . . z

(t)
nj

]T

denotes the estimate

of the global sum∆j = 1
n

∑n
i=1 xij by n peers at thet-th iteration. The initialization is

z(0)
j = [x1jx2j . . . xnj]

T . The proposed algorithm works as follows: at any iteration,each

peervi gets the estimate from all of its neighbors (thez
(t−1)
ij ’s for i ∈ Γi) and then generates

the estimate for roundt (i.e. z(t)
ij) based on the received estimates and its local data. This

algorithm is asynchronous and local since each node gets update from its neighbors only.

The update rule used is first order:z(t)
j = Wz(t−1)

j . Any choice ofW guarantees asymptotic

convergence ifW satisfies the following properties: (i)W.1 = WT .1 = 1, where1 denotes a

n×1 vector of all ones and (ii) the eigenvalues ofW, λi when arranged in descending order

are such thatλ1 = 1 and|λi| < 1 for i > 1. In Section 5.6, we analyze the convergence and

correctness of this proposed distributed averaging algorithm. SettingW = I + νΩ satisfies

these conditions; whereν is a small number which determines the stability of the solution

and the convergence rate, andI denotes the identity matrix.

130
From Section 5.3, it is clear that depending on the solution to the optimization prob-

lem, each peer can have a different value ofτ ∗i , i.e. number of nodes it wants to communi-

cate with. This means that if peervi chooses peervj to be part of its sum computation, it is

not necessary thatvj would choosevi to be part of its sum computation ring. This implies

that even ifvj is a neighbor ofvi, vi need not be a neighbor ofvj (in terms of adjacency

matrix). This implies that the resulting topology matrix isasymmetric, and therefore can-

not be used to generate the update matrixW. Now, an asymmetric topology matrix can be

converted to a symmetric one as follows:Ω
′′

= Ω + ΩT, whereΩT is the transpose ofΩ.

SinceΩ is a square matrix,Ω
′′
, by definition, is a symmetric matrix. In order forW to sat-

isfy the properties stated above, it can be generated using the transformationW = U+νΩ
′′

where each entry ofUn×n is such that

uii =

1− ν∑n
j=1 ω

′′

ij

0 otherwise

Based on the above transformation, every peer updates its estimate of∆j using an update

rule that depends on the ring it forms. The following lemma (Lemma 5.4.1) states the

update rule for our proposed distributed averaging problem.

Lemma 5.4.1.The update rule for any peer can be written as

z
(t)
ij = {1− 2ν |Γi| − ν(τ ∗i − |Γi|)} z(t−1)

ij + 2ν
∑

ℓ∈Γi
z

(t−1)
ℓj + ν

∑τ∗
i −|Γi|

ℓ=1 z
(t−1)
ℓj .

Proof. At the t-th time step, the update for the next time instancet+ 1 can be written as:

z(t)
j = Wz(t−1)

j =
[
U + νΩ

′′]
z(t−1)
j

SinceΩ
′′

is symmetric, it will have the following structure:

Ω
′′

=

−2 |Γ1| 2 . . . 2

2 −2 |Γ2| 1 2

...

131
We can write:

U =

1 0 . . . 0

0 1− ν 0 0

...

Thus, W matrix can be written as:

W =

1− 2ν |Γ1| 2ν . . . 2ν

0 1− ν − 2ν |Γ2| ν 2ν

...

Generalizing the above expression we can write the update rule for each peer as:

z
(t)
ij = {1− 2ν |Γi| − ν(τ ∗i − |Γi|)} z(t−1)

ij + 2ν
∑

ℓ∈Γi

z
(t−1)
ℓj + ν

τ∗
i −|Γi|∑

ℓ=1

z
(t−1)
ℓj (5.6)

5.5 Overall Algorithm

In this section we finally present the complete privacy preserving distributed asyn-

chronous sum computation algorithm. The technique consists of two separate algorithms:

namely, the local ring formation algorithm (L-Ring) which is executed only once, offline.

The second algorithm is the iterative local privacy preserving sum computation algorithm

(L-PPSC) which is executed online and converges asymptotically.

5.5.1 Local Ring Formation Algorithm (L-Ring)

For distributed averaging, peervi updates its current state based on the information

it gets from itsτ ∗i neighbors. In order to preserve privacy,vi does not get the raw data

132
from its neighbors; rather a ring is formed amongτ ∗i neighbors and sum computation is

performed in that ring. We call this ring the local ring sinceeach ring is only formed in

a peer’s neighborhood. This has the advantage that (1) the algorithm is only synchronous

in a peer’s local neighborhood and (2) the communication is bounded due to local peer

interactions.

L-Ring takes as input the predefined values of cost and threat threshold, i.e. ci and

ti. When the algorithm starts, each peer solves a local optimization problem based on local

constraintsci andti to choose a value ofτ ∗i , the size of the ring for sum computation. It

then launchesτ ∗i random walks in order to selectτ ∗i nodes uniformly from the network to

participate in its ring. The random walk we have used is the Metropolis-Hastings random

walk which gives uniform samples even for skewed networks. Whenever a random walk

ends atvj , it first checks ifτ ∗i < τ ∗j . If this is true, it poses a potential privacy breach forvj .

Hencevj may choose not to participate invi’s call by sending aNAC message along with

its τ ∗j . Otherwisevj sends anACK message tovi. If vi has received anyNAC message, it

computesmax(τ ∗j) and checks if it violates its cost constraint. If the constraint is violated,

vi chooses a different peervq by launching a different random walk. Otherwise, it then

sends out all of themax(τ ∗j) invitations again which satisfies the privacy constraints of all

the participants. The pseudocode is presented in Algorithm5.

Once the rings are formed offline, the local sum computationsstart.

5.5.2 Local Privacy Preserving Sum Computation Algorithm (L-PPSC)

In the local privacy preserving distributed sum computation algorithm (L-PPSC), ini-

tially all peers in the network have a data vector of sizep. We discuss the algorithm with

respect to only one sum computation (a scalar quantity)viz. xij — the j-th data of peer

vi. In Chapter 4, we have shown how to penalize nodes to avoid collusion in secure sum.

In this chapter we leverage this tool to ensure that colluders are sufficiently penalized for

133
Algorithm 5 : Ring Formation Algorithm (L−Ring)

Input of peer vi:
Threatti and costci that peervi is willing to tolerate

Initialization:
Find the optimal value ofτ ∗i usingti andci.

If vi initializes a ring:
Contact the neighbors as dictated byτ ∗i by launchingτ ∗i parallel random walks

When a random walk ends in nodevj :
Fetch the value ofτ ∗i as sent byvi

IF (τ ∗i < τ ∗j) Send (NAC,τ ∗j) to vi

ELSE SendACK to vi

ENDIF
On receiving NAC, τ ∗j from vj:

IF replies received from everyone
IF τ ∗j violates cost constraint

Contact different neighborvq

ELSE max = argmaxj{τ ∗j }; Setτ ∗i = max
Send invitationI(τ ∗i) to vj (∀j that replied withNAC previously) withτ ∗i

value
ENDIF

ENDIF

the L-PPSC algorithm. As before, our penalty solution is based on the concept of data

partitioning. Forvi, let the estimate of the number of bad nodes bek
′

i. vi then splits its data

xij into k
′
sharesi.e.

xij =

k
′

i∑

k=1

x
(k)
ij .

wherex(k)
ij is thek-th partition of thej-th data of peervi. Therefore, a separate privacy

preserving sum computation is initiated for each sharex
(k)
ij , thus increasing the cost of

computation byk
′

i-folds. Assuming that each peer has agreed on a ring in its local neigh-

borhood, each initiator peer starts a round of sum computation based on the secure sum

computation. The message sent by the initiator node for any sum computation contains:

(1) the ID of the initiator, (2) the data which needs to be added for the local sum, (3)

134
Algorithm 6 : Local Privacy Preserving Sum Computation (L− PPSC)

Input of peer vi:

Convergence rateν, local datax(k)
ij for thek-th partition ofxij , numSplit, round,

set ofτ ∗i -local neighbors arranged in a ring or{ringi,n∗}, random numberR, and

the max range of the sumN

Initialization:

Initialize {ringi,τ∗}, ν, xi; Setround← 1

Setℓ← first entry of{ringi,τ∗}
{ringi,τ∗} ← {ringi,τ∗} \ ℓ
Send

(

R + x
(k)
ij , {ringi,τ∗} , round

)

to vℓ

On receiving a message (data, {ring}, rnd, addNo, splitNo) from vm:

IF {ring} = ∅
Updatez(splitNo)(round)

addNo using (data−R) and Lemma 5.4.1;

round← round+ 1;

Setℓ← first entry of{ringi,τ∗}
{ringi,τ∗} ← {ringi,τ∗} \ ℓ
Send

(

z
(splitNo)(round)
addNo , {ringi,τ∗} round, addNo, splitNo

)

to vm

Check if any node is waiting on this peer

Send data to all such nodes

ELSE IF

round < rnd Wait

ELSE

IF (splitNo ≤ numSplit)

Sety = (data+ z
(splitNo)(rnd)
addNo) mod N ;

ELSE

Sety = 0;

Setℓ← first entry of{ring}
{ring} ← {ring} \ ℓ;
Send(y, ring, rnd, addNo, splitNo) to vℓ

END

135
the size of the local ring that it has constructed for the sum,and (4) which peers need to

multiply the data by 2 (according to Lemma 5.4.1).

This algorithm differs from traditional secure sum computation protocol in the update

rule and the enforcement of the ring topology. In the traditional version, the initiator sends

its data masked by a random number while all others in the ringadd their numbers as is

and pass the sum on. Here, however, the initiator specifies inits message the parameters of

the update rule: the amount of scaling that some of the peers might need to do to their data

before adding them to the received sum. This is essential to guarantee convergence of the

algorithm to the correct result, following Lemma 5.4.1.

These steps are executed by every peer in the system. The algorithm is locally syn-

chronous since in every round of sum computation, the initiator has to wait for all peers in

its rings to complete their previous round. This is essential since this algorithm is based on

the working of first order Linear Time Invariant (LTI) systems [107], in which, the update

in thet-th round uses data from all the neighboring nodes in the(t−1)-st round. Algorithm

6 lists the steps in a pseudo-code format for computing the sum of one partition of one entry

of the original vector.

The input to the algorithm are the convergence rateν, the input datax(k)
ij , the ring

topology, the number of splits ofxij numSplits, the random numberR and maximum

range of the sumN . In the initialization phase, a peer sendsx(k)
ij + R to the next in the

ring. Whenvi gets a data message, one of the following things can happen: if the data has

come back to the initiator, it updates its estimatez
(k)
j (round) using the data it has received

from all neighbors and its own estimate in earlier round. It then sends this information to

the next in the ring. If on the other hand,vi has received updates for a different round,

it simply waits. Finally, if has got a request of the data for apartition which is less than

numSplit, it sends that data; otherwise it ignores this message.

As discussed in Chapter 4, the penalty mechanism works only if there is a non-zero

136

12

12

1
2

3
4

5

6

7
8

9
10 11

13 14

15
16

17

18

19

20

21
22

23

12

1

3

3

42

1

23

12

22

21

3

18

4

12

20 22
21

18

32

2

20
23

FIG. 5.1. Figure showing how local rings are formed based onL-Ring protocol. It shows
four rings with the initiators highlighted. Note that a given node (e.g. node 12) is part of
multiple rings.

probability that the algorithm will continue to the next round. InL-PPSC, each peer does

not know the number of shares of the other peers. Moreover, the size of the data vectors

can be arbitrary for any peer and hence there is always a finitenon-zero probability that the

algorithm will continue to the next round.

5.5.3 Illustration

In this section we illustrate the working of theL-Ring and theL-PPSC algorithm.

Figure 5.1 shows a small arbitrary peer-to-peer network. The next sequence shows how the

rings are formed. The peers shown in bold are the initiator nodes for the respective rings.

For example, for the two smaller rings, the initiators are peersv1 andv2 respectively. For

the two larger rings, the initiators are peersv20 andv23. To illustrate, assume thatv20’s

privacy value is high (τ ∗20 = 7). Hence there are 7 other peers inv20’s ring. Now, if v23

wants to includev20 in its ring, it must satisfy the privacy requirements ofv20 as well.

As a result, there are 7 other peers in the ring initiated byv23 (although it is possible that

initially τ ∗23 < 7). For peerv20, Γ20 = {v4, v12, v21, v22, v23} and so|Γ20| = 5. Since

τ ∗20 = 7, τ ∗20 − |Γ20| = 2.

137
Using Lemma 5.4.1, the update rule for peerv20 can be written as:

z
(t)
20j = {1− 2ν |Γ20| − ν(τ∗

20 − |Γ20|)} z
(t−1)
20j + 2ν

∑

ℓ∈Γ20

z
(t−1)
ℓj + ν

τ∗

20
−|Γ20|∑

ℓ=1

z
(t−1)
ℓj

= {1− 2ν × 5− ν(7− 5)}z(t−1)
20j + 2ν

(

z
(t−1)
12j + z

(t−1)
23j + z

(t−1)
22j + z

(t−1)
21j + z

(t−1)
4j

)

+ν
(

z
(t−1)
3j + z

(t−1)
18j

)

= (1− 12ν) z
(t−1)
20j + 2ν

(

z
(t−1)
12j + z

(t−1)
23j + z

(t−1)
22j + z

(t−1)
21j + z

(t−1)
4j

)

+ ν
(

z
(t−1)
3j + z

(t−1)
18j

)

The coefficients of the update rule are passed on byv20 at the beginning of any sum com-

putation.

5.6 Algorithm Analysis

In this section we analyze the properties theL-Ring andL-PPSC algorithms.

5.6.1 L-Ring Running Time Analysis

Lemma 5.6.1. For any peervi, and all neighborsvj ∈ Γi, the L-Ring algorithm has a

running time ofO(max(τ ∗i , τ
∗
j)), whereτ ∗i is the optimal value for nodevi and τ ∗j is the

value required by nodevj wherevi andvj belong to the same ring for the sum computation.

Proof. vi’s ring formation can have the following two cases:

1. For allvj ∈ Γi, if τ ∗i > τ ∗j , then the running time is upper bounded by the maximum

time required byvi to contact all its neighborsi.e.O(τ ∗i).

2. Without loss of generality, assume that

Ξ = {v1, . . . , vSi
} ⊆ Γi

be the set of nodes whoseτ ∗j , for all vj ∈ Ξ is greater thanτ ∗i i.e. ∀vj ∈ Ξ, τ ∗j ≥ τ ∗i .

These are the number ofNAC messages received byvi from all vj ∈ Γi. Computing

138
the maximum of all entries inΞ takesO(|Ξ|). In order to accommodate all the

nodes in its neighborhood,vi increases its ring size tomaxvj∈Ξ{τ ∗j }. In this case,

computation on this ring takes timeO(τ ∗j).

Therefore the overall running time isO(max(τ ∗i , τ
∗
j)).

In theL-Ring algorithm, each node contacts other nodes to form rings. Forevery such

ring, there is one ring leader. Every such ring leader is alsocontacted by other nodes in the

network to participate in their rings. Below we first state what is meant by deadlock in this

system and then prove that our algorithm is deadlock-free.

Definition 5.6.1 (Deadlock). A deadlock is a situation wherein two or more competing

actions are waiting for the other to finish, and thus neither ever does.

In our context, a deadlock can occur if a nodevi has sent invitations to other nodesvj ’s

to join its ring and thesevj ’s may themselves be waiting on others to send them response

to their requests for forming rings. This process may be translated to all the nodes in the

system and therefore, the entire system may become unresponsive. Below we prove that

such a situation never arises in this context.

Lemma 5.6.2.The ring formation algorithm is deadlock-free.

Proof. Consider a nodevi whoseτ ∗i is the maximum of all the nodes in the network. Let

us also assume thatτ ∗i < n, wheren is the total number of nodes in the network. In

other words, the maximumτ ∗i is such that a ring of sizeτ ∗i can be formed in a network of

sizen. Consider any nodevj who sends a ring formation request message tovi. Now by

assumption,τ ∗j < τ ∗i , for all vj 6= vi. Also since,τ ∗i < n, τ ∗j < n as well for allvj . Thus

it is evident that ifvi converges for ring formation so would allvjs. Hence there can be no

deadlock. In the worst case, multiple large rings will be formed which will include all the

nodes in the network. Since there is no deadlock forvi, there can be no deadlock for any of

the neighbors ofvi. Thus, by induction on the entire network, L-Ring is deadlock free.

139
5.6.2 L-PPSC Correctness Analysis

TheL-PPSCalgorithm is guaranteed to converge to the correct result ifthe matrixW

satisfies the following three conditions: (1)W.1 = WT .1 = 1 and (2) the eigenvalues ofW,

λi when arranged in descending order are such thatλ1 = 1 and1 > |λ2| ≥ |λ3| ≥ · · · ≥
|λn|

Lemma 5.6.3. Let W=U+νΩ
′′
, whereν denotes the convergence rate,Ω

′′
= Ω + ΩT

denotes the modified topology matrix and each entry ofU is such that,

uii =

1− ν∑n
j=1 ω

′′

ij(j 6= i)

0 otherwise
.

ThenW.1=WT .1=1.

Proof. W =

1− ν
∑n

j=1 Ω
′′

1j + νΩ
′′

11 νΩ′′
12 . . . νΩ

′′

1n

νΩ
′′

21 1− ν
∑n

j=1 Ω
′′

2j + νΩ
′′

22 . . . νΩ
′′

2n

...

νΩ
′′

n1 νΩ
′′

n2 . . . 1− ν
∑n

j=1 Ω
′′

nj + νΩ
′′

nn

W.1 =

1− ν∑d
j=1 Ω

′′

1j + νΩ
′′

11 . . . νΩ
′′

1n

νΩ
′′

21 . . . νΩ
′′

2n

...

νΩ
′′

n1 . . . 1− ν∑n
j=1 Ω

′′

dj + +νΩ
′′

nn

1

1

...

1

=

1− ν∑n
j=1 Ω

′′

1j + νΩ
′′

11 + νΩ
′′

12 + · · ·+ νΩ
′′

1n

νΩ
′′

21 + 1− ν∑n
j=1 Ω

′′

2j + νΩ
′′

22 + · · ·+ νΩ
′′

2n

...

νΩ
′′

n1 + νΩ
′′

n2 + · · ·+ 1− ν∑n
j=1 Ω

′′

nj + νΩ
′′

nn

=

1

...

1

140
Similarly, it can be shown that

WT .1 =

1− ν∑n
j=1 Ω

′′

1j + νΩ
′′

11 . . . νΩ
′′

1n

νΩ
′′

21 . . . νΩ
′′

2n

...

νΩ
′′

n1 . . . 1− ν∑n
j=1 Ω

′′

nj + +νΩ
′′

nn

T

1

1

...

1

=

1− ν∑n
j=1 Ω

′′

1j + νΩ
′′

11 + νΩ
′′

21 + · · ·+ νΩ
′′

n1

νΩ
′′

12 + 1− ν∑n
j=1 Ω

′′

2j + νΩ
′′

22 + · · ·+ νΩ
′′

n2

...

νΩ
′′

1n + νΩ
′′

2n + · · ·+ 1− ν∑n
j=1 Ω

′′

nj + νΩ
′′

nn

=

1− ν∑n
j=1 Ω

′′

1j + νΩ
′′

11 + νΩ
′′

12 + · · ·+ νΩ
′′

1n

νΩ
′′

21 + 1− ν∑n
j=1 Ω

′′

2j + νΩ
′′

22 + · · ·+ νΩ
′′

2n

...

νΩ
′′

n1 + νΩ
′′

n2 + · · ·+ 1− ν∑n
j=1 Ω

′′

nj + νΩ
′′

nn

[sinceΩ
′′

is symmetricΩ
′′

ij = Ω
′′

ji]

=

1

...

1

Hence,W.1 = WT .1 = 1.

Lemma 5.6.4.Let W=VDVT denote the eigen decomposition ofW, whereV denotes the

eigenvector matrix andD denotes the diagonal eigenvalue matrix. Let the entries ofW be

arranged as|λ1| > · · · > |λn|. Thenλ1 = 1.

Proof. From Lemma 5.6.3, it is clear thatW.1 = 1. Therefore the vector1, is an eigenvector

of W. Using the eigenvector-eigenvalue equationW.V = V.D, we see that

W.1 = 1.D = 1 (using Lemma 5.6.3)

141
This means that the eigenvalue corresponding to the eigenvector1 is given byλ1 = 1.

Lemma 5.6.3 and Lemma 5.6.4 prove thatL-PPSC algorithm we have proposed in

this chapter converges to the correct solution.

5.6.3 L-PPSC Convergence Analysis

We show that the rate of convergence of theL-PPSC algorithm is exponential in the

number of iterations. Our proof is similar to the argument presented in [143].

Lemma 5.6.5. [143] For partition k, let z(k)
j = VT

[

x
(k)
1j x

(k)
2j . . . x

(k)
nj

]T

= VT z(k)(0)
j where

V is the eigenvector matrix ofΩ
′′
. The error incurred at each step decreases exponentially

as the number of steps increase.

Proof. The error at any stept can be written as:

∣
∣
∣

∣
∣
∣z(k)(t)

j − 1∆j

∣
∣
∣

∣
∣
∣

2

=
n∑

j=2

λ2t
i

∣
∣
∣z(k)(0)

j

∣
∣
∣

2

(5.7)

Now, since|λi| < 1, for 2 < i ≤ n, ast → ∞, everyλ2t
i → 0. Hence the error goes to 0

exponentially.

Since eachλi can be upper bounded by max2≤i≤n |λi|, the error can be rewritten as
∣
∣
∣

∣
∣
∣z(k)(t)

j − 1∆j

∣
∣
∣

∣
∣
∣

2

< nλ2t
max, whereλmax is the maximum of theλi’s 2 < i < n. This

lemma proves that each partition converges to the correct result. Now since the number of

partitions are finite, it is obvious thatL-PPSC will also converge correctly.

5.6.4 L-PPSC Locality Analysis

In this section we prove thatL-PPSC is local. Intuitively, locality of an algorithm

ensures bounded message complexity in each peer’s neighborhood and hence is crucial for

the algorithm’s scalability (as discussed in Definition 2.2.3).

142
There are several definitions of locality proposed in the literature. The locality concept

proposed by Daset al. [40] is characterized by two quantities — (1)α – which is the

number of neighbors a peer contacts in order to find answer to aquery and (2)γ – which is

the total size of the response which a peer receives as the answer to all the queries executed

throughout the lifetime of the algorithm. TheL-PPSC algorithm exhibit(α, γ)-locality in

the following sense. For any given peer, the choice ofα is guided by the optimal solution

of the objective function defined earlier. In the worst case,a peer may chooseα to be equal

to the size of the entire network. Therefore,α = O(n) in the worst case. The bound onγ

is specified by the following lemmas.

Lemma 5.6.6.Let e be the error between the true sum (∆) and the node estimates (z(k)(t)
j)

for each partitionk as induced byL-PPSC algorithm aftert rounds of computation. Then

t ≥ log(ǫ)−log(n)
log(λ2

max)
.

Proof. From Lemma 5.6.5, we know that the error at thet-th step is bounded bydλ2t
max i.e.

∣
∣
∣

∣
∣
∣z(k)(t)

j − 1∆j

∣
∣
∣

∣
∣
∣

2

=
∑n

j=2 λ
2t
i

∣
∣
∣z(k)(0)

j

∣
∣
∣

2

(assuming
∣
∣
∣z(k)(0)

j

∣
∣
∣

2

= 1)

Now let the error be bounded bye.

dλ2t
max < ǫ⇒ t ≥ log(ǫ)− log(n)

log(λ2
max)

Lemma 5.6.7.The total size of the messages exchanged (γ) by any peer is upper bounded

by log(ǫ)−log(n)
log(λ2

max)

[

log(z
(t)
max) + τ ∗i

]

, wherez(t)
max is the maximum of data values at any peer in

a ring at roundt.

Proof. At round t, the number of bits necessary to store the maximum of allz
(t)
i is

log(z
(t)
max). While performing the secure sum at any roundℓ, peerPi with Γi = {vi−1, vi+1}

does the following computation:(z(ℓ)
i−1 + z

(ℓ)
i) mod N , whereN is the parameter of the

143
sum computation protocol. Hence for every peer, the number of bits required to represent

the new sum will increase by 1 at most. Therefore, the total number of bits required for

each message is upper bounded by
[

log(z
(ℓ)
max) + τ ∗i

]

. In each round of the sum compu-

tation, a peer exchanges only one message (due to ring topology). Hence, fort rounds,

we get the total number of bits exchanged ast
[

log(z
(t)
max) + τ ∗i

]

. Using Lemma 5.6.6,

γ ≤ log(ǫ)−log(n)
log(λ2

max)

[

log(z
(t)
max) + τ ∗i

]

.

Lemma 5.6.8.L-PPSC algorithm is
(

O(n), log(ǫ)−log(n)
log(λ2

max)

[

log(z
(t)
max) + τ ∗i

])

-local based on

the definition presented in Chapter 2, Definition 2.2.3.

Proof. As stated, for any nodevi the maximum size of ring is equal to the size of the

network. So according to the definition of locality,α = O(n). Also as shown in Theorem

5.6.7,

γ ≤ log(ǫ)− log(n)

log(λ2
max)

[
log(z(t)

max) + τ ∗i
]

. Therefore,L-PPSC algorithm is
(

O(n), log(ǫ)−log(n)
log(λ2

max)

[

log(z
(t)
max) + τ ∗i

])

-local.

5.6.5 L-PPSC Privacy Analysis

Lemma 5.6.9.For anyvi, the multi-partyρ1-to-ρ2 privacy is satisfied in theL-PPSC pro-

tocol.

Proof. In the optimization, the bound on threatti which is satisfied for every peer is actually

the posterior probabilityρ2i. PeerPi is involved in two types of rings:

• vi initiates a ring — For this ring,vi’s constraints are already satisfied (due to solution

of the optimization problem). Hencef i
posterior ≤ ρ2i.

• vi is part of rings initiated by peersvj (j 6= i) — For this ring,vi only participates if

τ ∗j ≥ τ ∗i . This implies that,f j
posterior ≤ f i

posterior. Hencef j
posterior ≤ ρ2i as well.

Thusρ1i-to-ρ2i privacy is satisfied for any peervi.

144
Lemma 5.6.9 proves that the privacy is satisfied for every node in the network. Hence,

using Definition 4.5.3, this protocol is privacy preservingfor the entire network.

In the L-PPSC algorithm, it is assumed that each ring has fewer than (τ ∗i − 2) bad

nodes. If this condition is violated, then we know that privacy breach will surely occur.

Next we derive an expression for the probability of this happening and show that it is very

low.

Lemma 5.6.10.Let θ be the probability of a node being good. Then the probabilitythat in

a ring of sizeτ ∗i , there are at most (τ ∗i − 2) bad nodes is given by1− (1− θ)τ∗
i −1.

Proof. For any ring initiatorvi, the task of selecting and contacting nodes can be viewed as

collecting random samples from the distribution of all nodes in the network. The number

of bad nodes contacted can be0 . . . τ ∗i . Since these samples are i.i.d, we can write:

P = Probability of contacting at most(τ ∗i − 2) bad nodes

= 1− Probability(exactlyτ ∗i nodes are bad)− Probability(exactlyτ ∗i − 1 nodes are bad)

= 1− (1− θ)τ∗
i − θ(1− θ)τ∗

i −1

= 1− (1− θ)τ∗
i −1

The above expression shows that the probability of selecting less thanτ ∗i −2 bad nodes

increases with increase in the (1) probability of a good nodeθ, and (2) ring sizeτ ∗i . Figure

5.2 shows how the probability varies as a function ofθ andτ ∗i . As shown, the probability

increases with increasingθ. This is intuitive, since with increasingθ, there is a higher

chance that each contacted node is good. Also for a fixedθ, asτ ∗i , increases the probability

of contacting less thanτ ∗i − 2 bad nodes goes to 1 faster.

Now consider another scenario in which there is the possibility of a privacy breach.

Consider two intersecting rings which contains only one honest node. Now the probability

145

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Probablility of good node (θ)

1−
(1

−
θ)

n i* −
1

n
i
*=5

n
i
*=10

n
i
*=15

n
i
*=20

FIG. 5.2. This figure shows the probability that less thanτ ∗i − 2 nodes are bad in a ring of
sizeτ ∗i . As shown in the figure, the probability increases with increasingθ. Also, as the
size of the ring increases, the probability increases faster.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

Probability of good node (θ)

θ(
1−

θ)
n i* +

n j* −
1

n
i
*+n

j
*=5

n
i
*+n

j
*=10

n
i
*+n

j
*=15

FIG. 5.3. This figure demonstrates the variation ofθ(1 − θ)τ∗
i +τ∗

j −1 vs. θ, τ ∗i andτ ∗j . The
probability is very low and decreases with increasing size of the ring. Also, for a fixed ring
size, asθ increases, the probability decreases.

146
of this occurring is given byθ(1−θ)τ∗

i +τ∗
j −1, whereτ ∗i andτ ∗j are the sizes of the two rings.

Figure 5.3 demonstrates the variation of this expression with θ, τ ∗i andτ ∗j . As seen in the

figure, the probability is very low and decreases with increasing size of the ring. Also, for

a fixed ring size, asθ increases, the probability decreases.

5.7 Experimental Results

To validate the performance of the proposedL-PPSC algorithm, we have conducted

experiments on a simulated network of peers. The topology isgenerated using BRITE1.

We have used the Barabasi Albert (BA) model in BRITE since it is often considered a

reasonable model for the Internet. The data used for the experiments is synthetically gener-

ated. The task is to compute the sum of all the data of all the peers in a privacy preserving

fashion using a distributed algorithm. Our data set consists of real vectors of sizep at each

peer in the network where the elements are generated from random distributions. Thus,

there aren× p different distributions. This centralized data set is thensplit amongn peers

such that each peer hasp real numbers. In all our experiments, we have used the following

default values of the system and algorithm parameters: sizeof the network (n) = 1000, the

maximum range of the sum for the secure computation (N) = xi × n, ν = maxi
1

|Ωii| , and

p=5. Computing the vector sum requires a separate privacy preserving sum algorithm to

be invoked for each element. For the rest of this section we will present our results with

respect to one sum computation only.

Convergence: In this section we show how theL-PPSCalgorithm converges to the correct

result and the cost incurred for it. As shown in Figure 5.4(a), the algorithm converges to the

correct sum with respect to a centralized algorithm, where acentralized algorithm is one

which has access to all the data of all the peers. In this figurewe have plotted the estimate

1http://www.cs.bu.edu/brite/

147
of all the peers at each time instancei.e. thez(t)

j values for eacht.

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5
x 10

6

Time

E
st

im
at

io
n

of
 s

um

Estimate of peer
Actual sum

(a)

0 1000 2000 3000 4000
0.2

0.4

0.6

0.8

1

Time

M
es

sa
ge

s
pe

r
pe

er

(b)

FIG. 5.4. Convergence to global sum and communication cost per peer.

To start with, each peer is assigned a data value. Initially the estimate of each peer is close

to its local data. As time progresses, the peers slowly converge to the correct sum. Figure

5.4(b) demonstrates the number of messages exchanged in theprocess. We have plotted

the number of messages per peer.

148

Scalability: In Figure 5.5(a), we show the correctness result of theL-PPSC algorithm (in

circles) when the number of peers vary from 100 to 2000. Also shown in the figure are the

summation results computed by a centralized algorithm on the same data (using the trian-

gles). The graph shows that our algorithm converges to the correct result for varying sizes

of the network. The cost of the algorithm with increasing network size is demonstrated in

Figure 5.5(b). It shows the cost both with and without penalty. It can be noted that the

number of messages per peer (without penalty) is almost a constant and is, therefore, inde-

pendent of the size of the network. Hence, our algorithm is highly scalable. The cost with

penalty is much higher. This is expected since more number ofsum computation is run per

entry of the data vector. The number of additional sum computations is actually a constant

(k
′

i) times the original number of sum computations, depending on the number of parts into

which each entry of the vector is split.

5.8 Application

Privacy preserving distributed sum computation is a very important primitive for many

distributed applications in P2P domain such as the Internet. In this section we describe a

P2P web advertisement ranking application that can directly use the algorithm descried so

far, followed by a privacy preserving feature selection algorithm.

5.8.1 Privacy Preserving P2P Web Advertisement Ranking

Consider a car navigation system selling company that wantsto study the market in

South Asia before deciding on their web advertising strategy for that geographical region.

In the current web advertisement setup, the company would approach one of the leading

web service providers such as search engine companies or online selling portals for client

data on the subject. These web service providers use the click-stream data collected at their

149

0 500 1000 2000
0

0.5

1

1.5

2
x 10

7

Number of peers

S
um

m
at

io
n

R
es

ul
t

Centralized
Distributed

(a) Quality of result vs. number of peers

100 500 1000 2000
0.8

1

1.2

1.4

1.6

Number of peers

M
es

sa
ge

s/
pe

er
 p

er
 u

ni
t t

im
e

Without penalty
With penalty

(b) Cost vs. number of peers

FIG. 5.5. Figure showing the scalability of the algorithm as thenumber of peers is
increased.

150
servers, sometimes link that data to other publicly available data sources and provide the

results to the company for a price. If popularity can be denoted by the number of clicks

on an advertisement, then the problem can be formulated as computing the sum of the

number of clicks on each advertisement and linking the result with publicly available IP in-

formation. An alternative decentralized technique for measuring advertisement popularity

would require doing privacy preserving distributed data mining at the client-side for similar

information collection by the companies.

Since the Internet can be viewed as ad-hoc connections between users, we pose this as

a data aggregation and ranking problem in a large P2P network. Every user in the network

has a predefined vector of fixed size where thej-th entry of the vector corresponds to the

number of clicks for thej-th advertisement. In this computational environment, ranking

the advertisements can be framed as a global sum computationproblem. As the network of

users converge to the global sum for every entry in the data vector, they can locally sort the

vectors to get the correct global popularity based ranks of the advertisements. Since web

browsing information can be privacy sensitive, it is important to do this sum computation

in a privacy preserving manner. This becomes particularly challenging in heterogeneous

environments such as the Internet, since different users might have different requirements

of privacy. Therefore our algorithm for privacy preservingdistributed sum computation

can be directly applied to solve this web advertisement ranking problem.

UsingL-PPSC algorithm, the peers can compute the sum of the number of clicks for

each advertisement in a privacy preserving fashion. Once that is done, ranking them by

popularity becomes a sorting problem which each peer can solve independently. In the

next section we present our experimental results on the reallife web advertisement click

data.

Experimental Results Volunteers at UMBC were asked to search for the following

five categories in the popular search engines: (1) digital camera, (2) auto insurance, (3)

151
cars, (3) laptop, and (4) car navigation systems. They were also asked to store the web

urls (links) which they found as the closest match for each ofthese categories. In the

experimental setup, we list all these links in a single file (for all categories) and for each

link, count the number of times it has been reported by a volunteer. In order to simulate

the P2P setup, we then divide this data file randomly among 100peers, such that each peer

contains only a fraction of the data — either links or count for each link. If a peer does not

have a link, it may add a value of zero in order to participate in theL-PPSC protocol. In

total there are 1000 links. Once the rings are formed using the L-Ring protocol, we run

1000 sum computations in parallel.

Figure 5.6 shows the results of theL-PPSC protocol on this data set. Thex-axis in

Figure 5.6(a) refers to the 1000 links grouped per category.The y-axis shows the total

count per link for theL-PPSC protocol (circles). Also shown in the figure are the true

counts per link (diamonds) which we call the centralized execution scenario. As easily

verified, the counts of the links in the distributed experiments is very close to those found

in the centralized situation. This once again corroboratesthe fact that the accuracy of the

L-PPSC protocol is very high.

Similarly, Figure 5.6(b) shows the number of messages exchanged per peer per unit of

time. As shown, this varies between 0.5 and 1. A value of 0.5 ata particular time instance

means that only50% of all the peers send messages at that time instance.

5.8.2 Privacy Preserving Feature Selection

Feature selection plays an important role in many data mining applications. Feature

selection has been an active research area in pattern recognition, statistics, and data min-

ing communities. In inductive function learning, the central idea of feature selection is

to choose a subset of features which can correctly predict the output (the target function)

and thereby remove the features with lesser predictive capability. Overall, feature selection

152

0 200 400 600 800 1000
0

5

10

15

20

25

30

Advertisements ids

C
lic

k
co

un
ts

Distributed
Centralized

(a) Relative orderings of the advertisements both in centralized and distributed experi-
ments.

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1

Time

M
es

sa
ge

s
pe

r
pe

er

(b) Messages exchanges per peer per unit of time.

FIG. 5.6. Results on the real advertisement data set.

153
techniques usually make data mining techniques (e.g. clustering, classification) stronger by

constructing an appropriate representation that considers only the relevant features. In the

past, several techniques have been developed for feature selection from high dimensional

data. These include information gain, mutual information,Gini index,χ2 statistic, corre-

lation coefficient, PCA analysis and more. In this section weformulate some information

theoretic metrics for feature selection as sum computationproblems and adapt theL-PPSC

algorithm for distributed privacy preserving feature selection.

Notations LetD denote a collection of data tuples with class labels where each tuple

is ap + 1 dimensional vector{A1,A2, . . . ,Ap, C}, the firstp dimensions corresponding

to the features and the last corresponding to the class label. We assume that each feature

is categorical,i.e., Ai takes a value from the finite set{0, . . . , mi − 1} ∀i = 1 . . . p and

the class is binary, i.e.C ∈ {0, 1}. Let xi,a0 denote the number of examples in the setD

for whichAi = a andC = 0 wherea ∈ [0 . . . (mi − 1)]. Also xi,a· denotes the number

of tuples withAi = a, computed over all classes. Table 5.1 shows the different possible

combinations of values of an attributeAi.

Attribute value (Ai) Class=0 Class=1 (Class=0)+(Class=1)

0 xi,00 xi,01 xi,0·

1 xi,10 xi,11 xi,1·
...

...
...

...

mi − 1 xi,(mi−1)0 xi,(mi−1)1 xi,(mi−1)·

Table 5.1. Number of entries of attributeAi and the class.

In our scenario, we do not assume the data to be at a cental location, rather distributed

over a set of peersv1, v2, . . . , vn connected to each other by an underlying communication

154
infrastructure. More specifically,D is partitioned inton setsD1 throughDn such that

each peer has the same set of features, but different observations i.e. D =
⋃n

i−1Di. x
(ℓ)
i,a0

denotes the number of examples in the setDℓ for whichAi = a andC = 0 wherea ∈
[0 . . . (mi − 1)]. Hence,xi,a0 =

∑

ℓ=1...n

x
(ℓ)
i,a0, xi,a1 =

∑

ℓ=1...n

x
(ℓ)
i,a1 andxi,a· =

∑

ℓ=1...n

x
(ℓ)
i,a·.

Misclassification Gain For a categorical attributeAi, the misclassification impurity

measure [148] for a particular valueAi = a is

MIa(Ai) = 1− max (xi,a0, xi,a1)

xi,a·

Theorem 5.8.1.Let {A1,A2, . . . ,Ap, C} be the set of attributes and class label where

Ai ∈ {0, . . . , mi − 1} andC ∈ {0, 1} respectively. The attribute with the highest misclas-

sification gainAbest is the following:

Abest = arg max
i∈{1...p}

[
mi−1∑

a=0

|xi,a0 − xi,a1|
]

Proof. The misclassification gain difference betweenAi andAj, denoted byMG(Ai,Aj),

is

MG(Ai,Aj) =

mi−1∑

a=0

(
xi,a·
|D|

)

× [MIa(Ai)]−
mj−1
∑

b=0

(
xj,b·
|D|

)

× [MIb(Aj)]

=

mi−1∑

a=0

(
xi,a·
|D|

)

−
mi−1∑

a=0

max (xi,a0, xi,a1)

|D| −
mj−1
∑

b=0

(
xj,b·
|D|

)

+

mj−1
∑

b=0

max (xj,b0, xi,b1)

|D|

= (1− 1) +

mj−1
∑

b=0

max (xj,b0, xi,b1)

|D| −
mi−1∑

a=0

max (xi,a0, xi,a1)

|D|

155
Since the maximum is the average plus half the absolute difference, this is equal to

MG(Ai,Aj) =

mj−1
∑

b=0

(xj,b0 + xj,b1)

2|D| +

mj−1
∑

b=0

|xj,b0 − xj,b1|
2|D| −

mi−1∑

a=0

(xi,a0 + xi,a1)

2|D|

−
mi−1∑

a=0

|xi,a0 − xi,a1|
2|D|

=

mj−1
∑

b=0

(xj,b0 + xj,b1)

2|D| −
mi−1∑

a=0

(xi,a0 + xi,a1)

2|D| +

mj−1
∑

b=0

|xj,b0 − xj,b1|
2|D|

−
mi−1∑

a=0

|xi,a0 − xi,a1|
2|D|

=
1

2
− 1

2
+

mj−1
∑

b=0

|xj,b0 − xj,b1|
2|D| −

mi−1∑

a=0

|xi,a0 − xi,a1|
2|D|

Therefore, choosing the attribute with the highest misclassification gain is equivalent to

maximizing this quantity
∑mi−1

a=0 |xi,a0 − xi,a1| for any attributeAi. Thus, according to the

misclassification gain function, the best attribute is the following:

Abest = arg max
i∈{1...p}

[
mi−1∑

a=0

|xi,a0 − xi,a1|
]

Note that, for a distributed setup, selecting the best attribute according to the misclas-

sification gain is equivalent to distributed computation ofthe following sum:

mi−1∑

a=0

∣
∣
∣
∣
∣

n∑

ℓ=1

x
(ℓ)
i,a0 −

n∑

ℓ=1

x
(ℓ)
i,a1

∣
∣
∣
∣
∣
⇒

mi−1∑

a=0

∣
∣
∣
∣
∣

n∑

ℓ=1

{

x
(ℓ)
i,a0 − x(ℓ)

i,a1

}
∣
∣
∣
∣
∣

(5.8)

for each attributeAi.

156
Gini Index For a categorical attributeAi, the Gini measure [148] for a particular

valueAi = a is

Ginia(Ai) = 1−
(
xi,a0

xi,a·

)2

−
(
xi,a1

xi,a·

)2

Theorem 5.8.2.Let {A1,A2, . . . ,Ap, C} be the set of attributes and class as defined in

the notations section whereAi andC takes the values between{0, . . . , mi− 1} and{0, 1}
respectively. The attribute with the highest Gini indexAbest is the following:

Abest = arg max
i∈{1...p}

[
mi−1∑

a=0

{

(xi,a0)
2 + (xi,a1)

2

xi,a·

}]

Proof.

Gini(Ai,Aj) =

mi−1∑

a=0

(
xi,a·
|D|

)

× [Ginia(Ai)]−
mj−1
∑

b=0

(
xj,b·
|D|

)

× [Ginib(Aj)]

=

mi−1∑

a=0

(
xi,a·
|D|

)

−
mi−1∑

a=0

(
xi,a·
|D|

)(
xi,a0

xi,a·

)2

−
mi−1∑

a=0

(
xi,a·
|D|

)(
xi,a1

xi,a·

)2

−
mj−1
∑

b=0

(
xj,b·
|D|

)

+

mj−1
∑

b=0

(
xj,b·
|D|

)(
xj,b0

xj,b·

)2

+

mj−1
∑

b=0

(
xj,b·
|D|

)(
xj,b1

xj,b·

)2

=

mj−1
∑

b=0

(
xj,b·
|D|

)(
xj,b0

xj,b·

)2

+

mj−1
∑

b=0

(
xj,b·
|D|

)(
xj,b1

xj,b·

)2

−
mi−1∑

a=0

(
xi,a·
|D|

)(
xi,a0

xi,a·

)2

−
mi−1∑

a=0

(
xi,a·
|D|

)(
xi,a1

xi,a·

)2

=
1

|D|

[
mj−1
∑

b=0

{

(xj,b0)
2 + (xj,b1)

2

xj,b·

}

−
mi−1∑

a=0

{

(xi,a0)
2 + (xi,a1)

2

xi,a·

}]

Therefore, the best attribute is the one which maximizes thefollowing quantity:

157

Abest = arg max
i∈{1...p}

[
mi−1∑

a=0

{

(xi,a0)
2 + (xi,a1)

2

xi,a·

}]

As before, for the distributed setup, the following quantity needs to be evaluated across

all the peers for every attributeAi:

mi−1∑

a=0

(
∑n

ℓ=1 x
(ℓ)
i,a0

)2

+
(
∑n

ℓ=1 x
(ℓ)
i,a1

)2

∑d
ℓ=1 x

(ℓ)
i,a·

(5.9)

Therefore, two separate distributed sum computation instances need to be invoked:

(1)
∑n

ℓ=1 x
(ℓ)
i,a0 and (2)

∑n
ℓ=1 x

(ℓ)
i,a1.

Entropy For a categorical attributeAi, the entropy measure [148] for a particular

valueAi = a is

Entropya(Ai) = −
[(

xi,a0

xi,a·

)

log

(
xi,a0

xi,a·

)

+

(
xi,a1

xi,a·

)

log

(
xi,a1

xi,a·

)]

Theorem 5.8.3.Let {A1,A2, . . . ,Ap, C} be the set of attributes and class as defined in

the notations section whereAi andC takes the values between{0, . . . , mi− 1} and{0, 1}
respectively. The attribute with the highest entropyAbest is the following:

Abest = arg max
i∈{1...p}

[
mi−1∑

a=0

{

(xi,a0) log

(
xi,a0

xi,a·

)

+ (xi,a1) log

(
xi,a1

xi,a·

)}]

158
Proof.

Entropy(Ai,Aj) =

mi−1∑

a=0

(
xi,a·
|D|

)

× [Entropya(Ai)]−
mj−1
∑

b=0

(
xj,b·
|D|

)

× [Entropyb(Aj)]

= −
mi−1∑

a=0

(
xi,a0

|D|

)

log

(
xi,a0

xi,a·

)

−
mi−1∑

a=0

(
xi,a1

|D|

)

log

(
xi,a1

xi,a·

)

+

mj−1
∑

b=0

(
xj,b0

|D|

)

log

(
xj,b0

xj,b·

)

+

mj−1
∑

b=0

(
xj,b1

|D|

)

log

(
xj,b1

xj,b·

)

=
1

|D|

[
mj−1
∑

b=0

(xj,b0) log

(
xj,b0

xj,b·

)

+

mj−1
∑

b=0

(xj,b1) log

(
xj,b1

xj,b·

)]

− 1

|D|

[
mi−1∑

a=0

(xi,a0) log

(
xi,a0

xi,a·

)

+

mi−1∑

a=0

(xi,a1) log

(
xi,a1

xi,a·

)]

Therefore, the best attribute is the one which maximizes thefollowing quantity:

Abest = arg max
i∈{1...p}

[
mi−1∑

a=0

{

(xi,a0) log

(
xi,a0

xi,a·

)

+ (xi,a1) log

(
xi,a1

xi,a·

)}]

Therefore, the quantity that needs to be evaluated across all the peers for every at-

tributeAi is:

mi−1∑

a=0

{(
n∑

ℓ=1

x
(ℓ)
i,a0

)

log

(∑n
ℓ=1 x

(ℓ)
i,a0

∑n
ℓ=1 x

(ℓ)
i,a·

)

+

(
n∑

ℓ=1

x
(ℓ)
i,a1

)

log

(∑n
ℓ=1 x

(ℓ)
i,a1

∑n
ℓ=1 x

(ℓ)
i,a·

)}

(5.10)

Two separate distributed sum computation instances need tobe invoked: (1)
∑n

ℓ=1 x
(ℓ)
i,a0

and (2)
∑n

ℓ=1 x
(ℓ)
i,a1. The following figure (Figure 5.7) shows both the Gini index and mis-

classification gain function for a binary class distribution problem.

Each of the misclassification gain, Gini index and entropy based feature selection

techniques requires independent computation of one (misclassification gain) or two (Gini

159

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

Distribution of class=0

Im
pu

rit
y

va
lu

e

Gini impurity
Misclassification impurity

FIG. 5.7. Plot of Gini index and Misclassification gain for binary class distribution.

index, entropy) sums on the count of the class labels for eachof thep attributes of the data.

Thus, the distributed algorithm for P2P feature selection requires computing distributed

summations on the data in an asynchronous privacy preserving fashion and reach a globally

correct result. We can modify theL-PPSC framework for doing this feature selection.

Privacy Preserving Algorithm for Feature Selection (PAFS) The PAFS algorithm

using misclassification gain metric works by invokingm1 + · · · + mp different privacy

preserving distributed sum protocols forp attributes. For attributeAℓ, peervi initializes

mℓ estimates at time 0:z(0)
i,ℓ0 =

(

x
(i)
ℓ,00 − x

(i)
ℓ,01

)

, . . . , z(0)
i,ℓ(mℓ−1) =

(

x
(i)
ℓ,(mℓ−1)0 − x

(i)
ℓ,(mℓ−1)1

)

,

wherez(t)
i,ℓa denotes the estimate of peerPi at timet when attributeAℓ takes on a value of

a. This is done for all the attributesA1, . . . ,Ap. Now each peer launchesm1 + · · · + mp

different distributed averaging computations in their local rings. Other than the initiator,

whenever a peer gets data from its neighbor, it adds its data and sends it to the next one in

the ring following the secure sum protocol. When the entire sum (masked by the random

number) comes back to the initiator, the latter updates its estimate using Lemma 5.4.1. It

then sends the data again to the first member of the ring and theprocess continues.

160
Algorithm 7 : Privacy Preserving Algorithm for Feature Selection (PAFS)

Input of peer vi:

Convergence rateν, local dataDi, round, and set ofτ∗
i -local neighbors arranged in a ring or

{ringi,τ∗}
Initialization:

Initialize {ringi,τ∗}, ν

Setround← 1

Setj ← first entry of{ringi,τ∗}
Compute:

• For attributeA1: z
(0)
i,10 =

(

x
(i)
1,00 − x

(i)
1,01

)

, . . . , z
(0)
i,1(m1−1) =

(

x
(i)
1,(m1−1)0 − x

(i)
1,(m1−1)1

)

,

• For attributeA2: z
(0)
i,20 =

(

x
(i)
2,00 − x

(i)
2,01

)

, . . . , z
(0)
i,2(m2−1) =

(

x
(i)
2,(m2−1)0 − x

(i)
2,(m2−1)1

)

,

...

•

• For attributeAp: z
(0)
i,p0 =

(

x
(i)
p,00 − x

(i)
p,01

)

, . . . , z
(0)
i,p(mp−1) =

(

x
(i)
p,(mp−1)0 − x

(i)
p,(mp−1)1

)

,

{ringi,n∗} ← {ringi,τ∗} \ j

Send
({

z
(0)
i,10, . . . , z

(0)
i,p(mp−1)

}

, {ringi,τ∗} , round
)

to j

On receiving a message ({y1, . . . , ym1+m2+···+mp
}, {ring}, rnd) from vj :

IF {ring} = ∅
Update{z(round)

i,10 , . . . , z
(round)
i,p(mp−1)}

round← round + 1

Setj ← first entry of{ringi,τ∗}
{ringi,τ∗} ← {ringi,τ∗} \ j

Send
(

{z(round)
i,10 , . . . , z

(round)
i,p(mp−1)}, {ringi,τ∗} round

)

to j

Check if any node is waiting on this peer

Send data to all such nodes

ELSE

IF round < rnd

Wait

ELSE

Setret1 = y1 + z
(rnd)
i,10 , . . . ,retm1+···+mp

= ym1+···+mp
+ z

(rnd)
i,p(mp−1)

Setj ← first entry of{ring}
{ring} ← {ring} \ j

Send
(
{ret1, . . . , retm1+···+mp

}, ring, rnd
)

to vj

END

END

161
Once the sums converge (say at timet), each peer does the following computation

with the localz’s (following Equation 5.8):

s1 =

m1−1∑

a=0

∣
∣
∣z

(t)
i,1a

∣
∣
∣ , . . . , sp =

mp−1
∑

a=0

∣
∣
∣z

(t)
i,pa

∣
∣
∣

The best attributes are the ones with the highestsi’s. Algorithm 7 presents the pseudo

code.

In order to use gini index and entropy the following modifications are made:

• Instead of invokingmℓ number of distributed sum for each attributeAℓ, we need

to invoke2 × mℓ number of private averaging computations. For any peerPi and

attributeAℓ = a, initialize z(0)
i,ℓa,0 =

(

x
(i)
ℓ,a0

)

, z(0)
i,ℓa,1 =

(

x
(i)
ℓ,a1

)

. The third sum is

simply the sum of the first two computations,i.e. z(0)
i,ℓa,2 =

(

x
(i)
ℓ,a0 + x

(i)
ℓ,a1

)

.

• Once the sums converge at timet each peer computes the following quantities with

its local estimates only,

– Gini Index: s1 =
∑m1−1

a=0

{
(z

(t)
i,1a,0)2+(z

(t)
i,1a,1)2

z
(t)
i,1a,2

}

,. . . ,

sp =
∑mp−1

a=0

{
(z

(t)
i,pa,0)

2+(z
(t)
i,pa,1)2

z
(t)
i,pa,2

}

– Entropy: s1 =
∑m1−1

a=0

{

z
(t)
i,1a,0log

z
(t)
i,1a,0

z
(t)
i,1a,2

+ z
(t)
i,1a,1log

z
(t)
i,1a,1

z
(t)
i,1a,2

}

,. . . ,

sp =
∑mp−1

a=0

{

z
(t)
i,pa,0log

z
(t)
i,pa,0

z
(t)
i,pa,2

+ z
(t)
i,pa,1log

z
(t)
i,pa,1

z
(t)
i,pa,2

}

• As before, the best attributes are the ones with the highest values ofs1, . . . sp once

sorted.

We avoid presenting the pseudo-code for Gini and entropy based techniques here due

to their similarity with the misclassification gain based algorithm.

ThePAFS algorithm asymptotically converges to the correct sum independent of the

number of tuples or features. This is because the local sums are computed based on a peer’s

162
data and then the averaging proceeds. So quality is not affected by either the number of

attributes or tuples. For the communication cost, considerthe following:

Variation with number of attributes Forp attributes, where attributeAi ∈ {0, . . . , mi−
1}, total number of distributed averaging computations initialized areα

∑p
i=1mi

whereα = 1 for misclassification gain andα = 2 for gini and entropy. Thus the

communication complexity ofPAFS is
∑p

i=1mi× the time required for each dis-

tributed averaging to converge. It has been shown in [39], that the time required for

the distributed averaging to converge is bounded by logarithm of the number of nodes

in the network.

Variation with number of tuples There is no effect of the communication complexity on

the number of tuples since each peer locally computes the counts based on all its

local tuples and then uses these counts in the distributed averaging.

In the PAFS algorithm we have not considered colluding entities. However, the

penalty scheme described in Chapter 4 and earlier in this chapter can be used to force

nodes to behave honestly. To achieve this, each node splits the data in each sum computa-

tion si into k
′
parts. This will increase the communication costk

′
folds, thereby decreasing

the overall utility of the colluders. For simplicity, we do not discuss the collusion scheme

further forPAFS.

Experimental Results We have experimented with two publicly available data

sets at the UCI KDD archive2. The first is the mushroom data set downloadable from

http://archive.ics.uci.edu/ml/datasets/Mushroom . This data set has

been previously used for classification and prediction tasks. In our experiments, we have

not used any semantics of the data; rather we have chosen thisdata set because of the pres-

ence of categorical attributes with binary class labels. The full data set has approximately

2http://kdd.ics.uci.edu/

163
8000 tuples and 23 attributes. Of these attributes, 22 categorical attributes are used to de-

scribe the mushroom and the class attribute is binary depicting if this is edible or not. We

convert the numerical attributes to categorical (integer valued). The maximum value of any

categorical attribute is 12. The second data set that we haveused is the forest cover data

set3. This data set has 54 attributes — 44 binary and the rest categorical. It has a total of

581012 rows. The last column is the class label which can takevalues between 1 to 7. Since

our algorithm can only handle binary class labels, we createa one-vs.-all class distribution

by re-assigning all tuples which have a class label of 2 (Lodgepole Pine) as 1 and the rest

as 0. Our goal is to identify the set of attributes which are important for identifying the

Lodgepole Pine forest type. Although this data set is located at a single location, but many

high-dimensional earth science data sets are distributed based on geographical locations.

OncePAFScan identify the most important features in a distributed fashion, only the data

corresponding to these attributes can be centralized to build a classifier. The cost of this two

step process will be much less compared to centralizing the entire data set with comparable

accuracy.

In order to apply our distributed feature selection algorithm, the total number of tuples

is equally split into non-overlapping blocks sequentiallysuch that each block becomes the

data of a peer. Note that such a data distribution is known as horizontal partitioning in the

distributed data mining literature. In all our experimentswe measure two quantities: the

quality of our results and the cost incurred by our algorithm. We compare these quantities

to the centralized execution of the same algorithms. Next wepresent the performance anal-

ysis of each of the variants of thePAFSalgorithms on these two data sets.

Distributed Misclassification Gain: ThePAFS algorithm is provably correct. In all our

experiments ofPAFSusing misclassification gain, we have seen that it generatesthe same

3http://kdd.ics.uci.edu/databases/covertype/covertyp e.html

164

50 100200 500 1000
0.95

1

1.05

Number of peers

M
es

sa
ge

s/
pe

er
 p

er
 u

ni
t o

f t
im

e

FIG. 5.8. Plot of the number of messages transferred vs. number of peers
(misclassification gain).

ordering of attributes when compared to the centralized algorithm.

Figure 5.8 shows the variation of the cost of the feature selection algorithm using mis-

classification gain when the number of nodes increases from 50 to 1000. The results are on

the mushroom data set. As seen in Figure 5.8, they-axis refers to the number of messages

sent by each peer per unit of time. It varies between 0.98 and 1as the number of peers is

increased from 50 to 1000. As pointed out in Section 5.6, the total number of messages ex-

changed per round is
∑i

i=1mi. In this case,
∑i

i=1mi = 60. Assuming 4-bytes per integer,

the size of a message per round is60× 4 = 240 bytes. Hence we claim that our algorithm

shows excellent scalability in terms of the number of messages transferred.

Distributed Gini Index: In our distributed experiment using the Gini measure on the

same mushroom data set, thePAFS algorithm do not report the same ordering compared

to centralized scenario. One pair of attributes are interchanged compared to the centralized

ordering. This can be explained by the fact that for computing the gini index, we need

to find the ratio of two sums. Since these sums are correct onlyasymptotically, there is

165

50 100200 500 1000
1.9

1.95

2

2.05

2.1

Number of peers

M
es

sa
ge

s/
pe

er
 p

er
 u

ni
t o

f t
im

e

FIG. 5.9. Plot of the number of messages transferred vs. number of peers (gini index).

always a small deviation from the true gini index. This can lead to error in the distributed

algorithm.

The cost of the algorithm is shown in Figure 5.9. The number ofmessages vary be-

tween 1.97 and 2.0. Note that for Gini index, for each attribute and each possible value

of an attribute, we need to execute 2 distributed sum protocols. For the same scenario, we

need only 1 sum computation for misclassification gain. As a result, the number of mes-

sages per peer per unit of time doubles in this scenario. As before, the size of a message

per round is2
∑i

i=1mi × 4 = 2× 60× 4 = 480 bytes.

Distributed Entropy: In our last experiment with the mushroom data set, we test the

entropy based distributedPAFSalgorithm. The quality results are similar to the distributed

Gini algorithm and can be attributed to the fact that in this case we need to compute the

logarithm of sums. This introduces some error in the value and hence some features may

be ordered differently compared to centralized execution.In our empirical analysis, we

noticed three attributes mis-ordered by the distributed algorithm.

The number of messages per peer per unit of time varies between 1.98 and 2.0. In this

166

50 100200 500 1000
1.9

1.95

2

2.05

2.1

Number of peers

M
es

sa
ge

s/
pe

er
 p

er
 u

ni
t o

f t
im

e

FIG. 5.10. Plot of the number of messages transferred vs. numberof peers (entropy).

case as well, the size of a message per round is2
∑i

i=1mi × 4 = 2× 60× 4 = 480 bytes.

Experiments with Forest Cover data setIn this set of experiments our focus is to identify

the set of attributes which contribute highly towards classifying the Lodgepole Pine forest

type. We have run all three variants ofPAFS. Figure 5.11 shows the attributes alongx-axis

along with the measurement metric on they-axis. Note that ordering of the attributes is not

the same for all three measurements. In all these cases, we have run a centralized algorithm

which produced the same results. We do not present any graphson communication com-

plexity because they are similar to what has been presented for the mushroom data set. In

this case,
∑54

i=1mi = 19746. Thus, per round,PAFS exchanges19746 ∗ 4 = 78984 bytes

compared to 1974600 bytes needed for centralization.

5.9 Conclusions

In this chapter we have presented a local privacy preservingdistributed data mining

algorithm for computing the sum in a large P2P setting. Due tonearly constant commu-

167

0 4 9 14 19 24 29 34 39 44 49 54
2.8

3

3.2

3.4

3.6x 10
5

Attribute index

G
in

i v
al

ue

(a) Gini index values vs. attribute indices.

0 5 10 15 20 25 30 35 40 45 50 55
1.95

1.955

1.96

1.965

1.97x 10
7

Attribute index

E
nt

ro
py

(b) Entropy measure vs. attributeindices.

0 5 10 15 20 25 30 35 40 45 50 55

0.5

1

1.5

2

2.5

x 10
5

Attribute index

M
is

cl
as

si
fic

at
io

n
in

de
x

(c) Misclassification measure vs. attribute indices.

FIG. 5.11. Relative values of the three feature selection measures for all the attributes of
the forest cover data set as found byPAFS.

168
nication complexity and locally synchronous nature of the algorithm, it is highly scalable.

To the best of our knowledge, this is one of the first solutionswhich blends in the concept

of local asynchronous distributed averaging with secure sum protocol to develop a scalable

privacy preserving sum computation algorithm tailored to accommodate every participant’s

privacy and cost constraints. In our analysis we have assumed that the initiation of ring by

one node is independent of the other nodes. Also we have assumed that the data at each

node is from a uniform distribution. many of our analysis presented in this chapter depends

on these assumptions.

The proposed algorithms are applicable for large scale heterogeneous distributed sys-

tems such as the Internet and has various applications that require privacy preserving data

aggregation. We have adapted this sum computation algorithm to work in a web application

for a P2P advertisement ranking problem. Finally we also demonstrate how it can be used

for information theoretic feature selection. In the next chapter we discuss another P2P data

mining privacy sensitive application and discuss possiblesolutions.

169

Chapter 6

PRIVACY PRESERVING INNER PRODUCT

APPLICATION IN P2P NETWORKS

6.1 Introduction

The inner product between two vectors measures how similar or close they are to

each other. It is a very important primitive for many data mining tasks such as clustering,

classification, correlation computation and decision treeconstruction [63]. In many appli-

cation scenarios, it is often desirable to know only the top few significant inner products

for drawing important conclusions about the data distribution. If the entire data can be

conveniently accessed, it is easy to compute the inner product matrix and determine the

top ones. However, for P2P applications, the data is distributed over a multitude of peers

connected by communications channels of varying capacity.Also, P2P networks are large,

dynamic, asynchronous, and have little central control. Itis very difficult, if not impossi-

ble, to transfer all the data to a single peer to do the computation since no one would have

such extensive storage and computational capabilities, let alone the enormous communica-

tion overhead. In this chapter we solve a top-l inner product identification problem. For

using our distributed privacy preserving sum computation framework, we formulate the

distributed inner product problem as a series of sum computations.

We propose an order statistics-based approximate local algorithm for solving the prob-

170
lem. Here the local algorithm is one where a peer communicates only with its neighbors

(formal definition given later). At the heart of our algorithm are the ordinal approximation

based on theories from order statistics [44] and the cardinal approximation using Hoeffd-

ing bound [76]. We present experimental results to show the effectiveness and scalability

of the algorithm. We then demonstrate an application of thistechnique for interest-based

community formation in a P2P environment.

This chapter is organized as follows. In the next section (Section 6.2) we present work

related to this area of research. We discuss the notations and the problem definition in Sec-

tion 6.3. In Section 6.4 we present the building blocks of thetop-l inner product algorithm

followed by the details in Section 6.5. We analyze the quality and message complexity of

this algorithm in Section 6.7. We demonstrate the performance of the algorithm in Section

6.8. As an application of this algorithm, we discuss a P2P collaborative decision problem

in the financial domain in Section 6.9. Finally we conclude this chapter in Section 6.10.

6.2 Related Work on Distributed Inner Product Computation

Fourier and wavelet transforms can be used for efficiently computing inner product

when feature vectors are distributed between two parties. These transformations project the

data to a new low-dimensional space where the inner product is preserved. The dominant

Fourier and/or wavelet coefficients are transmitted to other parties and the inner product

can still be computed from those coefficients with high accuracy. Random projection [11]

is another communication-efficient approach for inner product computation in a two-party

scenario. This technique has been used by Giannellaet al. [63] for decision tree construc-

tion over distributed data. These techniques work well for two parties, but do not scale well

to large asynchronous network.

171
6.2.1 Identifying top-k items

Several techniques exist in the literature for ranking items of a data set. Wolffet al.

[161] present a local algorithm that can be used for monitoring the entries in a certain per-

centile of the population. In their paper, the authors describe a majority voting algorithm,

where each peer,vi, has a real numberxi, and a thresholdζ > 0 (the same threshold at all

peers). The goal is for the peers to collectively determine whether
∑

i xi is abovenζ where

n is the number of peers in the network. This technique can be potentially used to find all

the entries of the inner product matrix that belong to thepth percentile of the population.

However, the major disadvantage is the communication complexity – a separate majority

voting problem needs to be invoked for every inner product entry and thus the system will

not scale well for large number of features. In the worst case, the communication com-

plexity of the majority voting algorithm may become equal tothe order of the size of the

network.

Distributed top-k monitoring by Babcock et al. [13] presents a way of monitoring

the answers to continuous queries over data streams produced at physically distributed

locations. In their paper, the authors assume a central nodeand the top-k set is always

determined by the central node. The coordinator node finds the answers to the top-k queries

and distributes it to all the monitor agents. Along with it, the central node also distributes a

set of constraints. These constraints allow a monitor node to validate if the current top-k set

matches with what it finds from the local stream. If the validation results are true, nothing

needs to be done. Otherwise, the monitor agent sends an alertto the coordinator node. The

coordinator node recomputes the top-k set based on the current data distribution and sends

out both the new top-k and new set of constraints to be validated by each monitor agent.

Since the paper assumes that there is a central node, this technique is not directly applicable

to many asynchronous large-scale networks such as Mobile ah-hoc networks, vehicular ad

hoc networks and P2P networks which is the focus of this work.Fagin [57] presents a way

172
of combining query results derived from multiple systems. Often disparate databases and

type of the query run on them return different types of results; Fagin’s paper talks about

combining them. It also proposes techniques to retrieve top-k elements from distributed

databases.

In the area of information retrieval, several techniques exist for top-k object identifi-

cation. Balkeet al. [15] propose a super-peer approach for finding the top objects. The

top queries are handled by the super peers and any other peer in the network can contact

these super peers to get the answers to these queries. They also discuss ways to select

these super-peers so that any peer can find its closest super peer efficiently. There are also

techniques which explore the retrieval algorithms taking into account the relative rankings

of objects. Many of these algorithms depend on gossip-basedtechniques for spreading the

ranks of its objects [37]. The major problems with gossip protocols are that they are slow

(convergence can take a long time) and not very scalable due to global communication.

In the next section, we present a high-level overview of our algorithm to identify the

top inner product entries from the inner product matrices constructed out of horizontally

partitioned data.

6.3 Notations, Problem Definition and Overview of the Algorithm

We first introduce the notations used in the rest of the chapter. We then formally define

the distributed inner product problem before describing the algorithm.

6.3.1 Notations

As discussed in earlier chapters, assume that there aren nodesv1, v2, ..., vn in the

network. Since we are dealing with horizontally partitioned data, let there bec global

features, common to all peers. The local data set for peervd is denoted byDd havingrd

rows andc columns. The union of the data sets of all the peers is∪n
d=1Dd = D, which is

173
the global data set. The inner product matrix at peervd, denoted byZd, is ac × c matrix

whose(i, j)th entry is the inner product between theith andjth feature vector inDd. In

matrix notation,Zd can be computed asZd = DT
d Dd. The global inner product matrix,

denoted byZ, can be formed by pointwise addition of all the inner productmatrices of all

the peers. In other words, the(i, j)th entry ofZ isZ[i, j] =
∑n

d=1 Zd[i, j]. Since the inner

product matrix is symmetric about the diagonal and the diagonal elements are the inner

product of the feature vectors with themselves, we consideronly the upper triangular matrix

excluding the diagonal. Thus we havec2−c
2

distinct entries in the set of inner products that

we consider at each site. Henceforth, any reference toZ (orZd’s) would indicate the upper

triangular inner product matrix excluding the diagonal elements. We also assume that the

entries of all the inner product matrices (Z or Zd’s) are labeled with a single index. For

example, the(i, j)th entry ofZ, Z[i, j] is now denoted byZ
[
(i− 1)× (c− i

2
) + (j − i)

]
,

1 < i < j < c2−c
2

.

6.3.2 Problem definition

Without loss of generality we assume thatZ[1] ≥ Z[2] ≥ . . . ≥ Z[(i − 1) ×
(c − i

2
) +(j − i)] ≥ · · · ≥ Z[c2−c

2
] is the non-increasing ordering of the values of

the global inner product matrixZ. Given such an ordering and a valuep (between 1

and 100), the top-p percentile of the inner product entries consist of the following set

F =
{

Z[1], Z[2], ..., Z[p
100
× c2−c

2
]
}

such that|F| = k. Now, given a connected and

undirected graphG(V,E) where each node has its local inner product matrixZd (as de-

fined in the previous section), our goal is to identify somel elements fromF using local

inner product matricesZd and some locally exchanged information among the peers.

174
6.3.3 Overview of the algorithm

Order statistics provides a lower bound on the number of samples required to identify

the top percentile of a data distribution with a user-specified confidence level. Therefore,

it can be used to compute the number of samples (the number of global inner products)

required to determine the top-l inner product entries. We call thisordinal samplingsince

we are primarily interested in estimating the relative ordering in this case. However, since

the value of each sample (i.e., the global value of each attribute-wise inner product) is

distributed at different sites, we have to estimate it by doing a second round of sampling.

We call this thecardinal sampling. These random samplings are done in the network using

random walks. A node in the network that wants to identify some of the highest inner

product entries of the global inner product matrix, launches random walks to collect the

ordinal and cardinal samples. Once the initiator node gets back the estimates of the ordinal

samples, it can then arrange the elements in a non-increasing order. Then, depending on

thethresholddetermined by applying ordinal decision theory, the node can make decisions

about the top-l inner product entries in the global data set. Thus, the initiator node could

conclude about the globally most related features in the data set without actually getting

every other nodes’ data.

6.4 Building Blocks

This section elaborates on some building blocks that are necessary to understand our

distributed algorithm for identifying significant inner product entries.

175
6.4.1 Decomposable inner product computation

Let x andy be tword-dimensional feature vectors. The inner product betweenx and

y is defined as:

< x,y > =

rd∑

i=1

xiyi.

Now in our scenario, the values ofx andy are distributed over the network. The inner

product of those two vectors are:

< x,y > =

rd∑

i=1

xiyi =

n∑

i=1

[
rd∑

j=1

xjyj

]

=

n∑

j=1

Zd,

where peervd has anrd-dimensional vector, which isvd’s contribution towards the inner

product betweenx andy. Zd is the local inner product of thevd-th peer. Visiting all the

peers is infeasible especially in large systems and hence weresort to sampling from a subset

of peers in order to estimate< x,y >.

6.4.2 Ordinal approximation

Given a data set horizontally partitioned among peers, we want to find some top-

l entries which are in the top-p percentile of the population. A trivial approach to this

problem would be to collect the entire data set from all peersand compare all the pairwise

inner products among the features. This simple approach, however, does not work in a

large-scale distributed P2P environment because the overhead of communication would be

extremely high. Order statistics is an excellent choice in this case, since, by considering

only a small set of samples from the entire population, we canstill produce a reasonably

good solution with probabilistic performance guarantees.

Let X be a continuous random variable with a strictly increasing cumulative density

function (CDF)FX(x). Let ξu be the population percentile of orderu, i.e. FX(ξu) =

176
Pr{x ≤ ξu} = u, e.g. ξ0.5 is called the median of the distribution. Suppose we taker

independent samples from the given populationX and write the ordered samples asx1 <

x2 < · · · < xr. We are interested in computing the value ofr that guarantees

Pr{xr > ξu} > v, for a given constanth.

Lemma 6.4.1(Ordinal Approximation). Let x1, x2, ..., xr be r i.i.d. samples drawn from

an underlying distribution. They are arranged such thatx1 < x2 < · · · < xr. Then

P (xr > ξu) = 1− ur, whereξu is theuth percentile of the population.

Proof.

P (xr > ξu) = 1− P (xr ≤ ξu) = 1− Fn(ξu) = 1− ur.

Now if the above probability is bounded by a confidenceh, we can rewrite the above

equation as

1− ur > h⇒ r ≥
⌈

log(1− v)
log(u)

⌉

. (6.1)

For example, forh = 0.95 andu = 0.80, the value ofr obtained from the above

expression is 14. That is, if we took 14 independent samples from any distribution, we

can be95% confident that80% of the population would be below the largest order statistic

x14. In other words, any sample with value greater or equal tox14 would be in the top20

percentile of the population with95% confidence. Note that, the value ofr decreases by

decreasingu. For detailed treatment of this subject we refer the reader to David’s book

[44].

177
WhenX is discrete, the equationFX(x) = u does not have a unique solution. How-

ever,ξu can still be defined byPr{x < ξu} ≤ v ≤ Pr{x ≤ ξu}. This givesξu uniquely

unlessFX(ξu) equalsu, in which caseξu again lies in an interval. It can be shown that in

this case,Pr{xr < ξu} ≤ Iu(a, 1) = ur, whereIu(a, 1) is the incomplete beta function.

Therefore, in the discrete scenario, we have

Pr{xr ≥ ξu} = 1− Pr{xr < ξu}

≥ 1− ur > h.

This does not change the conclusion in Equation 6.1.

6.4.3 Cardinal approximation

Ordinal decision theory, as presented in the previous section, provides a bound on the

number of samples that needs to be drawn from any population so that the highest-valued

sample is in the top-u percentile of the population. However, in order to apply ordinal

approximation, we need to estimate each of these ordinal samples using another round of

sampling. We refer to this ascardinal sampling. In our distributed scenario, the samples

are the inner product entry at each node. Therefore we need tovisit a number of nodes for

estimating each ordinal sample. In order to derive bounds onthe number of peers to sample

(s) for estimating each of these ordinal samples, we have used the Hoeffding Bound [76]

which bounds the tail probability of a distribution.

Lemma 6.4.2(Hoeffding Bound). Let xi, i ∈ {1, . . . , s} be s independent samples of a

random variableX with values in the range[a, b]. Let the sample mean beQs = 1
s

∑

i xi.

178
Then for anyχ > 0, we have

Pr{Qs − E(X) ≥ χ} ≤ exp

(

− 2sχ2

(b− a)2

)

,

P r{E(X)−Qs ≥ χ} ≤ exp

(

− 2sχ2

(b− a)2

)

.

Next, we show how the Hoeffding bound can be used to derive an upper bound on the

value ofs.

Lemma 6.4.3(Cardinal Approximation). Letxi, i ∈ {1, . . . , s} bes independent samples

drawn from a populationX with values in the range[a, b]. LetQs = 1
s

∑

i xi be the sample

mean. Then, whens ≥ (b−a)2ln(h′)
2χ2 , we have

Pr{Qs −E(X) ≥ χ} ≤ h′,

P r{E(X)−Qs ≥ χ} ≤ h′.

Proof. Following Lemma 6.4.2, we have

Pr{Qs −E(X) ≥ χ} ≤ exp

(

− 2sχ2

(b− a)2

)

≤ h′.

Therefore,

− 2sχ2

(b− a)2
≤ ln (h′) =⇒ s ≥ (b− a)2ln

(
1
h′

)

2χ2
. (6.2)

Note that0 < h′ < 1, 0 < χ < 1 and both are parameters determined by the user.

For example, ifb − a = 5, h′ = 0.05 andχ = 0.5, we haves ≥ 150. In other words,

if we take at least 150 samples for estimating the mean of a random variable having a

179
range 5, the probability that the difference between the true mean and the mean of the

population is greater than 0.5 is less than by 0.05 (i.e. Pr (Qs −E[X] ≥ 0.5) ≤ 0.05 and

Pr (E[X]−Qs ≥ 0.5) ≤ 0.05). Note that, as bothχ andh′ decreases,s increases.

In a distributed scenario, the peer which initiates the random walk needs to estimate

this value ofs. For each attributeci, it can compute the value ofsi using only the range

of each attribute. Thens can be set to the maximum of all the individualsi’s i.e. s =

maxc
i=1{si}, wherec is the number of attributes as defined in Section 6.3.1.

6.4.4 Random sampling and random walk

The cardinal sampling process that we just discussed requires collecting samples from

the peers. Random walk is a popular technique for random sampling from the network. It

can be performed by modeling the network as an undirected graph with transition probabil-

ity on each edge, and defining a corresponding Markov chain. Random walks of prescribed

length on this graph produce a stationary state probabilityvector and the corresponding

random sample. The simplest random walk algorithm chooses an outgoing edge at every

node with equal probability,e.g. if a node has degree five, each of the edges is traversed

with a probability 0.2. However, it can be shown that this approach does not yield a uniform

sample of the network unless the degrees of all nodes are equal (see [106] for example).

Since typical large-scale P2P network tends to have non-uniform degree distribution, this

approach will generate a biased sample in most practical scenarios. Figure 6.1(a) shows

the non-uniform selection probability using a power-law graph of 5000 nodes.

Fortunately, the elegant Metropolis-Hastings algorithm [114],[73] implies a simple

way to modify the transition probability so that it leads to auniform stationary state dis-

tribution, and therefore results in uniform sample. Here weuse an adaptation [12] of this

classical algorithm. Next we briefly introduce the Metropolis-Hastings algorithm for ran-

dom walk.

180

0 50 100 150
0

1

2

3

4

5

6

7

8x 10
−3

Node Degree

P
ro

ba
bi

lit
y

of
 S

el
ec

tio
n

(a) Simple Random Walk

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4x 10
−3

Node Degree

P
ro

ba
bi

lit
y

of
 S

el
ec

tio
n

(b) Metropolis Hastings

0 50 100 150
0

0.5

1

1.5x 10
−3

Node Degree

P
ro

ba
bi

lit
y

of
 S

el
ec

tio
n

(c) Degree Balanced Random Walk

FIG. 6.1. Performance of three different random walks on a powerlaw topology of 5000
Nodes.

181
LetG(V,E) be a connected undirected graph with|V | = n nodes and|E| = e edges.

Let degi denote the degree of a nodei. The set of neighbors of nodei is given byΓ(i)

where∀j ∈ Γ(i), edge(i, j) ∈ E. LetT = {pij} represent then× n transition probability

matrix, wherepij is the probability of walking from nodei to nodej in one message hop

(0 ≤ pij ≤ 1 and
∑

j pij = 1). Algorithm 8 gives the basic protocol for generating thisT

in a distributed fashion using the Metropolis Hastings protocol. Note that peers need not

know the entire matrixT in order to a random walk. All that peervi needs is one row of

this matrixTi, which gives the transition from nodevi to all other nodes inΓi.

Algorithm 8 : Distributed Metropolis-Hastings (DMH) [12, 73]

Input of peer vi: Its degreedegi

Output of peer vi: A row (Ti) of transition matrixT
On initialization: vi sends out aDegree message to allvj ∈ Γ(i)
On receiving a message (Degree): If it has received the degree information from
all vj ∈ Γ(i) it can computepij as follows:

pij =

1/max(degi, degj) if i 6= j andj ∈ Γ(i)
1−∑j∈Γ(i) pij if i = j

0 otherwise
Termination: Once thepij ’s have been populated setTi← [pi1 pi2 · · · pin].
Terminate DHM.

This algorithm generates a symmetric transition probability matrix and has proven to

produce uniform sampling via random walk. Lovász [106] showed that the length of ran-

dom walk (λ) necessary to reach to stationary state is of the order ofO(logn). Empirical

results show that when the length of walk is10× logn, this algorithm converges to uniform

distribution. Figure 6.1(b) shows the probability of selection using the Metropolis-Hastings

algorithm over a simulated network with 5000 nodes. As can beeasily seen, the probabil-

ity of selection is near uniform for nodes with different degrees. We also compared this

technique with the Degree Balanced Random Walk (DRW) proposed by Orponen et al.

[125]. Experiments (Figure 6.1(c)) shows that the probability is nearly uniform in this

182
case as well. However, this technique requires a relativelylong walk length in order to

achieve stationarity. Therefore, we choose the MH algorithm for collecting samples from

the network.

6.5 P2P Algorithm for Identifying the Significant Inner Prod uct Entries

Using the building blocks discussed in the previous section, we now describe our

algorithm for doing distributed selection of somel elements from the top-u percentile of

the population when there arek elements in the top-u percentile (l < k).

The process is started by the initiator node in the network that decides to find the top

few entries in the distributed inner product matrix. Our algorithm needs to know three

parameters – (1) number of ordinal samples to collect (r); (2) the number of peers to visit

for estimating each sample (s); and (3)r indices of the inner product matrix corresponding

to ther samples to collect. Based on the desired level of confidence (h), the percentile

(u) of the population to monitor, the rangeR, the accuracyχ andh′ (Section 6.4.3), the

initiator knows the values of these parameters using the results of Section 6.4. It launches

r × s random walks and after all these walks terminate, the samples are sent back to the

initiator node. The initiator then needs to add all the samples having the same index. It

then orders ther samples and the highest one is thethreshold. Any inner product value

greater than this threshold is expected to be in the top-u percentile of the population with

the chosen confidence. Hence the overall approach consists of the following tasks:

1. sample size computation,

2. sample collection,

3. threshold detection, and

4. some top-l inner product elements identification

Each of these steps is further discussed below.

183
6.5.1 Sample size computation

The initiatorvd first selects a confidence levelh and the order of population percentile

u it would tolerate. Based on the bound derived in Section 6.4.2, the initiator calculates

the number of samples (r) required to compute the threshold such that any inner product

that is greater than this threshold is among the top-u percentile of the population of inner

products. It also randomly generatesr indices (each between1 ≤ i ≤ c2−c
2

) which will be

sampled for the set of all the inner product entries. The initiator also uses the Hoeffding

bound (Section 6.4.3) to find the value ofm, or the number of peers to visit for estimating

each of thesen ordinal samples. Thus, after this step, the initiator peer knows the value of

r, s and the actual indices of the inner product entries to be sampled.

6.5.2 Sample collection

Given the sample size ofr and the number of peers to visits, the initiator invokesr×s
random walks using the protocols described in Section 6.4.4to choose independent samples

from the network. Since estimating one single inner productentry requires samplings

peers for the same indexed entry, each random walk carries with it the index number of the

element to be sampled. Also each random walk carries the IP address and port number of

the initiator node so that the terminal node of a random walk can send its inner product

entry directly to the initiator node. At the end of these random walksvd hasr × s samples

where there arer different indices ands inner product values for every index of the inner

product.

6.5.3 Threshold detection

Once the initiator node gets all the samples, its next task isto identify the threshold.

Since inner product is decomposable, for every indexi, peervd sums up the all thes entries

corresponding to the same indexi. It then finds the largest of thisr aggregated set of inner

184
product entries and this is the threshold.

6.5.4 Some top-l inner product elements identification

The above technique would give the peer a way to identify one of the items in the

top-k, where there arek elements in the top-u percentile of the population. We can extend

this to find somel of the top-k elements (l < k). All that a peervd needs to do is to launch

r×s×l random walks. Now after aggregating the results we haverl elements and for every

r element we can find a threshold. Thus we will havel thresholds. The ordinal framework

guarantees that each of thesel thresholds are in the top-u percentile of the population.

OrdSamp(Algorithm 9) presents the sample collection technique fora single random

walk using the ordinal framework. The initiator sends a token (initialized to a value equal

to the length of the random walkλ), its IP address, port number (InitiatorNodeNum) and

the index of the element (SampleIndex) to sample for this random walk. When a node gets

this token, it decrements its value by 1. If the value of the token becomes 0, the inner

product entry indexed bySampleIndexis selected from the local data set and sent back to

the initiator node.

6.6 Local Algorithm

In this section we prove that the algorithm that we have developed is local.

Lemma 6.6.1(Locality). TheOrdSamp algorithm is(O(logn), rsl)-local wheren is the

number of nodes in the network and the other items are as defined in Section 6.4.

Proof. We prove this using the property of random walks. The initiator node, launches

O(rsl) independent random walks. Each random walk has a walk lengthof O(logn).

So the maximum number of hops that a query can propagate for finding each samples is

O(logn). While returning these samples, back to the initiator, it isa 1-hop process. Note

185
Algorithm 9 : Distributed selection of samples (OrdSamp)

Input of peer vd: Dd - the local database,Γ(d) - set of immediate neighbors ofvd,
a rowTd of the transition matrixT
Output of peer vd: Sends the sample if the random walk terminates at this peer
On receiving a message (Token):
Token = Token - 1
FetchSampleIndex
FetchInitiatorNodeNum IP Address and Port number of the initiator node
IF Token = 0

Pick the element whose index isSampleIndex fromDd

SendSampleIndex to theInitiatorNodeNum.
Wait for newToken messages for other random walks

ELSE
SendSampleIndex, InitiatorNodeNum to a neighbor selected according
to the transition matrix

ENDIF

that in the sample collection process, all the random walks are launched using the same

walk length. Hence the entire algorithm is an(O(logn), rsl)-local since the number of

queries isrsl.

Note that theOrdSamp algorithm is efficient sinceα = O(logn) is a slowly growing

polynomial compared to the network sizen andγ = rsl is a small number, independent

of the network size. We have given typical example values ofn,m andl in Sections 6.4.2,

6.4.3 and 6.5.4 respectively. Similarly we can show that therunning time of our algorithm

isO(rsl × log n).

The algorithm we have developed is both (O(logn), rsl)-local and (ǫ, δ) correct,

where1 − δ = h, as defined in Section 6.4.2 andǫ corresponds to the error discussed

in the next section.

186
6.7 Error Bound and Message Complexity

In this section we analyze the error bound and the message complexity of our dis-

tributed algorithm.

6.7.1 Error bound

In our distributed algorithm there are two sources of error –(1) error due to ordinal

sampling and (2) due to cardinal sampling. Letx̃1, x̃2, . . . , x̃r denote the samples as found

by the distributed algorithm (the subscripts correspond tothe indexing scheme defined in

6.3.1). Note that each of thesex̃d-s are estimated by aggregating the values of thedth entry

of the inner product matrix froms peers. The value of thedth entry for theith peer is

given byZi[d]. Therefore,̃xd =
∑s

i=1 Zi[d]. Let Z̄[d] =
∑s

i=1 Zi[d]

s
denote the mean of the

estimates,∀d ∈ {1, . . . , r}. Lemma 6.7.1 derives the probability that the thresholdi.e. x̃r

is greater than theuth percentile of the population.

Lemma 6.7.1 (Error). Let x̃1, x̃2, . . . , x̃r be ther samples found by the distributed al-

gorithm. They are ordered such thatx̃1 < x̃2 < · · · < x̃r. Then,P (x̃r > ξu) =

1 − ∏r
d=1 Φ

([
ξu

s
− µd

] √
s

σd

)

, whereµd and σd are the mean and standard deviation of

the feature of the population corresponding tox̃d, ξu is the population percentile of order

u andΦ(.) is the area under the standard normal curve.

187
Proof.

P (x̃r > ξu) = 1− P (x̃r ≤ ξu)

= 1−
r∏

d=1

P (x̃d ≤ ξu)

= 1−
r∏

d=1

P

(
s∑

i=1

Zi[d] ≤ ξu

)

= 1−
r∏

d=1

P

(∑s
i=1 Zi[d]

s
≤ ξu

s

)

= 1−
r∏

d=1

P

(

Z̄[d] ≤ ξu
s

)

= 1−
r∏

d=1

P

(

Z̄[d]− µd
σd√

s

≤
ξu

s
− µd

σd√
s

)

= 1−
r∏

d=1

P

(

K ≤
[
ξu
s
− µd

] √
s

σd

)

= 1−
r∏

d=1

Φ

([
ξu
s
− µd

] √
s

σd

)

.

Step 2 follows directly from step 1. Now sincex̃d is a sum of all the elements obtained

by visitings peers, we must havẽxd =
∑s

i=1 Zi[d] ∀ d. Finally, since
∑s

i=1 Zi[d] is a sum

of random variables we have used Central Limit Theorem to derive the final expression.

Hence the probability of error is
∏r

d=1 Φ
([

ξu

s
− µd

] √
s

σd

)

. This shows that asr in-

creases, the error decreases since each term of the product is Φ(.), which is the area under

a unit Normal variable and is less than or equal to 1. Also ass increases, the expression

insideΦ decreases and thus the overall probability of error decreases. For a special case in

which all theµd’s andσd’s are equal to sayµ andσ, the error becomesΦ
([

ξu

s
− µd

] √
s

σd

)r

– hence asr increases, the error decreases exponentially.

188
6.7.2 Message complexity

The distributed algorithm that we just described launchesr × s × l parallel random

walks each of lengthλ such that each random walk will return a single element. The

coordinator node can then aggregates these samples, and finds thel thresholds. We will use

this model to analyze the message complexity.

For each such a random walk, the initiator node needs to send the following four

information in the message:

1. Token Number - Integer 32 bits

2. Index of the inner product entry to sample - Integer 32 bits

3. IP Address - Integer 32 bits

4. Port Number - Integer 32 bits

The message complexity for this step is :128× r × s× l × λ = 128rslλ bits. Since

at the end of each random walk, the terminal node needs to sendthe sampled element back

to the initiator node, it would need 64 bits (assuming that each entry of the inner product

matrix can be represented as a double number). Thus, the overall message complexity for

the entire sample collection process is:128rslλ + 64rsl = O(rslλ) bits. Substituting the

values ofr ands from equations 6.1 and 6.2 respectively, and using10 ∗ log n as the value

of λ, the message complexity can be rewritten as,

[1 + 20 logn]

[

64l
(b− a)2ln(1/v′) log(1− v)

2χ2 log u

]

bits,

where the symbols are defined in the respective sections. Note that this expression is inde-

pendent of the number of featuresc, the number of rowsri and is logarithmic with respect

to the number of nodes.

189
Now, considering the centralized algorithm, if each peer has a data set of sizeri× c =

O(ric), then the total message complexity for the centralized scheme can be written as :

64× ri × c× n = O(ricn) bits. Hence, the communication complexity of the centralized

algorithm is dependent linearly on the size of the data set (ri andc) and network (n).

6.8 Experiments and Performance Evaluation

In this section, we study the performance of the proposed inner product identification

algorithm.

6.8.1 Network topology, simulator and data generation

Our network topology is generated using the ASWaxman Model from BRITE [112],

a universal topology generator. The generator initially assigns node degrees from a power-

law distribution and then proceeds to interconnect the nodes using Waxman’s probability

model. Power-law random graph is often used in the literature to model large non-uniform

network topologies. It is believed that P2P networks conform to such power law topologies

[141]. We use the Distributed Data Mining Toolkit (DDMT) [46] developed by the DIADIC

research lab at UMBC to simulate the distributed computing environment.

The experimental data consists of tuples generated from different random distribu-

tions. Each column of the data is generated from a fixed uniform distribution (with a fixed

range). Thus, there are as many different distributions as the number of features. The cen-

tralized data set is then uniformly split (so that each peer has the same number of tuples)

among all the peers to simulate a horizontally partitioned scenario.

6.8.2 Performance

We study the applicability of the ordinal approximation theories in our distributed

environment by comparing the results produced by the centralized algorithm. By a central-

190
ized algorithm we mean centralizing the entire data set of all peers and running the ordinal

approximation on this data set. Our measurement metric consisted of two quantities – (1)

Quality and (2)Cost. By quality we measure the thresholds detected both in the distributed

and centralized scenario as compared to the actual percentile of the population. Cost refers

to the message exchanged in Kilobytes (KB) for doing the computation with reference to a

centralized scheme.

We report here three sets of experiments - (1) performance ofthe algorithm when

monitoring increasing percentile of population, (2) the scalability of our algorithm, and (3)

the effect of increasing the cardinal sampling (s). We have reported both the quality and

cost whenever appropriate. Unless otherwise noted we have the following default values

for the different parameters: (1)n=500, (2)c=100, (3)r=19 (u=85% andh=95%), (4)

s = 35 (R = 5, h′ = 0.5, χ = 0.5), (5) l=1, (6)λ = 10× log n, and (7)ri (number of data

rows for each peer) = 500. Each random experiment was run for 100 trials and the we plot

both the average and the standard deviation.

Experiments with different percentile of population In this experiment we com-

pared the accuracy of the distributed algorithm with the centralized one. We have exper-

imented with three different percentile (u) values of 95, 90 and 85 for which the number

of samples (s) required are 59, 29 and 19 respectively. Figures 6.2(a) and6.2(b) shows

the effect on quality and cost with changes in population percentile. In Figure 6.2(a),

the circular points represent the actualu-th percentile of the population, whereas the blue

square error bars and the red star error bars represent the threshold for the same confidence

and percentile for the distributed and centralized scenario respectively using ordinal ap-

proximation. The distance between the red (stars) error bars and the green circular dots

represents the error due to ordinal approximation whereas the difference between the red

(stars) error bars and the blue (squares) error bars in the graph can be attributed to the car-

dinal approximation introduced in the distributed environment. We notice that in both the

191

85 90 95
2

3

4

5

6

x 10
6

Percentile

H
ig

he
st

 o
rd

er
 s

ta
tis

tic
Centralized
Distributed
Population Percentile

(a) Relative values of the estimated highest order statistic (distributed and centralized ex-
periments) with corresponding values of actual populationpercentile

0.8 0.85 0.9 0.95
10

2

10
3

10
4

10
5

10
6

Percentile

M
es

sa
ge

s
(K

B
)

in
 lo

g
sc

al
e

Distributed
Centralized

(b) Communication cost for centralization and distributedalgorithm

192
centralized and distributed scenario, the threshold is greater than the actualu-th percentile

of the population. This means that there will be no false positives in ordinal estimation.

Figure 6.2(b) compares the communication of our algorithm with that of the central-

ized version for monitoring different percentiles of population (u) plotted in the log-scale.

Since the number of featuresc = 100, ri = 500 andn = 500 remain constant, messages

for the centralized experiments for different percentilesdoes not change. In the distributed

scenario, the expression in Section 6.7.2 is used for findingthe number of messages. In all

cases, our algorithm outperforms the centralizing scheme in terms of message complexity.

Scalability We test the scalability of our algorithm both with respect tothe number

of nodes and number of features of the data set. In both cases we plot the quality and cost

of the algorithm.

For the scalability with respect to the number of peers, we keep the number of data

points per peer constant (500). Figure 6.2(c) shows the effect on the threshold detected as

the size of the network is changed (all the other parameters are at their default values). As

can be seen from the figure, the threshold detected by both thecentralized and distributed

experiments using order statistics are greater than theu-th percentile of the population.

Moreover, the centralized and distributed estimates are quite close for different sizes of

the network. This shows that our proposed distributed algorithm has good accuracy with

respect to scalability.

Figure 6.2(d) shows the cost of the algorithm (plotted in log-scale) with increasing

number of nodes. For the centralized algorithm, the effect of the number of nodesn is lin-

ear. On the other hand, it is logarithmic for the distributedalgorithm (refer to Section 6.7.2

for details). This means that the proposed distributed algorithm is far more communication

efficient than the centralized counterpart as corroboratedby the experiments here.

In the other scalability experiment, we varied the number offeatures (c). The results

are shown in Figures 6.3(a) and 6.3(b). Figure 6.3(a) shows that the quality of our estimate

193

200 500 1000

2.5

3

3.5

4

4.5

5

5.5

6x 10
6

Number of Peers

H
ig

he
st

 o
rd

er
 s

ta
tis

tic
Centralized
Distributed
Population Percentile

(c) Variation of the threshold detected by the centralized and distributed algorithms with
respect to the network size

200 500 1000 2000
10

2

10
3

10
4

10
5

10
6

Number of Peers

M
es

sa
ge

s
(K

B
)

in
 lo

g
sc

al
e

Distributed
Centralized

(d) Variation of communication cost with respect to the network size

FIG. 6.2. Quality and cost variation with increasing network size.

194
is quite good – in all cases, the highest order statistic is greater than the actual percentile of

the population. Also, the centralized and distributed estimates are very close. Since there

is a large difference in the scale, the points are close (almost on top of each other). The

number of features has no effect on the cost of the distributed algorithm, while the same

for the centralized algorithm increases linearly as shown in Figure 6.3(b).

Experiments with increasing s This section presents the quality and cost of the

algorithm as the percentage of cardinal sampling (s) increases. Figure 6.4(a) shows the

effect on the highest threshold detected with increasing sampling s. The trend is clear

- as we increase the percentage of network sampled, the distributed threshold (red stars)

approaches the centralized threshold (blue squares). In Figure 6.4(b), plotted in the log-

scale, the messages transmitted increase as the percentageof network sampled increases.

On the other hand, for the centralized version the message complexity is a constant.

Overall, this experiment shows that the estimation of our algorithm is comparable

to the corresponding centralized version at a cost which is far less than its centralized

counterpart.

In the next section we show how this distributed inner product algorithm can be ap-

plied to a P2P collaborative decision problem.

6.9 Interest based P2P Community Formation

The problem that we want to address is from the financial domain. Consider an online

forum in which each user has some virtual holdings in stocks,shares or equities. Now

imagine a novice investor who has bought some stocks of a companyC and is interested to

know other similar companies to invest in. One way of solvingthis problem is to collect

all user portfolio at a central location, compute a similarity measure such as inner product

or correlation among the equities, and then output the ones with high similarity score.

195

50 100 200 300
0

2

4

6

8

10x 10
7

Number of Features

H
ig

he
st

 o
rd

er
 s

ta
tis

tic
Centralized
Distributed
Population Percentile

(a) Quality with changes in number of features.

100 200 300 400 500
10

2

10
4

10
6

Number of Features

M
sg

 (
K

B
)

in
 lo

g
sc

al
e

Distributed
Centralized

(b) Communication cost with changes in number of features

FIG. 6.3. Scalability with variation in number of attributes per peer.

196

7 101520 30 50 60 80
2

3

4

5

6x 10
6

Percentage of network sampled

H
ig

he
st

 o
rd

er
 s

ta
tis

tic
Centralized
Distributed
Population Percentile

(a) Quality with changes in cardinal sampling (s).

7 101520 30 50 60 80
10

2

10
3

10
4

10
5

10
6

Percentage of network sampled

M
sg

 (
K

B
)

in
 lo

g
sc

al
e

Distributed
Centralized

(b) Communication cost with changes in cardinal sampling (s)

FIG. 6.4. Scalability with variation in cardinal approximation.

197
However, such a setup is not attractive due to the following issues:

• It is extremely inefficient and costly to centralize all the data at one location.

• Due to sensitivity of the information, nobody would like to share all their data.

To address the first issue, we use our top-l inner product identification framework which

allows us to determine the top few inner product entries withvery low communication. It

can be noted that using our ordinal statistics based formulation, we have reduced the top-l

inner product identification problem to a series of sum computations. Therefore, we can

now apply the privacy preserving sum computation frameworkto solve our community

formation problem where privacy is an important issue.

6.9.1 Notations, Data Description and Problem Definition

We reuse the notations defined in Section 6.3.1. The data set of uservd can be rep-

resented as a matrixDd in which each row [1 . . . r] corresponds to a time window (e.g.

a week or day) and each column [1 . . . c] corresponds to a global set of predefined equi-

ties, same across all the peers. Any entryDd(i, j) of Dd refers to the number of equities

of companyj held by uservd for the i-th time window. The global data set of all peers

is denoted asD =
⋃n

d=1 Dd. The local inner product matrixZd = DT
d Dd measures the

similarity between the equities locally held by uservd. The global inner product matrix

Z = DTD =
∑n

d=1 Zd, is the point-wise summation across the matrix entries. LetC be the

attribute whose closest we are interested in finding andVC be the row ofZ corresponding

to C. Our goal is to find the top-l inner product entries ofVC.

Problem Definition: GivenDd and an attributeC, for any user, find a set of highly corre-

lated attributes withC.

198
6.9.2 Approach

In our computing model, any uservd, called initiator, invokes a computation for find-

ing the top few inner product entries ofVC. The computation consists of the following

tasks: sample size computation, percentile estimation, threshold detection, and attribute

identification.

Sample Size Computation: The initiatorvd first selects a confidence levelv and

the order of population percentileu it would tolerate. It can then find the sample sizer as

discussed in Section 6.4.2. The initiator also uses Hoeffding bound (Section 6.4.3) to find

the value ofs, or the number of users to visit for estimating each of theser ordinal samples.

Thus, after this step, the initiator knows the value ofr, s and the actual indices of the inner

product entries to be sampled fromVC.

Percentile Estimation: Given the sample size ofr, the number of users to visits,

and the row of the inner product matrix to focus its search (i.e. the row id corresponding

to companyC), the initiator invokesr × s random walks using the protocols described

in Section 6.4.4 to choose independent samples from the network focusing only on the

attributeC. Since estimating one single inner product entry requires samplings users for

the same indexed entry, each random walk carries with it the index number of the element

to be sampled fromVC. Also each random walk carries the IP address and port number

of the initiator so that the terminal node of a random walk cansend its inner product entry

directly to the initiator node. At the end of these random walksvd hasr× s samples where

there arer different indices ands inner product values for every index of the inner product.

Threshold Detection: Once the initiator gets all the samples, its next task is to iden-

tify the threshold. Since inner product is decomposable, for every indexi, uservd sums up

the all thes entries corresponding to the same indexi. It then finds the largest of thisr

199
aggregated set of inner product entries and this is the threshold.

Attribute Identification: The initiatorvd composes a discovery message containing

a time-to-live (TTL) parameter defining the maximum number of hops allowed for the

discovery propagation and the attributeC. Then the discovery message is sent to all its

neighbors. When a uservj receives this message, it creates a list of all the entries ofVC

which are greater than the threshold. It returns null, if none such exists. If TTL≥ 0, vj

forwards the discovery message to all its neighbors, exceptfor the peer from which the

message has been received. Each peer discards duplicate copies of the same discovery

message possibly received.

At the end of this computation the initiator will have a list of features (names of

companies) whose inner product withC is guaranteed to be in the top-u percentile of the

population of all inner product entries inVC.

6.9.3 Privacy Preservation

We use the SSP protocol for solving this problem in a privacy preserving manner.

Note that, for this to be applicable it requires the existence of a ring topology. In the ordinal

framework this can be imposed easily using random walk. Notethat there are in totalr× s
random walks. In order to apply SSP mechanism, we arrange therandom walks as follows.

For each index of ordinal sample (r), we have to selects samples from different users. We

have seen in Section 4.5 that whenever a random walk terminates at a peer, the sample is

sent to the initiator. Here we modify this protocol slightlysuch that each random walk for

collectings samples are sequential. After each random walk terminates (for a particular

ordinal sample), a new one is started from the same location and the previous sample value

is added to the current one. This process is continued untils samples are collected. Finally

the sample sum is sent back to the initiator.

The SSP framework can be applied to this technique for preserving data privacy. Note

200
that for each ordinal sample, a user is only interested in thesum ofs sample estimates. We

can therefore use the secure sum protocol, whereby the initiator adds a random number and

then the random walk runs forO(log r) steps before picking up another sample. Whenever

a uservi adds its sample to the random walk, it does a modulo operationto uniformly

distributed the data. This is following the secure sum protocol. Once the sum of all thes

samples have been calculated, the initiator can subtract the random number to get the sum.

To protect against possible collusion, all that a user needsto do is divide its data into

many shares. This will increase the cost of computation, leading to lowering of the utility

for collusion. Since no user knows the value ofs (except the initiator), we also guarantee

that there is a non-zero probability that the sum computation will continue to the next round.

Therefore,r separate SSP protocols will be executed one for each ordinalsample. Once all

the sums are reported back to the initiator node, the local ranking can be done in order to

identify the threshold.

6.9.4 Privacy Preserving Inner Product Computation using SSP Framework

The inner product algorithm discussed in this section combines the ordinal ranking

algorithm along with the SSP framework discussed in Chapter4. For ease of exposition,

we separate the ordinal sampling method from the privacy preservation technique.

The first protocol that we discuss is the candidate identification protocol (DiCat). The

pseudo-code is shown in Alg. 10. Instead of using the random walk-based ordinal algo-

rithm to collect the data directly, we use it only for identifying the nodes that need to be

visited by a second algorithm. As shown, the main operation performed is populating the

List data structure. For every ordinal samplei = 1 . . . r, the task is to identify the set of

nodes according to the random walk. In the initialization phase, the initiator sets a token

for each separate random walks. Since each ordinal sample needs to be estimated froms

cardinal samples, the token is set tos × log n. Whenever a node gets a token message, it

201
checks if the value is a multiple of the length of the random walk. This identifies if this

node needs to be put in the list. If the token becomes 0, the list is returned to the initiator.

Other than these two conditions, a node simply forwards the list to the next node selected

according to the transition matrix.

Algorithm 10 : Distributed Candidate Identification (DiCat)

Input of peer vd: Γ(d) - set of immediate neighbors ofvd, a rowTd of the
transition matrixT , ordinal samplesr, and cardinal sampless
Data Structure of peervd: A list of nodesListi, ∀i = 1 . . . r
Output of peer vd: Listi
Initialization:

IF vd is initiator,
FOR i = 1 . . . r

SetTokeni = s× 10 logn
Select a node randomly based onT and send(Tokeni, Listi) to it

END
END

On receiving a message(Tokeni, Listi):
Tokeni = Tokeni - 1
IF (Tokeni mod 10 logn) = 0

SetListi ← Listi ∪ vd

IF Tokeni = 0
SendListi to initiator

ELSE
Select a node randomly based onT and send(Tokeni, Listi) to it

END
ELSE

Forward (Tokeni, Listi) to a node based onT
ENDIF

Once the nodes that need to be visited for sample collection are identified, the initiator

starts the actual process of collecting the samples. Any node that receives a data request

message, first splits its data intok′ parts depending on its privacy requirement. It then adds

its data (or a part of it), takes a modulus and forwards it to the next in entry in the list

202
sequence. Once the sample sum is collected, the initiator checks if all the shares of all the

nodes have been collected. If not, it restarts the process, else the protocol stops. Once the

protocol stops for all ther ordinal samples, the initiator can order these samples to find the

threshold. The protocol is presented as theElemSelalgorithm (Algorithm 11).

In the next section we demonstrate the performance of the algorithm on various data

sets.

6.9.5 Experimental Evaluation

In the absence of real P2P data set supporting our application, we have generated a

synthetic data set simulating the financial domain problem scenario. The simulated data

set consists of 250000 rows and 100 attributes. Each entry israndomly generated from a

uniform distribution. The data set is then split into 500 disjoint parts and each part of size

500 × 100 is assigned to a user (Di). We have used the same setup as in Section 6.8: r =

29, 19, 14 for percentile values varying from 90%, 85%, 80% and s = 35. We have run the

DiCat andElemSelalgorithms to identify the top-u percentile of the population.

Figure 6.5 shows the quality of the estimation using the distributed algorithm. As

shown earlier for the results of the top-l inner product identification algorithm, the results

here also are accurate and never produce false positives since the estimated percentile is

always higher than the actual percentile of the population.Figure 6.6 shows the commu-

nication overhead for theDicat andElemSelalgorithms combined. As can be seen from

the graph, the centralized message complexity is always a constant independent of the pop-

ulation percentile. It should be noted here that, unlike thecommunication costs reported

earlier, the message complexity in this case is quite high and is comparable with central-

ization. This is because the advantage obtained by random sampling is compensated by the

data splitting. For each ordinal sample collection, one random walk of lengthλ is followed

by max(k′) rounds of communication each of sizes, where s is the number of nodes needed

203

0.8 0.85 0.9

1450

1500

1550

1600

Percentile

Q
ua

nt
ile

 v
al

ue

Centralized scenario
Distributed scenario
Actual Quantile value

FIG. 6.5. Quality value w.r.t. the order of percentile.

to be sampled for estimating each ordinal sample.

6.10 Conclusion

In this chapter we have discussed a distributed algorithm for efficiently identifying

top-l inner products from horizontally partitioned data. To achieve low communication

overhead, we use an order statistics-based approach together with cardinal sampling. Or-

dinal statistics provides a general framework for estimating distribution free confidence

intervals for population percentiles. Cardinal sampling helps to combine the inner product

values that are distributed among the peers. Experimental results substantiate our claims

regarding accuracy and message complexity of our algorithm. Finally, we demonstrate the

performance of a privacy preserving version of our algorithm based on the SSP protocol

described earlier in the dissertation.

204

0.8 0.85 0.9
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3x 10
5

Percentile of population

M
es

sa
ge

s
in

 K
B

Centralized
Distributed

FIG. 6.6. Messages exchanged for increase in the population percentile of interest. Higher
similarity detection detection requires more number of messages.

205

Algorithm 11 : Distributed Element Selection (ElemSel)

Input of peer vd: Dd - the local database, the attribute of interestC
Output of peer vd: Sends the sample ifvd ∈ Listi
Initialization:

IF vd is initiator,
FOR i = 1 . . . r

Select and remove the first entry fromListi
Setcurrvali ← 0
SendDataRequest(SampleIndex, Listi, currvali, false) message to it

END
END

On receiving a message DataRequest(SampleIndex, Listi, currvali,
recvd status):
Select the first shareS1 of VC(SampleIndex)
Setval ← S1

IF there are more shares
status = true

ELSE
status = recvd status

END
IF this is the first node in the sequence to get the message
currvali ← (val +R)

ELSE
currvali ← (currvali + val) mod N

END
IF Listi = ∅

Sendcurrvali, status to initiator
ELSE

Select and remove the first entry fromListi
SendDataRequest(SampleIndex, Listi, currvali, status) message to it

END

206

Chapter 7

CONCLUSION AND FUTURE WORK

The field of distributed data mining has seen considerable research in the last decade.

Usually, the primary focus of research on distributed systems is the development of good

distributed algorithms,i.e., algorithms with low computational complexity and communi-

cation requirements. However, most of these distributed data mining applications run on

computers at many different locations, owned and operated by a wide assortment of enti-

ties ranging from individual users to governmental and transnational organizations. This

makes data privacy a primary concern in the deployment of such applications in the real

world. Cryptographic techniques for secure computations [36] have been traditionally used

for dealing with privacy issues in distributed computing environments. The robustness of

cryptographic protocols depends on the mutual trust placedon the parties involved in the

joint function computation. The cryptography literature assumes two types of participant

behavior. A semi-honest party is curious and attempts to learn about other’s private infor-

mation during the computation, but never deviates from the protocol. Malicious partici-

pants deviate from the protocol, collude with others to sendspurious messages to reveal

others’ private data. Protocols that are secure against malicious adversaries are computa-

tionally extremely expensive and therefore cannot be used in real-life for large scale data

mining applications. Therefore, considerable effort has gone into developing secure proto-

cols in the semi-honest adversary model [36, 85]. However, information integration in such

207
multi-party distributed environments is often an interactive process guided by the dynamics

of cooperation and competition among the parties. The behavior of these parties usually

depend on their own objectives and their behavior is usuallyguided by whatever maximizes

their personal benefits. If getting to know someone’s private information is beneficial, then

every self-interested party in the computation will try to get that information. Therefore, the

assumption of semi-honest behavior falls apart in most reallife distributed data mining ap-

plications [87]. Another important shortcoming of existing privacy preserving distributed

data mining applications is the definition of a monolithic privacy model for all participants.

Privacy is a social concept and, therefore, the privacy concerns of the different participating

entities vary, as does their ability to protect their private data due to varying availability of

resources. Existing work in distributed privacy preserving data mining does not give the

parties the freedom to define their own privacy requirement.

This dissertation develops a novel framework for privacy preserving data mining in

distributed environments to address efficiency and real world adaptability. The novelties of

this framework, as described in Chapter 3 and Chapter 4, can be summarized as follows:

• This framework acknowledges the importance of personalization in large heteroge-

neous distributed computing environments and proposes theconcept of personalized

privacy for every participating entity in the distributed system. The personalization

is achieved by multi-objective optimization of the the mutually conflicting variables,

viz. cost and threat to data privacy. Each party optimizes its ownobjective to define

the privacy model parameter that satisfies its privacy and cost requirements. There-

fore, the framework developed in this dissertation successfully frees the participants

in a distributed computing environment from a monolithic privacy model and allows

them to choose their own model of privacy and specify parameters of the privacy

model in accordance to their individual privacy and cost requirements.

• This framework also addresses the issue of modeling adversaries in a distributed

208
function computation environment as semi-honest or malicious. Since, in most real

life scenarios, the parties are merely self-interested agents acting to maximize their

personal benefits, this framework formulates privacy preserving distributed data min-

ing as games where the participating entities are the players and the strategies they

adopt in communicating their data, doing necessary computations and attacking oth-

ers data to reveal personal information, decide the result of the game in terms of

the quality of the data mining results. The framework prescribes the design of a

penalizing mechanism tied to the distributed data mining algorithm for getting a self-

correcting system that forces parties to follow the protocol and not cheat. This frame-

work specifically addresses the problem of collusion among agents.

The framework developed in this dissertation is independent of the distributed data

mining task at hand and the model of privacy chosen for makingit a privacy preserving

data mining application. The generic framework can be adapted to work with any model of

privacy. The choice of the model of privacy will affect the nature of the objective function

and the multi-objective optimization solution. Similarly, the data mining task at hand would

require specific cryptographic protocols and the penalty mechanism needs to be designed

to blend with the secure protocol leading to the desired outcome of the task. Chapter 5

and Chapter 6 shows how the framework can be adapted for sum computation and inner

product computation applications:

• Chapter 5 takes the secure sum protocol and designs a local, asynchronous privacy

preserving sum computation mechanism based on the multi-objective optimization

and game theory framework. Web advertisement ranking and distributed feature se-

lection have been shown as two P2P applications of this new sum computation based

algorithm.

• Chapter 6 explores a distributed, local asynchronous privacy preserving inner product

computation algorithm for similarity identification in P2Pnetworks. The version of

209
the inner product computation problem, that is addressed here, has been decomposed

into a distributed sum computation protocol and the penaltymechanism for the secure

sum protocol has been adapted to make this distributed innerproduct computation

algorithm privacy preserving.

The definition of privacy is still very much an open question and sociologists, com-

puter scientists, and legal experts have different view points about the concept of data pri-

vacy and how the problem of privacy preservation needs to be solved. Privacy preservation

in distributed environments complicate matters even more due to the size and heterogene-

ity of real-life distributed systems. However, for harnessing the vast amount of information

hidden in large distributed systems, it is important to makeprivacy preserving distributed

data mining efficient and real-world adaptable. This dissertation is the first step in this

direction and has limitations and challenges that need to beovercome in the future. As

an extension of this dissertation, we propose the followingpossible directions of future

research:

• Multi-objective optimization for any model of privacy : The current distributed

multi-objective optimization problem solution uses scalarization of convex optimiza-

tion functions for reaching the individual solutions to therespective optimization

problem. However, the nature of the optimization functionsdepend on the choice

of the privacy model and the data mining task at hand. An efficient solution tech-

nique for combination of such arbitrary functions in the optimization problem needs

to be explored in the future. This will get rid of any restrictions that currently exist

in the use of this framework for different privacy preserving distributed data mining

applications.

• Mechanism design for other multi-party secure protocols: Sum computation and

inner product computation are two very important primitives for many data mining

210
algorithms. In this dissertation we have shown how to designmechanisms for pri-

vacy preserving sum computation and similarity measurement using inner product

computation. However, these two protocols can only serve asthe basis of a subset

of distributed data mining algorithms. Therefore, we need to identify other multi-

party secure function evaluation protocols and design efficient local mechanisms for

other distributed data mining tasks such as classification,regression, clustering and

association rule mining.

• Mechanism design for penalizing undesirable behavior other than collusion: In

this dissertation we have only addressed one form of cheating behavior, that is col-

lusion. However, there can be other such behavior which needto be addressed as

well for a distributed data mining protocol to execute satisfactorily. Some of these

include free-loading or ‘leeching” where the participantsnever perform their share of

the responsibilities and rely on the data and effort of otherparticipants to get results.

Such behavior can also be addressed by introducing sufficient incentives for a party

to perform their duties.

Appendix A

Notations

Notation Description

G Graph or distributed network

V, E Peers or nodes or machines or users, edges connecting them

v1, . . . , vn Nodes or peers

n Number of nodes

Γi Set of immediate neighbors ofvi ∈ V

Γα(v) Set ofα neighbors ofv ∈ V

α Size of neighborhood over which a query is computed

γ Upper bound of the size of all queries

ǫ Error of local algorithm

δ 1 - Probability of correctness of local algorithm

f(x) Objective function

H Hessian matrix

S Set of solutions for a multi-objective optimization problem

F Scalarized multi-objective optimization

w Weight vector for multi-objective optimization

z
(t)
i Estimate of the average∆ by nodevi at timet

q Query of a statistical database

San(t, q) Sanitizer acting on databaset and queryq

Lap(λ) Laplacian with variance2λ2

211

212
Notation Description

A Action profile of a player

ui Utility of player i

σi Strategy of playeri

M Mechanism

O Set of outcomes

Mi, Ri, Di Strategy for computation, communication and collusion respectively

wi,d, wi,m, wi,r Weight for computation, communication and collusion respectively

k, k
′

Actual and estimate of bad nodes

B Payoff when a player does not cheat

F Payoff when a player cheats

L Loss of utility for a honest node

ρ Parameter of privacy breach

N Maximum range of secure sum protocol

η Number of splits of a node’s local data for SSP protocol

N (µ, σ) Normal distribution with meanµ and varianceσ2

Φ(·) Area under standard normal distribution

ϑ Number of bad nodes remaining in the system after SSP protocol

Ω Connectivity matrix

ω(i, j) i,j-th entry of connectivity matrix

τ∗
i Optimal size of ring that peervi forms

mi Range of possible values of attributeAi

Di Local dataset at peervi

ri, c Number of rows and columns ofvi

Zi Inner product matrix (=DTD) atvi

ξu Population percentile of orderu

v Confidence that the last sample is in theu-th percentile of the population

r Number of ordinal samples

s Number of cardinal samples

T Transition matrix of random walk

REFERENCES

[1] I. Abraham, D. Dolev, R. Gonen, and J. Halpern. Distributed computing meets game

theory: Robust mechanisms for rational secret sharing and multiparty computation.

In Proceedings of PODC’06, Denver, Colorado, USA, July 2006.

[2] N. R. Adam and J. C. Worthmann. Security-control methodsfor statistical databases:

a comparative study.ACM Computing Surveys, 21(4):515–556, 1989.

[3] C. C. Aggarwal. Onk-anonymity and the curse of dimensionality. InProceedings

of VLDB’05, pages 901–909. VLDB Endowment, 2005.

[4] C. C. Aggarwal and P. S. Yu. On variable constraints in privacy preserving data

mining. InProceedings of SDM’05, pages 115–125, 2005.

[5] C. C. Aggarwal and P. S. Yu, editors.”Privacy-Preserving Data Mining: Models

and Algorithms”. Springer-Verlag, 2008.

[6] D. Agrawal and C. C. Aggarwal. On the design and quantification of privacy pre-

serving data mining algorithms. InProceedings of PODS’01, pages 247–255, Santa

Barbara, CA, 2001.

[7] R. Agrawal, A. Evfimievski, and R. Srikant. Information sharing across private

databases. InProceedings of SIGMOD’03, pages 86–97, New York, NY, USA,

2003. ACM.

[8] R. Agrawal and R. Srikant. Privacy preserving data mining. In Proceedings of the

SIGMOD’00, pages 439–450, Dallas, TX, May 2000.

[9] R. Agrawal, R. Srikant, and D. Thomas. Privacy preserving olap. InProceedings of

SIGMOD’05, pages 251–262, New York, NY, USA, 2005. ACM.

213

214
[10] R. Agrawal and E. Terzi. On honesty in sovereign information sharing. InEDBT’06,

pages 240–256, Munich, Germany, March 2006.

[11] R. I. Arriaga and S. Vempala. An Algorithmic Theory of Learning: Robust Concepts

and Random Projection. InProceedings of FOCS’99, pages 616–623, New York,

1999.

[12] A. Awan, R. A. Ferreira, S. Jagannathan, and A. Grama. Distributed Uniform Sam-

pling in Unstructured Peer-to-Peer Networks. InProceedings of HICSS’06, Kauai,

Hawaii, 2006.

[13] B. Babcock and C. Olston. Distributed Top-k monitoring. In Proceedings of SIG-

MOD’03, pages 28–39, California, 2003.

[14] S. Bailey, R. Grossman, H. Sivakumar, and A. Turinsky. Papyrus: a System for Data

Mining Over Local and Wide Area Clusters and Super-Clusters. In Proceedings of

CDROM’99, page 63, New York, NY, USA, 1999.

[15] W. Balke, W. Nejdl, W. Siberski, and U. Thaden. Progressive Distributed Top-k

Retrieval in Peer-to-Peer Networks. InProceedings of ICDE’05, pages 174–185,

Tokyo, Japan, 2005.

[16] S. Bandyopadhyay, C. Giannella, U. Maulik, H. Kargupta, K. Liu, and S. Datta.

Clustering Distributed Data Streams in Peer-to-Peer Environments.Information Sci-

ence, 176(14):1952–1985, 2006.

[17] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar. Privacy,

accuracy, and consistency too: a holistic solution to contingency table release. In

Proceedings of PODS’07, pages 273–282, New York, NY, USA, 2007. ACM.

[18] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani. Estimating Aggregates on

a Peer-to-Peer Network. Technical report, Stanford University, April 2003.

215
[19] R. J. Bayardo and R. Agrawal. Data privacy through optimal k-anonymization. In

Proceedings of ICDE’05, pages 217–228, Washington, DC, USA, 2005. IEEE Com-

puter Society.

[20] E. Ben-Porath. Cheap talk in games with incomplete information. Journal of Eco-

nomic Theory, 108(1):45–71, 2003.

[21] J. Cohen Benaloh. Secret sharing homomorphisms: keeping shares of a secret secret.

In Proceedings on Advances in cryptology—CRYPTO ’86, pages 251–260, London,

UK, 1987. Springer-Verlag.

[22] K. Bhaduri and H. Kargupta. An Scalable Local Algorithmfor Distributed Multi-

variate Regression.Statistical Analysis and Data Mining, 1(3):177–194, November

2008.

[23] K. Bhaduri and A. Srivastava. A Local Scalable Distributed Expectation Maximiza-

tion Algorithm for Large Peer-to-Peer Networks. InProceedings of ICDM’09 (ac-

cepted), Miami, FL, 2009.

[24] K. Bhaduri, R. Wolff, C. Giannella, and H. Kargupta. Distributed Decision Tree

Induction in Peer-to-Peer Systems.Statistical Analysis and Data Mining, 1(2):85–

103, 2008.

[25] A. Blum, C. Dwor, F. McSherry, and K. Nissim. Practical privacy: the sulq frame-

work. In Proceedings of PODS’05, pages 128–138, New York, NY, USA, 2005.

ACM.

[26] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Gossip Algorithms: Design, Analy-

sis and Applications. InProceddings Infocom’05, pages 1653–1664, Miami, March

2005.

216
[27] S. Boyd and L. Vandenberghe.Convex Optimization. Cambridge University Press,

2004.

[28] J. Branch, B. Szymanski, C. Gionnella, R. Wolff, and H. Kargupta. In-Network Out-

lier Detection in Wireless Sensor Networks. InProceedings of ICDCS’06, Lisbon,

Portugal, July 2006.

[29] M. Cannataro, A. Congiusta, A. Pugliese, D. Talia, and P. Trunfio. Distributed Data

Mining on Grids: Services, Tools, and Applications.IEEE Transactions On Systems,

Man, And CyberneticsPart B: Cybernetics, 34(6):2465–2451, 2004.

[30] M. Cannataro and D. Talia. The Knowledge Grid.Communication of ACM,

46(1):89–93, 2003.

[31] J. Chen, D. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: a Scalable Continuous Query

System for Internet Databases. InProceedings of SIGMOD’00, pages 379–390,

Dallas, Texas, 2000.

[32] K. Chen and L. Liu. Privacy preserving data classification with rotation perturbation.

In Proceedings of ICDM’05, pages 589–592, Houston, TX, November 2005.

[33] R. Chen, K. Sivakumar, and H. Kargupta. Collective Mining of Bayesian Networks

from Distributed Heterogeneous Data.Knowl. Inf. Syst., 6(2):164–187, 2004.

[34] F. Y. Chin and G. Ozsoyoglu. Auditing and inference control in statistical databases.

IEEE Transactions on Software Engineering, 8(6):574–582, 1982.

[35] B. Chor and E. Kushilevitz. A communication-privacy tradeoff for modular addition.

Information Processing Letters, 45(4):205–210, 1993.

[36] C. Clifton, M. Kantarcioglu, X. Lin, and M. Zhu. Tools for Privacy Preserving

Distributed Data Mining.ACM SIGKDD Explorations, 4(2), 2003.

217
[37] F. Cuenca-Acuna, C. Peery, R. Martin, and T. Nguyen. PlanetP: Using Gossiping

to Build Content Addressable Peer-to-Peer Information Sharing Communities. In

Proceedings of HPDC’03, pages 236–249, Seattle, Washington, 2003.

[38] K. Das, K. Bhaduri, S. Arora, W. Griffin, K. Borne, C. Giannella, and H. Kargupta.

Scalable Distributed Change Detection from Astronomy DataStreams using Local,

Asynchronous Eigen Monitoring Algorithms. InProceedings of SDM’09, pages 247

– 258, Sparks, NV, 2009.

[39] K. Das, K. Bhaduri, and H. Kargupta. Privacy PreservingData Mining, Multi-party

Optimization, and Local Asynchronous Distributed Algorithms. Incommunication,

2008.

[40] K. Das, K. Bhaduri, K. Liu, and H. Kargupta. DistributedIdentification of Top-

l Inner Product Elements and its Application in a Peer-to-Peer Network. TKDE,

20(4):475–488, 2008.

[41] The DataGrid Project. http://eu-datagrid.web.cern.ch/

eu-datagrid/default.htm .

[42] S. Datta, K. Bhaduri, C. Giannella, R. Wolff, and H. Kargupta. Distributed Data

Mining in Peer-to-Peer Networks.IEEE Internet Computing, 10(4):18–26, 2006.

[43] S. Datta, C. Giannella, and H. Kargupta. K-Means Clustering over Large, Dynamic

Networks. InProceedings of SDM’06, pages 153–164, Maryland, 2006.

[44] H. A. David. Order Statistics. John Wiley and Sons, Inc., 1970.

[45] Distributed Data Mining Bibliography homepage at UMBC. http://www.cs.

umbc.edu/ ˜ hillol/DDMBIB/ .

[46] DDMT. http://www.umbc.edu/ddm/wiki/software/DDMT/ .

218
[47] K. Deb.Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, 2001.

[48] D. E. Denning.Cryptography and data security. Addison-Wesley Longman Pub-

lishing Co., Inc., Boston, MA, USA, 1982.

[49] D. E. Denning and J. Schlörer. Inference controls for statistical databases.IEEE

Computer, 16(7):69–82, 1983.

[50] J. Domingo-Ferrer and J. M. Mateo-Sanz. Practical data-oriented microaggregation

for statistical disclosure control.IEEE Transactions on Knowledge and Data Engi-

neering, 14(1):189–201, 2002.

[51] W. Du and M. J. Atallah. Secure multi-party computationproblems and their appli-

cations: A review and open problems. InProceedings of the 2001 Workshop on New

Security Paradigms, pages 13–22, Cloudcroft, NM, September 2001. ACM Press.

[52] C. Dwork. Differential privacy. InProceedings of ICALP’06, volume 4052, pages

1–12. Springer, 2006.

[53] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in

private data analysis. InProceedings of ICC’06, pages 265–284, 2006.

[54] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.

Communications of the ACM, 28(6):637–647, 1985.

[55] A. Evfimevski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy

preserving data mining. InProceedings of SIGMOD/PODS’03, San Diego, CA,

June 2003.

[56] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserving mining

of association rules. InProceedings of KDD’02, July 2002.

219
[57] R. Fagin. Combining Fuzzy Information from Multiple Systems. InProceedings of

SIGMOD’96, pages 216–226, Montreal, Canada, 1996.

[58] J. Feigenbaum, C. H. Papadimitriou, and S. Shenker. Sharing the cost of multicast

transmissions.J. Comput. Syst. Sci., 63(1):21–41, 2001.

[59] S. E. Fienberg and J. McIntyre. Data swapping: Variations on a theme by dale-

nius and reiss. Technical report, National Institute of Statistical Sciences, Research

Triangle Park, NC, 2003.

[60] I. Foster and C. Kesselman.The Grid: Blueprint for a New Computing Infrastruc-

ture. Morgan Kaufmann, 2004.

[61] S. Ghiasi, A. Srivastava, X. Yang, and M. Sarrafzadeh. Optimal Energy Aware

Clustering in Sensor Networks.Sensors, 2:258–269, 2002.

[62] S. Ghosh.Distributed Systems: An Algorithmic Approach. CRC press, 2006.

[63] C. Giannella, K. Liu, T. Olsen, and H. Kargupta. Communication Efficient Construc-

tion of Deicision Trees Over Heterogeneously Distributed Data. InProceedings of

ICDM’04, pages 67–74, Brighton, UK, 2004.

[64] P. Gibbons and S. Tirthapura. Estimating Simple Functions on the Union of Data

Streams. InProceedings of SPAA’01, pages 281–291, Crete, Greece, 2001.

[65] Globus Consortium.http://www.globus.org/ .

[66] M. B Greenwald and S. Khanna. Power-Conserving Computation of Order-Statistics

over Sensor Networks. InProceedings of PODS’04, pages 275–285, Paris, France,

2004.

[67] What is Grid ? http://www.eu-degree.eu/DEGREE/General%

\20questions/copy_of_what-is-grid .

220
[68] D. Gu. Distributed EM Algorithm for Gaussian Mixtures in Sensor Networks.IEEE

Transactions on Neural Networks, 19(7):1154–1166, 2008.

[69] S. Guo and X. Wu. On the use of spectral filtering for privacy preserving data mining.

In Proceedings of SAC’06, pages 622–626, Dijon, France, April 2006.

[70] J. Halpern and V. Teague. Rational secret sharing and multiparty computation: ex-

tended abstract. InProceedings of SAC’04, pages 623 – 632, Chicago, IL, USA,

2004.

[71] S. L. Hansen and S. Mukherjee. A polynomial algorithm for optimal univari-

ate microaggregation.IEEE Transactions on Knowledge and Data Engineering,

15(4):1043–1044, 2003.

[72] R. Hardin. Collective action as an agreeable n-prisoners’ dilemma. Journal of Be-

havioral Science, 16:472–481, September 1971.

[73] W. Hastings. Monte carlo sampling methods using markovchains and their applica-

tions. Biometrika, 57:97–109, 1970.

[74] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-Efficient Commu-

nication Protocol for Wireless Microsensor Networks. InProceedings of HICSS’00,

page 10, Hawaii, 2000.

[75] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. An Application-Specific

Protocol Architecture for Wireless Microsensor Networks.IEEE Transactions on

Wireless Communications, 1(4):660–670, 2002.

[76] W. Hoeffding. Probability for Sums of Bounded Random Variables.Journal of the

American Statistical Association, 58:13–30, 1963.

221
[77] W. Hoschek, F. Jaén-Martı́nez, A. Samar, H. Stockinger, and K. Stockinger. Data

Management in an International Data Grid Project. InProceedings of the First In-

ternational Workshop on Grid Computing, pages 77–90, London, UK, 2000.

[78] Z. Huang, W. Du, and B. Chen. Deriving private information from randomized data.

In Proceedings of SIGMOD’05, pages 37–48, Baltimroe, MD, June 2005.

[79] V.S. Iyengar. Transforming data to satisfy privacy constraints. InProceedings of

KDD’02, pages 279–288, New York, NY, USA, 2002. ACM.

[80] G. Jagannathan, K. Pillaipakkamnatt, and R. N. Wright.A new privacy-preserving

distributed k-clustering algorithm. InProceedings of SDM’06, pages 49–496,

Bethesda, MD, 2006.

[81] T. Jakkola. Tutorial on Variational Approximation Methods. In Advanced Mean

Field Methods: Theory and Practice, 2000.

[82] W. Jiang and C. Clifton. Privacy-preserving distributedk-anonymity. InData and

Applications Security XIX, pages 166–177. Springer, 2005.

[83] W. Jiang and C. Clifton. A Secure Distributed Frameworkfor Achieving k-

anonymity.The VLDB Journal, 15(4):316–333, 2006.

[84] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An Introduction to Vari-

ational Methods for Graphical Models.Machine Learning, 37(2):183–233, Novem-

ber 1999.

[85] M. Kantarcioglu and C. Clifton. Privacy-preserving distributed mining of association

rules on horizontally partitioned data.IEEE Transactions on Knowledge and Data

Engineering, 16(9):1026–1037, 2004.

222
[86] H. Kargupta and P. Chan, editors.Advances in Distributed and Parallel Knowledge

Discovery. MIT Press, 2000.

[87] H. Kargupta, K. Das, and K. Liu. Multi-Party, Privacy-Preserving Distributed Data

Mining using a Game Theoretic Framework. InProceedings of PKDD’07, pages

523–531, Warsaw, Poland, 2007.

[88] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. On the privacy preserving

properties of random data perturbation techniques. InProceedings of ICDM’03,

pages 99–106, Melbourne, FL, November 2003.

[89] H. Kargupta and K. Sivakumar.Existential Pleasures of Distributed Data Mining,

pages 1–25. AAAI/MIT press, 2004.

[90] M. Kearns and L. Ortiz. Algorithms for interdependent security games.Advances

in Neural Information Processing Systems, 2004.

[91] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate infor-

mation. InProc. of FOCS’03, Cambridge, MA, October 2003.

[92] P. M. Khilar and S. Mahapatra. Heartbeat Based Fault Diagnosis for Mobile Ad-Hoc

Network. InProceedings of IASTED’07, pages 194–199, Phuket, Thailand, 2007.

[93] D. Kifer and J. Gehrke. Injecting utility into anonymized datasets. InProceedings

of SIGMOD’06, pages 217–228, New York, NY, USA, 2006. ACM.

[94] J. Kotecha, V. Ramachandran, and A. Sayeed. Distributed Multi-target Classifica-

tion in Wireless Sensor Networks.IEEE Journal of Selected Areas in Communica-

tions (Special Issue on Self-Organizing Distributed Collaborative Sensor Networks),

23(4):703–713, 2005.

223
[95] A. Krause, A. Singh, and C. Guestrin. Near-Optimal Sensor Placements in Gaussian

Processes: Theory, Efficient Algorithms and Empirical Studies. J. Mach. Learn.

Res., 9:235–284, 2008.

[96] D. Krivitski, A. Schuster, and R. Wolff. A Local Facility Location Algorithm for

Large-Scale Distributed Systems.Journal of Grid Computing, 5(4):361–378, 2007.

[97] H. Kunreuther and G. Heal. Interdependent security.Journal of Risk and Uncer-

tainty, 26(2-3):231–249, 2003.

[98] R. Layfield, M. Kantarcioglu, and B. Thuraisingham. Enforcing honesty in assured

information sharing within a distributed system. InData and Applications Security

XXI, pages 113–128, 2007.

[99] R. Layfield, M. Kantarcioglu, and B. Thuraisingham. Incentive and Trust Issues

in Assured Information Sharing. InProceedings of CollaborateComm’08, Orlando,

FL, 2008.

[100] N. Li, T. Li, and S. Venkatasubramanian.t-closeness: Privacy beyondk-anonymity

andℓ-diversity. InProceedings of ICDE’07, pages 106–115, 2007.

[101] Y. Lindell and B. Pinkas. Privacy preserving data mining. InAdvances in Cryptology

(CRYPTO’00), volume 1880 ofLecture Notes in Computer Science, pages 36–53.

Springer-Verlag, 2000.

[102] S. Lindsey, C. Raghavendra, and K. M. Sivalingam. DataGathering Algorithms in

Sensor Networks Using Energy Metrics.IEEE Transactions on Parallel and Dis-

tributed Systems, 13(9):924–935, 2002.

[103] K. Liu, K. Bhaduri, K. Das, P. Nguyen, and H. Kargupta. Client-side Web Mining

for Community Formation in Peer-to-Peer Environments.SIGKDD Explorations,

8(2):11–20, 2006.

224
[104] K. Liu, C. Giannella, and H. Kargupta. An attacker’s view of distance preserving

maps for privacy preserving data mining. InProceedings of PKDD’06, Berlin, Ger-

many, September 2006.

[105] K. Liu, H. Kargupta, and J. Ryan. Random Projection-Based Multiplicative Data

Perturbation for Privacy Preserving Distributed Data Mining. IEEE Transactions on

Knowledge and Data Engineering (TKDE), 18(1):92–106, January 2006.

[106] L. Lovász. Random Walks on Graphs: A Survey.Combinatorics, 2(80):1–46, 1993.

[107] LTI System Theory. http://en.wikipedia.org/wiki/LTI_system_

theory .

[108] P. Luo, H. Xiong, K. Lü, and Z. Shi. Distributed Classification in Peer-to-Peer

Networks. InProceedings of SIGKDD’07, pages 968–976, 2007.

[109] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam.ℓ-diversity:

Privacy beyondk-anonymity. InProceedings of ICDE’06, page 24, Atlanta, GA,

April 2006.

[110] S. Mane, S. Mopuru, K. Mehra, and J. Srivastava. Network Size Estimation In A

Peer-to-Peer Network. Technical Report 05-030, University of Minnesota, Septem-

ber 2005.

[111] A. Mas-Colell, M. Whinston, and J. Green.Microeconomic theory. Oxford Univ.

Press, New York, NY, 1995.

[112] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: AnApproach to Universal

Topology Generation. InProceedings of MASCOTS’01, Ohio, 2001.

225
[113] M. Mehyar, D. Spanos, J. Pongsajapan, S. H. Low, and R. Murray. Distributed aver-

aging on a peer-to-peer network. InProceedings of IPSN ’05, UCLA, Los Angeles,

USA, April 25–27 2005.

[114] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.

Equations of State Calculations by Fast Computing Machines. Journal of Chemical

Physics, 21:1087–1092, 1953.

[115] A. Meyerson and R. Williams. On the complexity of optimal k-anonymity. InPro-

ceedings of PODS’04, pages 223–228, New York, NY, USA, 2004. ACM.

[116] K. Miettinen.Nonlinear Multiobjective Optimization. Kluwer Academic Publishers,

1999.

[117] S. Mukherjee, Z. Chen, and A. Gangopadhyay. A privacy-preserving technique for

euclidean distance-based mining algorithms using fourier-related transforms.VLDB

Journal, 15(4):293–315, 2006.

[118] S. Mukherjee and H. Kargupta. Distributed Probabilistic Inferencing in Sensor Net-

works using Variational Approximation.J. Parallel Distrib. Comput., 68(1):78–92,

2008.

[119] J. Nash. Equilibrium points in n-person games.Proceedings of the National

Academy of the USA, 36(1):48–49, 1950.

[120] N. Nisan and A. Ronen. Algorithmic mechanism design.Games and Economic

Behavior, 35:166–196, 2001.

[121] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in

private data analysis. InProceedings of STOC’07, pages 75–84, New York, NY,

USA, 2007. ACM.

226
[122] R. D. Nowak. Distributed EM Algorithms for Density Estimation and Clustering

in Sensor Networks.IEEE Transactions on Signal Processing, 51(8):2245–2253,

2003.

[123] S. R. M. Oliveira and O. R. Zaı̈ane. Privacy preservation when sharing data for clus-

tering. InProceedings of the International Workshop on Secure Data Management

in a Connected World, pages 67–82, Toronto, Canada, August 2004.

[124] C. Olston, J. Jiang, and J. Widom. Adaptive Filters forContinuous Queries over Dis-

tributed Data Streams. InProceedings of SIGMOD’03, pages 563–574, San Diego,

California, 2003.

[125] P. Orponen and S. E. Schaeffer. Efficient Algorithms for Sampling and Clustering

of Large Nonuniform Networks. Technical Report cond-mat/0406048, arXiv.org

e-Print archive, 2004.

[126] M. Osborne.Game Theory. Oxford University Press, 2004.

[127] Guillermo Owen.Game Theory. Academic Press, 1995.

[128] P2P Wikipedia.http://en.wikipedia.org/wiki/Peer-to-peer .

[129] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.

In J. Stern, editor,Advances in Cryptology - RUROCRYPT’99, volume 1592 ofLec-

ture Notes in Computer Science, pages 223–238, 1999.

[130] T. Palpanas, D. Papadopoulos, V. Kalogeraki, and D. Gunopulos. Distributed Devia-

tion Detection in Sensor Networks.ACM SIGMOD Record, 32(4):77–82, December

2003.

[131] C. H. Papadimitriou. Algorithms, games, and the Internet. In Proceedings of

STOC’01, pages 749–753, New York, USA, 2001.

227
[132] D. Parkes. ibundle: An efficient ascending price bundle auction. InProceedings of

EC’99, pages 148–157, 1999.

[133] D. Peleg.Distributed Computing: a Locality-Sensitive Approach. Society for Indus-

trial and Applied Mathematics, Philadelphia, PA, USA, 2000.

[134] H. Polat and W. Du. Svd-based collaborative filtering with privacy. InProceedings

of SAC’05, pages 791–795, New York, NY, USA, 2005. ACM.

[135] Power GRID. http://www.gloriad.org/gloriad/projects/

project000053.html .

[136] M. Rabbat and R. Nowak. Distributed Optimization in Sensor Networks. InPro-

ceedings of IPSN’04, pages 20–27, Berkeley, California, USA, 2004.

[137] M. O. Rabin. How to exchange secrets by oblivious transfer, technical report tr-81.

Technical report, Aiken Computation Laboratory, Harvard University, Cambridge,

MA, 1981.

[138] P. Radivojac, U. Korad, K. M. Sivalingam, and Z. Obradovic. Learning from Class-

Imbalanced Data in Wireless Sensor Networks. InProceedings of VTC’03 Fall,

pages 3030 – 3034, Orlando, Florida, 2003.

[139] S. J. Rizvi and J. R. Haritsa. Maintaining data privacyin association rule mining. In

Proceedings of the 28th VLDB Conference, Hong Kong, China, August 2002.

[140] T. Roughgarden and́E. Tardos. How bad is selfish routing?J. ACM, 49(2):236–259,

2002.

[141] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A Measurement Study of Peer-to-Peer

File Sharing Systems. InProceedings of MMCN’02, pages 156–170, San Jose, CA,

J 2002.

228
[142] B. Schneier.Applied Cryptography. John Wiley & Sons, 2nd edition, 1995.

[143] A. Schuster, R. Wolff, and D. Trock. A High-performance Distributed Algorithm

for Mining Association Rules.Knowl. Inf. Syst., 7(4):458–475, 2005.

[144] A. Shamir. How to share a secret.Communications of the ACM, 22(11):612–613,

November 1979.

[145] L. Sweeney.k-anonymity: a model for protecting privacy.International Journal on

Uncertainty, Fuzziness and Knowledge-based Systems, 10(5):557–570, 2002.

[146] D. Talia and D. Skillicorn. Mining Large Data Sets on Grids: Issues and Prospects.

Computing and Informatics, 21(4):347–362, 2002.

[147] D. Talia and P. Trunfio. Toward a Synergy Between P2P andGrids. IEEE Internet

Computing, 7(4):94–95, August 2003.

[148] P. Tan, M. Steinbach, and V. Kumar.Introduction to Data Mining. Addison-Wesley,

2006.

[149] M. Trottini, S. E. Fienberg, U. E. Makov, and M. M. Meyer. Additive noise and

multiplicative bias as disclosure limitation, techniquesfor continuous microdata: A

simulation study.Journal of Computational Methods in Sciences and Engineering,

4:5–16, 2004.

[150] J. Vaidya and C. Clifton. Privacy-Preserving K-MeansClustering over Vertically

Partitioned Data. InProceedings of KDD’03, Washington, D.C., August 2003.

[151] J. S. Vaidya and C. Clifton. Privacy preserving association rule mining in vertically

partitioned data. InProceedings of KDD’02, Edmonton, Canada, July 2002.

[152] J. S. Vaidya, C. Clifton, M. Kantarcioglu, and S. A. Patterson. Privacy-preserving

decision trees over vertically partitioned data.ACM TKDD, 2(3):1–27, 2008.

229
[153] H. R. Varian. Economic mechanism design for computerized agents. InProceedings

of WOEC’95, pages 2–2, Berkeley, CA, USA, 1995. USENIX Association.

[154] W. Vickery. Counterspeculation, auctions, and competitive sealed tenders.The Jour-

nal of Finance, 16(1):8–37, 1961.

[155] K. Wang, B. C. M. Fung, and P. S. Yu. Template-based privacy preservation in

classification problems. InProceedings of ICDM’05, pages 466–473, Los Alamitos,

CA, USA, 2005. IEEE Computer Society.

[156] Grid Page: Wiki.http://en.wikipedia.org/wiki/Grid_computing .

[157] W. Winkler. Using simulated annealing fork-anonymity. Technical Report Research

Report Series Number 2002-07, US Census Bureau StatisticalResearch Division,

Washington, DC, 2002.

[158] R. Wolff, K. Bhaduri, and H. Kargupta. Local L2 Thresholding Based Data Mining

in Peer-to-Peer Systems. InProceedings of SDM’06, pages 428–439, 2006.

[159] R. Wolff, K. Bhaduri, and H. Kargupta. A Generic Local Algorithm for Mining Data

Streams in Large Distributed Systems.TKDE, 21(4):465–478, 2009.

[160] R. Wolff and A. Schuster. Association Rule Mining in Peer-to-Peer Systems.IEEE

Trasnsactions on Systems, Man and, Cybernetics Part B: Cybernetics, 34(6):2426–

2438, 2004.

[161] R. Wolff and A. Schuster. Association Rule Mining in Peer-to-Peer Systems.IEEE

Transactions on Systems, Man and Cybernetics - Part B: Cybernetics, 34(6):2426 –

2438, 2004.

[162] X. Xiao and Y. Tao. Personalized privacy preservation. In Proceedings of SIG-

MOD’06, pages 229–240, New York, NY, USA, 2006. ACM.

230
[163] X. Xiao and Y. Tao. Output perturbation with query relaxation. InProceedings of

VLDB’08, pages 857–869. VLDB Endowment, 2008.

[164] A. C. Yao. How to Generate and Exchange Secrets (Extended Abstract). InFOCS,

pages 162–167, 1986.

[165] O. Younis and S. Fahmy. Heed: A hybrid, Energy-Efficient, Distributed Clustering

Approach for ad-hoc Sensor Networks.IEEE Transactions on Mobile Computing,

3(4):258–269, 2004.

[166] H. Yu, J. Vaidya, and X. Jiang. Privacy-preserving svmclassification on vertically

partitioned data. InProceedings of PAKDD 2006, pages 647–656, 2006.

[167] M. J. Zaki. Parallel and Distributed Association Mining: A Survey.IEEE Concur-

rency, 7(4):14–25, 1999.

[168] N. Zhang, W. Zhao, and J. Chen. Performance Measurements for Privacy Preserving

Data Mining. InProceedings of PAKDD’05, pages 43–49, Hanoi, Vietnam, May

2005.

[169] F. Zhao and L. Guibas.Wireless Sensor Networks: An Information Processing Ap-

proach. Morgan Kaufmann, 2004.

[170] J. Zhao, R. Govindan, and D. Estrin. Computing Aggregates for Monitoring Wire-

less Sensor Networks. InProceedings of the First IEEE International Workshop on

Sensor Network Protocols and Applications, pages 139–148, 2003.

[171] Y. Zhu and L. Liu. Optimal randomization for privacy preserving data mining. In

Proceedings of KDD’04, pages 761–766, New York, NY, USA, 2004. ACM.

