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ABSTRACT

Title of Thesis: Fast Modular Exponentiation Using Residue Domain Repre-

sentation: A Hardware Implementation and Analysis

Christopher Dinh Nguyen, Master of Science, 2013

Thesis directed by: Alan T. Sherman, Associate Professor
Department of Computer Science and
Electrical Engineering
Dhananjay S. Phatak, Associate Professor
Department of Computer Science and
Electrical Engineering

Using modular exponentiation as an application, we engineered on FPGA fabric and

analyzed the first implementation of two arithmetic algorithms in Reduced-Precision Residue

Number Systems (RP-RNS): the partial-reconstruction algorithm and quotient-first scaling

algorithm.

Residue number systems (RNS) provide an alternative representation to the binary

system for computation. They offer full parallel computation for addition, subtraction,

and multiplication. However, base extension, division, and sign detection become harder

operations. Phatak’s RP-RNS uses a time-memory trade-off to achieve O (lgN) running

time for base extension and scaling, where N is the bit-length of the operands, compared

with Kawamura’s Cox-Rower architecture and its derivatives, which appear to take O (N)

steps and therefore O (N) delay to the best of our knowledge.

We implemented the fully parallel RP-RNS architecture based on Phatak’s description

and architecture diagrams. Our design decisions included distributing the lookup tables

among each channel, removing the adder trees, and removing the parallel table access thus

trading size for speed. In retrospect, we should have hosted the tables in memory off the

FPGA.



We measured the FPGA utilization, storage size, and cycle counts. The data we present,

though less than optimal, confirms the theoretical trends calculated by Phatak. FPGA

utilization grows proportional K logK where K is the number of hardware channels.

Storage grows proportional to O (N3 lg lgN). When using Phatak’s recommendations,

cycle count grows proportional to O (lgN).

Our contributions include documentation of our design, architecture, and implementa-

tion; a detailed testing methodology; and performance data based on our implementation to

enable others to replicate our implementation and findings.
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Chapter 1

Introduction

Computer arithmetic hardware – performing as basic operations addition, subtraction,

multiplication, and division – underlies almost all intensive computation. Most arithmetic

hardware use the binary number system to perform computations. We explore fast integer

arithmetic hardware based in residue number systems (RNSs) using modular exponentiation

as an application.

While binary works similarly to the decimal number system, in contrast RNSs represent

a number as residues with respect to a set of moduli called the RNS base. RNSs are promis-

ing number systems because addition, subtraction, and multiplication are parallelizable

and efficient hardware algorithms already exist for these operations. In contrast, other

operations such as division become harder operations to compute. This limitation extends

to modular reduction and modular exponentiation using modular reduction. Consequently

RNS only finds use in special-computing applications such as digital signal processing or

cryptography [24, 28].

Modular exponentiation as an application is interesting due to its significance in cryp-

tography [13, 15, 34]. Moreso, RNS-based modular exponentiation has seen a theoretical

1



speed increase due to Phatak’s recent algorithmic breakthroughs in partial reconstruction

and scaling (i.e., division with constant divisor), which we call the reduced-precision residue

number system (RP-RNS) [30–33]. The special feature of the RP-RNS algorithms is the use

of low-precision approximations of fractions to narrow the result to two candidates before

disambiguating the final result using a redundant residue channel requiring no more than

2 bits.

1.1 Motivation

An interesting property of RNSs is the maximum execution time to perform a parallelizable

operation (e.g., addition) depends solely on the largest modulus in the RNS base. So using

many small moduli is preferable to few large moduli for the parallelizable operations.

Software implementations of RNSs in general cannot take full advantage of paralleliza-

tion when running on commodity hardware. As of the year 2013, most commodity hardware

features at most 16 cores with 64-bit arithmetic logic units [11,18,29] and 64GB of memory.

Favoring small moduli would not only waste the 64-bit hardware, but the RNS base size

would exceed the number of cores available by a few orders of magnitude for system sizes

we care about (i.e., greater than 1024 bits).

As an example, an RP-RNS using the first 15 prime numbers (the last core reserved for

the redundant residue channel) achieves a 60-bit main modulus with at most 6-bit channels.

This is an unacceptable waste of hardware resources. We can mitigate this waste by using

moduli optimal for the hardware (e.g. 32-bit or 64-bit moduli), but even then software may

not leverage all available processing cores making the software effectively sequential [39]

thus forfeiting the benefits of RNSs. This motivates us to create specialized RP-RNS

hardware.

2



1.2 Thesis

RP-RNS is a general approach to faster computation of harder RNS operations including

the scaling operation. Large range RP-RNSs computing on numbers thousands of bits long

requires a significant quantity of hardware to minimize storage and execution time. We

believe we can engineer efficient RP-RNS hardware that can scale to word lengths several

thousands of bits long.

1.3 Aims of Our Work

A preliminary analysis of Phatak’s RP-RNS algorithms indicate a reduction in running time

complexity to O (N lgN) where N is the number of bits needed to represent a number in a

given RNS. We can verify this claim by producing one efficient hardware implementation.

Current literature on residue domain modular exponentiation hardware use divisors of at

least 1024 bits. So the first goal of our work is to engineer RP-RNS modular exponentiation

hardware supporting at least a 1024-bit divisor to provide sufficient comparison to existing

literature including Nozaki, et al. [27], and Gandino, et al. [16].

From there we want to determine whether there is a divisor limit for engineering our

design using commodity field-programmable gate arrays (FPGAs) accessible to the average

technology consumer. For concreteness, we assume this equates roughly to either 16

low-capacity FPGAs or 2 high-capacity FPGAs based on price.

Our third aim is to analyze our implementation, improve it, and compare its running

time performance against the current state of the art, which is Gandino, et al. [16].
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1.4 Summary of Contributions

This thesis contributes a hardware implementation of RP-RNS modular exponentiation

based on Phatak’s architecture [33]. Our implementation is usable without modification

as a modular exponentiation component for traditional binary-based digital system. We

summarize our contributions below, emphasizing the theoretical work and analysis of the

RP-RNS were done by Phatak.

1.4.1 Hardware Verification and Performance Data

We verified our implementation through software simulations; then described the architecture

in VHDL and simulated an FPGA realization of that HDL architecture. Finally we also

performed a limited amount of work on actual physical FPGAs, synthesizing small toy

prototype in actual hardware. Experiments on physical hardware were limited in scope due

to two reasons: our design decision to store the precomputed lookup tables on the FPGA

and an intermittent problem we identified with the vendor’s FPGA synthesis software when

generating the lookup tables and constants. While not a contribution, we acknowledge in

retrospect we should have stored the tables in memory off the FPGA.

We extracted measurements directly from the hardware up to the limits of our implemen-

tation (15 channels). We extrapolated measurements via simulation for larger systems. The

FPGA utilization grew at a K lgK rate where K is the size of the RNS base. The lookup

table storage grew at a rate of N3 lg lgN rate, which agrees with the theoretical expectation,

but ours had a large coefficient due to our design decision stated above. The execution time

of a fully parallel implementation grew at the expected logarithmic rate with respect to the

system modulus word length, N . The execution time of a sequential implementation grew

4



at a quadratic rate with respect to the divisor word length. Taking our decision design into

account, this agrees with the theoretical expectation.

1.4.2 Testing Methodology and Enabling Repeatability

We provide a complete description of our design, architecture, and implementation to

enable future researchers to recreate our hardware. We also provide a fully documented

testing methodology including verification and validation. Together with our data, these

contributions will enable future researchers to replicate our implementation and results.

1.5 Outline

Chapter 2 provides background information for this thesis. This thesis combines informa-

tion from modern algebra, computer arithmetic, and very-large-scale integration (VLSI)

hardware.

Chapter 3 discusses related work on RNS modular exponentiation hardware algorithms

and implementations. This chapter is brief because RNS modular exponentiation is relatively

new and the literature is sparse.

Chapter 4 details the theory behind our implementation. We introduce Phatak’s reduced-

precision residue number system [33], RP-RNS design strategies, and four of his algorithms:

partial reconstruction (PR) [30], quotient-first scaling (QFS), modular reduction using QFS,

and RNS modular exponentiation using QFS [31].

Chapter 5 contains our RP-RNS modular exponentiation implementations. We explain

our design decisions, architecture, and implementation details. The discussion includes how

our design deviates from Phatak’s recommendations and the theoretical performance.
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Chapter 6 presents results from experiments performed with our RP-RNS modular

exponentiation implementation. We explain our testing methodology including validation

and verification. We present our results covering the metrics of FPGA utilization, storage,

and running time; we do not measure nor analyze power consumption. We also analyze our

results.

Chapter 7 concludes this thesis with potential implementation improvements, reflections

on our implementation, open problems, and ideas for future work. Appendix A is a reference

of notation we use in this thesis. Appendix B contains tables of data related to Chapter 6.
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Chapter 2

Background

The algorithms and VLSI architectures investigated in this thesis require background from

computer arithmetic algorithms and hardware design.

The section on number theory provides the mathematical foundation for residue number

systems (RNSs). The section on computer arithmetic discusses specific building blocks we

use to construct our implementation in Chapter 5. This section also provides background

for understanding related work in Chapter 3. The last section on hardware discusses two

implementation fabrics: field-programmable gate arrays (FPGAs) and application-specific

integrated circuits (ASICs). We discuss advantages and disadvantages of each technology to

assist the reader in understanding our decision to use FPGAs.

2.1 Mathematical Background

This section covers the necessary definitions and theorems for understanding the techniques

presented in Section 2.2 and Chapters 3 and 4.
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Our exposition follows the standard flow of an introductory algebra textbook. Theorems

in this section are presented without proof unless the proof provides additional insight for

discussions in later chapters. These definitions and theorems may be found in most textbooks

on introductory modern algebra or abstract algebra such as Beachy [9], Dummit [14], or

Nicholson [26]. Readers with an understanding of residue number theory or modular

arithmetic may skip this chapter.

2.1.1 Divisibility

Within the details of every concept we present in this chapter, divisibility underlies each

of them. The Division Algorithm, proved using divisibility, states when two integers are

not divisible there is a non-zero remainder leftover. This leads to congruence relations and

the construction of the integers modulo n. The greatest common divisor, defined in terms

of divisibility, determines when a modular integer has an inverse. This builds up to the

fundamental theorem of residue number systems: the Chinese Remainder Theorem.

For any integers a and b, we use the notation a|b if there exists an integer c such that

ac = b. We describe this relation as a divides b, a is a divisor of b, or a is a factor of b

depending on which is most convenient. We may alternatively say b is a multiple of a.

For any integers a, b, and c, we say c is a common divisor of a and b if c|a and c|b. If c

is the largest positive integer satisfying this relation then c is the greatest common divisor

(GCD), denoted gcd (a, b).

When a and b share no common factor (i.e., gcd (a, b) = 1), we say a and b are relatively

prime or coprime. A set of numbers {a1, a2, . . . , an} are pairwise coprime if ai and aj are

coprime for all i 6= j such that 1 ≤ i, j ≤ n.

The divisibility relation obeys the following properties:

8



1. a|a;

2. if a|b then a|bc;

3. if a|b and b|c then a|c; and

4. if a|b and a|c then a|(bx+ cy) where x, y are integers.

As a special case of the last property, the GCD of two integers is the smallest positive linear

combination of those integers. Another interpretation is the GCD is the smallest increment

between two linear combinations of the two integers. This interpretation will be important

when we introduce the modular multiplicative inverse.

The Division Algorithm of modern algebra formalizes our understanding of division and

assures us that the division we are familiar with works correctly.

Theorem 1 (Division Algorithm). Let a and b be integers with 0 < b ≤ a. Then there exists

unique integers q and r such that a = qb+ r and 0 ≤ r < b. We call q the quotient and r

the remainder.

Immediately following from this theorem is if a ≥ b then they share a remainder modulo

q if and only if q| (a− b).

A direct consequence of the uniqueness property allows us to define two functions:

division and modular reduction (or modulo). The division function (denoted a/b or a div b)

outputs the quotient q. The modulo function (denoted a mod b) outputs the remainder r.

Any theorem or algorithm that requires modular reduction uses the Division Algorithm.

An example of the Division Algorithm is the Euclidean Algorithm. This algo-

rithm (see Algorithm 1) computes the GCD of two integers by using the fact that

gcd (a, b) = gcd (a, b− a), which leads to the identity gcd (a, b) = gcd (b, a mod b). The

efficiency of the Euclidean Algorithm follows from Lamé’s Theorem [12], which states

9



Algorithm 1: Euclidean Algorithm
Input :Two integers a and b with a ≥ b
Output :The GCD of a and b

1 begin
2 if b = 0 then
3 return a;

4 return Euclid (b, a mod b);

if b ≤ a and b < Fk+1 where Fk+1 is the (k + 1)-st Fibonacci number then the Euclidean

Algorithm requires no more than k recursive calls. An extended version of the Euclidean

Algorithm later enables us to compute modular inverses.

2.1.2 Ring of Integers Modulo n

The Division Algorithms helps us define congruence relations with respect to a positive

integer n called a modulus.

Definition 1. Let a, b, and n be integers and 0 < n. We say a and b are congruent modulo n

if n| (a− b). We denote this a ≡ b mod n.

As noted in the previous section, a and b share a common remainder when they are

congruent modulo n. The congruence relation modulo n has the following properties:

1. a ≡ a mod n;

2. if a ≡ b mod n then b ≡ a mod n; and

3. if a ≡ b mod n and b ≡ c mod n then a ≡ c mod n.

In the parlance of relations, this means the congruence relation modulo n is an equivalence

relation. Speaking informally, only the remainders after division by n are relevant under the

congruence relation modulo n. This leads us to the ring of integers modulo n.
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Definition 2. The integers modulo n, denoted Zn, is defined to be the set of integers

{0, 1, . . . , n− 1}.

Informally a ring is a set with the addition, subtraction, and multiplication operations

defined. Zn, as a subset of the integers, is a ring with the same algebraic operations as the

integers up to congruence:

• Addition: (a+ b) mod n;

• Subtraction: (a− b) mod n; and

• Multiplication: ab mod n.

These are the basic modular arithmetic operations. We can define other operations in terms

of these (e.g., modular exponentiation).

The additive inverse is a number b such that a+ b mod n ≡ 0. This number always

exists by letting b = n− a and denote this as −a. Subtraction as we defined above is

well-defined.

The multiplicative inverse (or modular inverse) is a number x such that ax mod n ≡ 1.

Applying the Division Algorithm, this is equivalent to solving for x and y such that

ax+ ny = 1. Recall the GCD is the smallest increment between two successive linear

combinations of two integers. So this equation is solvable if and only if a and n are coprime,

which we formalize in the following lemma:

Lemma 1. When a and n are coprime, the congruence ax ≡ 1 mod n has a unique solution

x such that 0 ≤ x < n. We denote x as a−1.

The Extended Euclidean Algorithm (Algorithm 2) provides a method to compute the

modular inverse of an element of Zn (see Algorithm 3). We use the modular inverse to

compute the constructive form of the Chinese Remainder Theorem (Equation 2.1).

11



Algorithm 2: Extended Euclidean Algorithm
Input : Integers a and b
Output : Integers x and y satisfying ax+ ny = gcd (a, n)

1 begin
2 (x, xlast)← (0, 1);
3 (y, ylast)← (1, 0);
4 while b 6= 0 do
5 q ← a div b;
6 (a, b)← (b, amod b);
7 (x, xlast)← (xlast − qx, x);
8 (y, ylast)← (ylast − qy, y);

9 return (xlast, ylast);

Algorithm 3: Zn Modular Inverse
Input : Integers a and n
Output :The modular inverse of a in Zn

1 begin
2 (x, y)← ExtendedEuclid (a, n);
3 return x;

The Euclidean Algorithm computes the GCD of two integers, but discards the coefficients

during computation. The Extended Euclidean Algorithm retains the coefficients x and y

while computing the linear combination ax+ ny = gcd (a, n).

2.1.3 Chinese Remainder Theorem

We are now ready to state the fundamental theorem behind RNSs: the Chinese Remainder

Theorem. We present the theorem in a few forms. The first form (Theorem 2) states when a

set of simultaneous linear modular congruences has a solution and provides conditions for

uniqueness. We omit a formal proof of the theorem, but mention the proof in Beachy [9]

invokes Lemma 1.
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Theorem 2 (Chinese Remainder Theorem (CRT)). Let M = {m1,m2, . . . ,mK} be a set of

pairwise coprime positive integers called moduli. Then for any integers z1, z2, . . . , zK , there

exists an integer Z that satisfies the system of simultaneous linear congruences

Z ≡ z1 mod m1

Z ≡ z2 mod m2

...

Z ≡ zK mod mK

where z1, z2, . . . , zK are the residues of Z over the moduli M. Furthermore, all solutions

are congruent to Z modulo M where M = m1m2 · · ·mK and the solution in the range

[0,M − 1] is unique.

This form is the existence and uniqueness theorem most often found in introductory

algebra texts, but it does not provide a method for constructing a solution. This leads to

the second form (Equation 2.1). This formula, provided by Gauss, serves as a constructive

proof of the solution Z referenced in the first form.

Z =
K∑
i=1

ziMi

(
M−1

i mod mi

)
(2.1)

where Mi = M/mi. The M−1
i merits some justification. The definition of Mi ensures Mi

and mi are coprime and Lemma 1 ensures M−1
i mod mi exists.

In general the solution to Equation 2.1 lies outside ZM . This leads to a third form

(Equation 2.2) that computes the unique solution in the range [0,M − 1].

Z =

(
K∑
i=1

Mi

(
ziM

−1
i mod mi

))
mod M (2.2)
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We call this the fundamental theorem of RNSs because the Chinese Remainder Theorem

further implies the ring ZM is algebraically isomorphic to the product ring

K∏
i=1

Zmi
= Zm1 × · · · × ZmK

. (2.3)

This means addition, subtraction, and multiplication performed in ZM is equivalent to

performing the same operations in each Zmi
(called a residue channel) composing the

product ring. These operations are parallelizable.

When M is the product of many small primes, the cost of performing ring operations

in the product ring grow proportional to the largest factor of M instead of proportional to

M itself. The distribution of prime numbers becomes an interest because that distribution

determines the size of each residue channel. The Prime Number Theorem and its corollaries

provide a bound on the distribution of prime numbers. Later analysis requires the theorem

in the following form, which states that prime numbers are distributed logarithmically.

Theorem 3 (Prime Number Theorem). Let π (x) denote the number of prime numbers less

than or equal to x. For x ≥ 17,

x

ln (x)
< π (x) < 1.26

x

ln (x)
. (2.4)

2.2 Computer Arithmetic Background

Computer arithmetic studies number systems – the way digital systems represent numerical

values – and the algorithms to manipulate them. Since these algorithms ultimately end

up in hardware, there is an engineering aspect as well as a theoretical aspect to computer

arithmetic.
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We view the theoretical research process in terms of three phases. In the first phase, we

define the number system and study the underlying mathematics. In the second phase, we

define algorithms and architectures to perform arithmetic operations in the number system.

In the final phase, we study the dependencies of resource utilization and execution time as

functions of the input sizes.

We view the engineering aspect as determining whether a number system and algorithm is

desirable for a particular application (i.e., special-purpose computing versus general-purpose

computing). Desirability depends on many factors: manufacturing cost, performance,

resource utilization, reliability, and power consumption. This list is not exhaustive.

We provide an overview of the binary and residue number systems before describing

fundamental computer arithmetic algorithms and architectures.

2.2.1 Number Systems

A number system is a set of digit values together with a rule for interpreting a sequence

of digits as a numerical value. Several number systems have been developed to include

conventional number systems (e.g., binary), signed-digit number systems, and residue

number systems. In this thesis, we address the binary number systems and residue number

systems. Readers interested in a broad treatment of number systems and algorithms for

manipulating them should refer to Koren [21].

It is common to classify number systems according to the following attributes: redun-

dancy, weightedness, positional, and radix type.

Definition 3. A number system is redundant if there is a numerical value with multiple

representations within that system. If every numerical value has a unique representation

however, we say the system is non-redundant.
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Definition 4. A number system is weighted if there is a sequence of weights (wn−1, wn−2, . . . , w0)

that relates a numerical value x to its sequence of digits (xn−1, xn−2, . . . , x0) by the inter-

pretation rule

x =
n−1∑
i=0

xiwi. (2.5)

Otherwise the number system is unweighted.

Definition 5. A weighted number system is positional if the weight of a digit depends only

on its position in the sequence.

Definition 6. A number system is conventional if it is non-redundant and positional.

Definition 7. A conventional number system is fixed-radix with radix r if wi = ri. Other-

wise the system is mixed-radix. The interpretation rule for a fixed-radix system with radix r

is

x =
n−1∑
i=0

xir
i. (2.6)

Non-redundant positional number systems behave similarly to the commonly used

decimal number system. We elaborate more on the first three properties within the context

of each respective number system.

Binary Number Systems

Binary number systems are conventional fixed-radix number systems with radix 2. They are

the standard number systems for general-purpose computing due to their many advantages.

The arithmetic algorithms are mature, fast enough for most applications, and easy to

implement. The numerical range of these systems is simple to extend. The two binary

number systems we consider are the unsigned system and the two’s complement signed

system.
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Definition 8. The n-bit unsigned binary system is a non-redundant fixed-radix system with

radix 2 consisting of the set of n-tuples (xn−1, xn−2, . . . , x0) with xi ∈ {0, 1} for all i such

that 0 ≤ i ≤ n− 1. The interpretation rule follows Equation 2.6 with r = 2:

x =
n−1∑
i=0

xi2
i. (2.7)

Definition 9. The n-bit signed binary system, or n-bit two’s complement binary system, is

identical to the unsigned binary system except wn−1 = −2n−1.

The number of digits required by a binary number system depends on the range of values

the system needs to cover. Often the number system can represent values beyond what a

system requires. The range of the unsigned binary system is [0, 2n − 1] and the range of the

signed binary system is [−2n−1, 2n−1 − 1]. Between the unsigned and signed systems, only

the most significant bit changes in weight. Therefore numbers in the range [0, 2n−1 − 1]

have the same representation when interpreted as unsigned or signed. For this same reason,

we consider the two’s complement signed system to be fixed-radix despite the negative

weight of the most significant bit.

As a consequence of the positional property, the operations of comparison and sign

detection are particularly efficient in binary.

Residue Number Systems

In contrast to binary number systems, residue number systems (RNSs) tend to find use in

special-purpose computing such as digital signal processing (DSP). Many RNS algorithms

use binary number system algorithms as building blocks. Despite this composition, opera-

tions such as addition, subtraction, and multiplication are more efficient in an RNS than in a

binary system encompassing the same numerical range. However, RNSs have limitations
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that prevent them from finding use in general-purpose computing. For example, fractions are

not easily representable and efficient algorithms are not yet known for the other operations.

Definition 10. A residue number system (RNS) consists of a set of pairwise coprime moduli

M = {m1,m2, . . . ,mK} called the RNS base and the set ofK-tuples (z1, z2, . . . , zK) where

0 ≤ zi < mi for each modulus. The interpretation rule

z1 = z mod m1

z2 = z mod m2

... (2.8)

zK = z mod mK

relates z to its K-tuple: the residues of z in each channel of the RNS base.

Since the RNS base is pairwise coprime, the Chinese Remainder Theorem relates a

K-tuple with its numerical value. The Chinese Remainder Theorem also implies the RNS is

algebraically isomorphic to ZM with the range [0,M − 1] where

M =
K∏
i=1

mi. (2.9)

As with the binary system, M depends on the range of values an RNS must cover and there

are many RNS bases that are sufficient. Finding an optimal RNS base for a given range and

hardware constraints is not trivial.

RNSs are unconventional number systems so their properties differ significantly from

those of the conventional number systems described previously.
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Weightedness RNSs are weighted, but not positional. However, a common convention in

the literature is to order the residues in increasing moduli order with non-redundant residues

preceding redundant residues. This is the convention we use in this thesis.

In RNSs, addition, subtraction, and multiplication are more efficient than in a binary

system. The extent to which these operations are more efficient depends on the largest

modulus in the base of the RNS, so many small moduli are desirable compared to few large

moduli. The Prime Number Theorem establishes a limit on the performance gain since the

distribution of primes grows logarithmically.

The remaining operations, which include sign detection, comparison, and scaling (di-

vision by a constant), are hard in RNSs compared to binary systems because RNSs are

non-positional systems. Modular reduction by a constant uses the scaling operation because

generating a quotient generates a remainder by the Division Algorithm.

Most digital systems use the binary system, so it is often necessary to convert forward

from binary to an RNS to leverage the parallelism and then convert reverse from the RNS

back to binary. Forward conversion uses residue channel arithmetic, which is efficient.

Reverse conversion, however, requires high-radix arithmetic, which is slow.

Each RNS admits an associated mixed-radix system (AMRS), which is a positional

weighted analog for the RNS. We assume, for simplicity, the moduli are in increasing order.

Given the RNS base {m1,m2, . . . ,mK}, define the AMRS weights as {a1, a2, . . . , aK−1}
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where ai is the product of the first i moduli:

a1 = m1

a2 = m1m2

...

ai =
i∏

j=1

mj (2.10)

...

aK−1 =
K−1∏
j=1

mj.

Since AMRSs are positional, the advantage of parallel operations is lost in exchange for

efficient sign detection and comparison operations.

2.2.2 Algorithms and Implementations

Up to this point we have discussed several number systems and operations without regard to

specific algorithms or implementations. In this section, we discuss efficient algorithms and

implementations for all operations we require, and quantify their performance.

We start with the generic building blocks of digital arithmetic and compose them to form

modular arithmetic blocks. These initial designs use the binary number system and are our

primitives. Number systems use different configurations of these primitives to achieve better

running time than simply implementing larger-sized primitives. These form the higher level

algorithms and architectures we discuss: Montgomery multiplication, RNS base extension,

and RNS forward conversion and reverse conversion.

20



The primitives we present were designed prior to the invention of field-programmable

gate arrays (FPGAs), which is the implementation fabric we use in this research. Following

the convention found in the literature, we present all complexity analyses in terms of

mathematical operations and operand bit-lengths. This convention ensures algorithm running

time and memory usage are agnostic to a specific implementation fabric.

Fundamental Arithmetic Algorithms

The building blocks of digital arithmetic include binary adders, binary multipliers, and

binary division circuits. Modern digital arithmetic algorithms and architectures comprise a

subset of these fundamental blocks. There are several algorithms from which to choose for

implementing these building blocks. We refer the reader to Koren [21] for details regarding

these blocks including architectures and performance metrics.

The parallel prefix adders include some of the fastest binary adders today. Brent-

Kung [10] and Kogge-Stone [20] are examples of parallel prefix adders and their gate delay

is near optimal for binary adders. Wallace trees [40] and Dadda multipliers are examples of

fast binary multipliers. Multipliers theoretically can achieve similar execution time to that

of adders, but Koren notes multiplication is slower in practice.

The algorithms we present use division to facilitate modular reduction. Given arbi-

trary precision, division is equivalent to multiplying by the divisor’s reciprocal. When the

dividends are unbounded or the divisor is variable, we must compute the reciprocal dynami-

cally. When the dividends are bounded and the divisor is constant, we can pre-compute the

reciprocal and division becomes as easy as multiplication.
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Algorithm 4: Modulo-m Adder
Input :Three integers x, y, and m such that x, y < m
Output :The sum of x and y modulo m

1 begin
2 s0 ← x+ y;
3 s1 ← s0 −m;
4 if s0 < m then
5 s← s0;

6 else
7 s← s1;

8 return s;

Modulo-m Adder

The modulo-m adder computes the value (x+ y) mod m for integers x, y, and m. If we

assume x, y < m, then the sum may exceed m, but not 2m. We can detect whether the sum

exceeds m and decide whether a correction by m is necessary. Algorithm 4 implements this

approach and allows us to treat m as a parameter.

This architecture requires two binary adders and a binary comparator. The total gate

delay of this structure is twice the gate delay of the adders and the total area is the sum of

the area of the three components. The special case when m is a power of 2, a single binary

adder is sufficient.

Modulo-m Reduction

The modular reduction block computes the value x mod m given integers x and m. In

general, modular reduction and division are equally hard. When m is a constant, we can use

pre-computation to achieve a time-memory optimization.
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Algorithm 5: Modular Reduction by m
Input :An integer x of length n.
Output :x mod m

1 begin
2 for i← 0 to n do
3 if xi = 1 then
4 p← PowerTable (i);

5 else
6 p← 0;

7 s← ModularAdder (p, s,m);

8 return s;

Using the properties of modular arithmetic, we can modify Equation 2.7:

x mod m =

(
n−1∑
i=0

xi
(
2i mod m

))
mod m. (2.11)

When x has a known maximum length n, then modular reduction requires at most n− 1

modular additions and n table lookups. The resulting algorithm (Algorithm 5) is faster and

simpler than multiplication and division. We can extend this table to apply to arbitrarily long

x by observing the periodicity property of the set {2i mod m|i ∈ Z} noted in Mohan [4],

which follows from the finiteness of Zm.

The execution time depends on the organization and execution time of the modulo-m

adders. The memory requirements depend on the size of the set {2i mod m|i ∈ Z}. In the

special case when m is a power of 2, reduction is equivalent to truncation.

Modular Multiplier

Three methods for implementing modular multiplication are

• multiplication followed by reduction;
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Algorithm 6: Interleaved Modular Multiplication
Input :Two integers A and B less than M
Output :AB mod M

1 begin
2 /* Let A = (an−1, . . . , a0) and B = (bn−1, . . . , b0). Define the

partial product P i = Abi. */
3 P ← 0;
4 for i← n− 1 to 0 do
5 P ← 2P + P i;
6 if P > M then
7 P ← P −M ;

8 if P > M then
9 P ← P −M ;

10 return P ;

• interleaved multiplication and reduction steps; and

• Montgomery’s method.

The first method is implementable using a binary multiplier and a modulo-m reduction

unit. Since this architecture is sequential, the execution time, memory requirements, and

number of gates is equal to the sum of that required for the multiplier and the reduction unit.

The second method interleaves the reduction steps into the multiplication. This is

possible because efficient architectures compute multiplication as a summation of partial

products. Algorithm 6 is an example algorithm demonstrating the technique. Correctness of

the algorithm follows from the loop invariant P < m. Since A,B < m and bi is either 0 or

1, it follows that P ← 2P + Abi < 3m. At most two corrections (i.e., reductions) ensure

P < m. By interleaving reduction into the multiplication, reduction is computable using a

constant number of subtractions in lieu of a division operation. This results in better running

time for small moduli.
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Algorithm 7: Montgomery Multiplication
Input :Two integers x and y less than N
Output :xy mod N

1 begin
2 s← xy;
3 t← s

(
−N−1 mod R

)
;

4 u← tN ;
5 v ← s+ u;
6 w ← v/R;
7 return w;

These first two methods are slow because the cost of high-radix reduction is high. Other

techniques, called high-radix methods, were developed to handle large moduli. One of those

techniques is Montgomery’s method [25].

Montgomery Multiplication

In computing the modular product, Montgomery’s method replaces the complex reduction

modulo-N operation with an easier reduction by another modulus (e.g., a power of 2) called

Montgomery reduction.

Definition 11. Suppose N and R are two coprime integers such that N < R. Let T be an

integer such that 0 ≤ T < NR. The Montgomery reduction of s modulo N is defined as

TR−1 mod N .

The Montgomery product (MM) of two integers x, y < 2N is an ordinary product

followed by a Montgomery reduction: w = xyR−1 mod N . For convenience, we replicate

as Algorithm 7 the version from Kawamura’s Cox-Rower paper [19].

Since x, y < 2N the result satisfies the inequality w < 2N .
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Given an integer x, define x̃ = xR mod N . When the multiplicand and multiplier are in

this special form, the Montgomery product yields a result of the same form:

MM (x̃, ỹ) = x̃ỹR−1 mod N

= (xy)R mod N = wR mod N = w̃. (2.12)

Using this property it is possible to chain, without intermediary correction steps, Mont-

gomery multiplication operations such as in modular exponentiation. The only additional

steps required are conversion to the special form before the first Montgomery multiplication

and conversion from the special form after the last Montgomery multiplication.

The actual Montgomery multiplication operation is faster than the modular multiplication

techniques described previously. Overhead from the conversion steps, however nullify the

performance gain. So for a single modular multiplication the Montgomery method is slower

than classical techniques, but for repeated modular multiplications the Montgomery method

is almost twice as efficient due to the easier reduction [23].

As an aside, using the binary system it is possible to interleave Montgomery’s method

into the multiplication similarly to how modular reduction can be interleaved into classical

modular multiplication. The technique has been generalized to multiprecision arithmetic

to make high-radix Montgomery multiplication. A comprehensive treatment is available

in [35]. We are not aware of similar techniques for RNSs. This may be because RNS

Montgomery multiplication (see Chapter 3) is fast enough not to require such methods.

Modular Exponentiation

Modular exponentiation computes the value xy mod n, which is a series of modular prod-

ucts. Modular exponentiation units use the modular multiplier in addition to other logic.
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Algorithm 8: Binary Modular Exponentiation
Input :Two integers x and y =

(
ym−1, . . . , y0

)
less than n such that ym−1 = 1

Output :xy mod n
1 begin
2 z ← x mod n;
3 for i← m− 2 to 0 do
4 z ← z2 mod n;
5 if yi = 1 then
6 z ← xz mod n;

7 return z;

Assuming an optimized modular multiplier, different techniques for exponentiation have

been developed. The two fastest techniques are the binary exponentiation method (square-

and-multiply method) and the sliding window method.

Binary exponentiation uses the binary representation of the exponent y, observing that

y = (1, yk−2, . . . , y0) and

xy = x2
k−1+

∑k−2
i=0 2iyi

= x2 ·
k−2∏
i=0

x2
iyi . (2.13)

Using this form, exponentiation requires at most 2 lg y − 2 modular multiplication opera-

tions. The algorithm is detailed in Algorithm 8.

The sliding window technique is a generalization of the binary method, which assumes

a window size of 1. Though the technique is well-understood, we note the literature on RNS

modular exponentiation using the sliding window technique is sparse. For details, we refer

the reader to [35].
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Conversion Algorithms

Conversion algorithms enable systems using different number systems to interface with each

other. The important conversion algorithms convert between binary and a chosen RNS. For

now assume we have an RNS with base M = {m1,m2, . . . ,mK} and M = m1m2 · · ·mK .

Forward conversion is the process of converting a number x from its binary representation

to its residue representation. We can do this by simply reducing x by each modulus in

the RNS base. Most forward conversion algorithms operate in this manner. We defer the

algorithm details until we introduce the reduced-precision residue number system (RP-

RNS) [33] (treated fully in Chapter 4) because our implementation of RP-RNS includes a

forward conversion algorithm.

Reverse conversion is the process of converting a number from its RNS representation

to its binary representation. Before treating reverse conversion further, we discuss two

types of reconstruction algorithms: partial reconstruction as shown in [30, 31] and full

reconstruction. To define both types of reconstruction, we will consider a number Z in RNS

with representation (z1, z2, . . . , zK). In Section 2.1.3 we stated two forms of the Chinese

Remainder Theorem. The first form (Equation 2.2) determines Z from its residues in M,

but Z may be larger than the RNS range M ; we will refer to this value as ZT , following the

notation in [30, 31]. The second form (Equation 2.1) determines the smallest Z, which is

both smaller than M and equals ZT mod M . Using the Division Algorithm we can write

Equation 2.14 relating ZT and Z.

ZT = RcZM + Z (2.14)
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The value RcZ is the reconstruction coefficient for Z [30, 31]. Full reconstruction is

the determination of ZT in a conventional number system. Partial reconstruction is the

determination of the reconstruction coefficient without a full reconstruction.

Reverse conversion requires full reconstruction to determine Z whereas other algorithms

(e.g., base extension) may only require partial reconstruction. The Chinese Remainder

Theorem is the basis for all modern reconstruction algorithms.

Gauss’s algorithm is an example of a full reconstruction algorithm. Given M as the

product of K moduli, reconstruction using Gauss’s algorithm requires K lgM -bit modular

multiplication and modular addition operations. Kawamura’s Cox-Rower architecture

provides a full reconstruction algorithm using their base extension algorithm. This method

requires 2K2 +K modular multiplication and if correction is necessary, K2 subtractions.

RP-RNS provides a partial reconstruction algorithm. Reverse conversion uses the

reconstruction coefficient in combination with high-radix binary arithmetic. This approach

requires K lgM -bit multiplications and additions. Using this method, we avoid high-radix

modular arithmetic, which may be slower. We provide a full treatment of RP-RNS in

Chapter 4 and defer treating forward and reverse conversion until then.

Parallel Operations

Addition and multiplication in RNS are parallel operations because of the isomorphism

between ZM and the product ring formed by the moduli in the RNS base M. Each channel,

having a different modulus, requires its own modular adder and a modular multiplier for

addition and multiplication. The speed of addition and multiplication equals the speed of

the modular adder and multiplier of the largest channel. Area and memory requirements,

respectively, equal the sum of the area and memory requirements needed for the operations

across all channels.
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2.3 Implementation Fabrics

The application-specific integrated circuit (ASIC) and field-programmable gate array (FPGA)

are two of several fabrics on which we can implement hardware designs. Many of the

algorithms and architectures we discussed were designed before the invention of FPGAs.

These algorithms work equally well on both technologies. As different technologies however,

they have different properties and use cases, so it makes sense to compare and the contrast

the two to understand when to use one over the other. The treatment we provide is a

condensed comparison. We refer the reader to Maxfield [22] for a comprehensive treatment.

ASICs are integrated circuits customized for a specific use. The engineer designs

the ASIC and designs are fixed in hardware at fabrication time. This means any flaws

discovered post-fabrication requires a new production run to fix. In combination with high

pre-fabrication non-recurring expenses, ASICs can be expensive, which makes them a poor

choice for prototyping and rapid development. However, they are excellent candidates for

high-volume production of static designs as the cost per board is cheap and decreases as

production increases. This allows manufacturers to amortize the non-recurring costs of

production across each board. Despite the significant drawback of cost, there are many

benefits to using ASICs. Since the device is manufactured to the design specification,

ASICs benefit from high performance, efficient resource utilization, and smaller form factor

technology. The benefit of smaller form factor technology is increased logic density and

subsequently increasingly complex circuits.

FPGAs are a special type of ASIC. They are reconfigurable general-purpose integrated

circuits consisting of a hierarchy of logic cells, logic slices, and configurable logic blocks

(CLBs) (see Figure 2.1). At the bottom of the hierarchy are the logic cells, which minimally

comprise reconfigurable lookup tables (LUTs) and storage elements. These two elements
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Figure 2.1: Structure of an FPGA configurable logic block.

make a logic cell a universal logic function. Logic cells may also contain multiplexers,

arithmetic units, or shift registers. Logic cells are grouped into logic slices and further

grouped into CLBs. Engineers configure FPGAs with logical circuits written in a hardware

design language (HDL) such as VHDL or Verilog. The number of times an FPGA can be

configured is virtually limitless. This means non-recurring expenses are negligible compared

to ASICs and flaws are easily corrected by updating the HDL code. This makes FPGAs

excellent candidates for prototyping, rapid development, production of dynamic designs,

and low-volume production. The flexibility of FPGAs carries a performance cost. With

logic cells as the basic unit over gates, implementing a simple function (e.g., an inverter)

uses the same quantity of hardware as a more complex function (e.g., a full adder). This

decreased logic density makes high-complexity circuits infeasible on FPGAs. Furthermore,

since the FPGA is not optimized for the hardware design, FPGAs are less resource efficient

and do not perform as well as ASICs.
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Figure 2.2: An example structure of an FPGA logic cell.

ASICs FPGAs
Logic count > 1.4 billion transistors 2 million cells [43]
Logic density High Low
Design complexity High Low
Design fixing Manufacturing Reconfigurable
Non-recurring engineering cost High Low
High volume production cost Low High
Common Use Case Production Prototyping

Table 2.1: Summary Comparison of ASICs and FPGAs

We summarize the contents of this section in Table 2.1, which we derived from Max-

field [22]. Neither technology is superior to the other and the best implementation medium

depends on manufacturing and design requirements.
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2.4 Key Points

Residue number systems allow for fast parallel implementation of arithmetic operations in

lieu of slow high-radix binary algorithms. The Chinese Remainder Theorem is the core of

residue number systems.

The RP-RNS algorithms we implement rely on the Chinese Remainder Theorem and

Division Algorithm. The CRT provides the mapping between the range of the RNS and the

residue channels. In Chapter 4 we describe how to implement the RP-RNS algorithms. The

partial reconstruction algorithm uses a fractional form of the CRT. The quotient-first scaling

algorithm uses a fractional form of the Division Algorithm, which leads to the RP-RNS

modular exponentiation algorithm.

We follow Phatak’s choice of RP-RNS base: the first K prime numbers. The Prime

Number Theorem is a useful tool for analyzing the RP-RNS algorithms.

In the chapter that follows we discuss related work, all of which use Montgomery’s

method for performing modular multiplication. We will see, however, there is a fundamental

limitation to this approach.
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Chapter 3

Related Work

In this chapter, we discuss work related to RNS-based modular exponentiation techniques

and implementations. Unless mentioned otherwise, all related work regarding implemen-

tations we discuss used custom application-specific integrated circuits. At the end of the

chapter, we describe Gandino’s implementations, which are the fastest implementations of

which we are aware and what we use as our basis of comparison in Chapter 6.

Modern RNS-based modular exponentiation techniques use either Montgomery’s method

or the Division Algorithm directly. Most work in this area use a translation of Montgomery’s

method to RNS. The reduced-precision residue number system (RP-RNS) – the system on

which our implementation is based – can use either method.

3.1 RNS-based Montgomery’s Multiplication

In 1998, Bajard, et al. [5, 6] demonstrated a generic translation of Montgomery’s algorithm

to RNSs. This translation uses two RNS bases, the second of which is responsible for the

reduction. At two points in their translation, the number becomes a multiple of one of the
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Algorithm 9: RNS Montgomery Multiplication
1: [s]A ← [x]A [y]A [s]B ← [x]B [y]B
2a: — [t]B ← [s]B [−N−1]B
2b: [t]A∪B ⇐ [t]B
3: [u]A ← [t]A [N ]A —
4: [v]A ← [s]A + [u]A —
5a: [w]A ← [v]A [B−1]A —
5b: [w]A ⇒ [w]A∪B

Note: Columns are for emphasis. The left column represents operations performed on
residues in A and the right column represents operations performed on residues in B.
The arrows represent base extensions.

RNS bases and thus the residues vanish. This can be perceived as a form of lost information

that requires recovery. The recovery method used is a base extension. The version of the

translation we reference (Algorithm 9) comes from Kawamura [19].

Let A and B be RNS bases and let N < A and B be coprime. The second step of

Algorithm 7 requires a reduction modulo B. Since reduction is a hard operation in RNS, the

reduction in the second step of Algorithm 7 takes place as an ordinary operation in base B;

the residues in base A are lost. Similar information loss occurs in the last step since B has

no inverse modulo B. A method to recover the lost residues is necessary.

3.2 Base Extensions for RNS-based Montgomery

The base extension operation of a number z adds additional channels to an RNS base by

generating z’s residues for the added channels. There are two reasons this operation is

desirable: a larger RNS base permits expression of a larger number range and it serves as a

method to recover lost residues in Montgomery multiplication.
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Definition 12 (Base Extension). Let M be an RNS base with K moduli and M′ be another

RNS base with K ′ moduli such that M ⊂M′ and K < K ′. Let z < M be an integer with

residues (z1, z2, . . . , zK) in M. The base extension of z from M to M′ is the set of residues

of z in base M′: (z1, z2, . . . , zK′).

Without loss of generality, we can assume the first K moduli in both bases correspond.

The first K residues of z in M′ will match the residues in M. The base extension operation

computes the remaining residues of z for the moduli {mK+1, . . . ,mK′}.

There is another equivalent formulation of base extension operation.

Theorem 4. Let A and B be RNS bases such that A ∪B contains only pairwise coprime

moduli. Then the mapping of z as residues of A to residues of A ∪B is the base extension

of z from A to A ∪B.

Proof. Let M = A and M′ = A ∪B.

Each modern base extension algorithm requires a form of reconstruction. Since both

partial and full reconstruction operations are sequential, base extension is the bottleneck

operation for RNS Montgomery multiplication. Much effort has been expended to decrease

this bottleneck.

The first base extension algorithms used Garner’s algorithm [17] and Szabo and Tanaka’s

Mixed-Radix Conversion (MRC) algorithm [38]. Each perform a full reconstruction of z

before computing the remaining residues in parallel. They are the slowest base extension

algorithms because they use no additional information beyond the residues of z and the

RNS base. The MRC algorithm requires (K2 +K)/2 lookup tables with a total latency of

2K cycles where K is the number of moduli.

In 1988, Shenoy and Kumaresan [36,37] developed a fast base extension algorithm using

integer domain representation and a redundant modulus. Unlike Garner’s algorithm and the
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MRC algorithm, Shenoy and Kumaresan’s technique is a partial reconstruction algorithm.

It requires 2(K + 1) lookup tables with a total latency of lg (K + 1) + 2 cycles. The total

number of modular multiplications required is K2 +K or K2 + 2K depending on whether

an exact result is necessary. This is a large improvement over the MRC algorithm.

Bajard’s [5, 6] translation of Montgomery’s algorithm to RNSs is general in that the

base extension steps do not depend on the implementation of the operation. They provided

implementations using both the MRC algorithm and Shenoy and Kumaresan’s algorithm.

The advantage of using Shenoy and Kumaresan’s base extension method is that the result

need not be exact; only the second base extension needs to be exact. Since exactness is

not necessary for the first base extension, the total number of modular multiplications is

2K2 + 8K.

In 2000, Kawamura, et al. [19] proposed a recursive base extension algorithm for their

RNS Montgomery multiplication implementation: Cox-Rower architecture. Their base

extension algorithm computes the reconstruction coefficient one bit per step. Since each base

extension uses the same algorithm, the total number of modular multiplications required is

2K2 + 9K, which is slightly higher than Bajard’s method.

In 2012, Gandino, et al. [16] took Bajard’s and Kawamura’s method and reorganized the

steps in the RNS Montgomery multiplication algorithm to reduce the number of multiplica-

tions required by 3K.

3.3 RNS-based Montgomery Implementations

In 2001, Nozaki, et al. [27] implemented an ASIC of the Cox-Rower architecture. Their

implementation included eleven 32-bit Rower units. The main logic of their ASIC used

221,000 gates. For 1024-bit RSA they used 57 KB of read-only storage and 12 KB of
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writable storage. They achieved a running time of 2.4 ms using an 80 MHz clock. They

concluded a fully parallel implementation could achieve a processing time of less than 1 ms.

In addition to further optimizing Bajard’s and Kawamura’s algorithms and architec-

tures, Gandino, et al. [16] compared six implementations of each: three-stage, four-stage,

ω (ci) ≤ 3 without base knowledge, ω (ci) ≤ 3 with base knowledge, ω (ci) ≤ 2 without

base knowledge, and ω (ci) ≤ 2 with base knowledge. They synthesized their architectures

using Nangate 45 nm Open Cell Library and used the same parameters as Kawamura and

Nozaki (i.e., eleven 32-bit Rower units). Their slowest implementation was plain Cox-Rower

using the three-stage architecture. It executed an RNS Montgomery multiplication in 88 cy-

cles with a cycle delay of 1.73, which approximates to 153 ns. Their fastest implementation

was an optimized Cox-Rower using their ω (ci) ≤ 3 architecture with base knowledge. It

executed an RNS Montgomery multiplication in 78 cycles with a cycle delay of 1.12, which

approximates to 88 ns.

The implementations we described are custom ASIC implementations. While we

prefer to base our comparison on an FPGA implementation of the described algorithms

and architectures, we are unaware of such implementations’ existences. Since Gandino’s

implementation is the fastest ASIC implementation of which we are aware, we use this as

the basis of our comparison.
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Chapter 4

Reduced-Precision Residue Number

System (RP-RNS)

In this chapter, we introduce Phatak’s reduced-precision residue number system (RP-

RNS) [33]. For brevity we choose initially to state without proof the features of RP-RNS

to motivate its definition. Across the chapter, we weave the theorems that prove these

features are desirable. We state the algorithms used to implement modular exponentiation in

RP-RNS while maintaining compatibility with existing binary-based computing systems.

We provide a correctness proof and a time and space analysis for each algorithm based on

the assumptions of Phatak. We add the execution time can vary significantly depending on

how much parallelism an implementation uses. We conclude the chapter with strategies for

designing RP-RNS systems.

We explain the algorithms in order of dependence:

• binary-RNS forward conversion;

• partial reconstruction (PR);
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• quotient-first scaling (QFS), which uses the output of the PR algorithm;

• modular exponentiation using QFS; and

• RNS-binary reverse conversion.

All algorithms in this chapter are previous work [30, 31]. The reverse conversion

algorithm is a direct logical extension of Phatak’s partial reconstruction algorithm.

4.1 RP-RNS Defined

Within the framework of traditional RNS operations, the RP-RNS algorithms are intermedi-

ate computations. The RP-RNS algorithms produce intermediate results, which need not be

exact. Therefore they can make liberal use of approximation, trading exactness for speed.

Interpreting the Chinese Remainder Theorem (CRT) informally, in RNSs the residues of

a number contain the minimum information required to perform arithmetic operations. Since

approximation discards information, any approximations introduced into a computation can

affect the precision of the final result. With this point in mind we can now define RP-RNS.

Definition 13. A reduced-precision residue number system consists of an RNS base M and

a redundant modulus me not contained in M referred to as the extra residue channel.

The redundant modulus must satisfy the inequality gcd (M,me) < me. When the RP-

RNS base includes 2, letting me = 4 is sufficient. When the RP-RNS base consists of only

odd primes, letting me = 2 is sufficient. This implies the redundant channel uses at most 2

bits [30, 31].

The RP-RNS algorithms use approximations based on the rational form of the CRT and

Division Algorithm. The ability to estimate overflow of both the RNS range M and the
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divisor leads to fast partial reconstruction and scaling algorithms. We note that despite its

use of approximation, the partial reconstruction produces an exact result. The extra residue

disambiguates the estimation since the estimated residues will be off exactly by M .

The values used in the rational form of the CRT and Division Algorithm require exact

high-radix arithmetic to compute. To maintain the advantages of RNS, we must precompute

and store the relevant values; this includes the fractions.

The precomputed values add a memory overhead. In Section 4.7, we shall see a good

heuristic to minimize memory required by using many small moduli such as the first K

prime numbers. We state the algorithmic analysis under the assumption the RP-RNS base

consists of the first K prime numbers. From the Prime Number Theorem it follows [30, 31]

K ≈ O

(
N

lnN

)
≈ O

(
lgM

ln lgM

)
(4.1)

where N is the number of bits required to represent the range of the system.

The list below summarizes the design features that make RP-RNS efficient. None of

these features alone are novel and have appeared in other RNS algorithms.

This list summarizes the design features that make RP-RNS efficient:

• the usage of approximation [19];

• the redundant modulus [36, 37];

• the usage of rational equations over integer equations [19];

• the precomputed lookup tables [5–8, 19, 36, 37]; and

• the choice of many small moduli.

What is novel is how RP-RNS combines these features and the efficiency gained. The RP-

RNS approach is take rational equations of interest (e.g., CRT and Division Algorithm) and
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approximate the constant portions of those equations. The precision of the approximation

is chosen to bound the error such that the final result narrows down to two candidates. We

shall see this as we encounter each algorithm in this chapter.

To aid in our understanding of RP-RNS, we shall carry along with us a small example sys-

tem throughout this chapter. For our system, we shall use the RNS base M = {2, 3, 5, 7, 11}

such that M = 2310 and an extra residue channel me = 4. We seek to compute the ex-

pression xy mod D. For our example system we choose D = 16; equivalently we are

performing modular exponentiation in Z16 using numbers represented as elements of Z2310.

We make the reasonable assumption that x, y < D. For consistency we shall use x = 5 as

our base and y = 5 as our exponent.

4.2 Forward Conversion Algorithm

Binary-based systems employing RNS-based components use conversion algorithms to

maintain compatibility. RNS-based components employ a forward conversion algorithm to

convert input from binary representation to RNS representation.

4.2.1 Algorithm Description

Using the properties of modular arithmetic, we can combine Equation 2.7 with Definition 10

to relate a number x’s binary representation directly to its RNS representation:

xj =
n−1∑
i=0

xi2
i mod mj

=
n−1∑
i=0

xi(2
i mod mj) mod mj (1 ≤ j ≤ K) (4.2)

42



where xj is the residue over the jth modulus.

Provided we have access to modular adders and the residues of the powers of 2 within

each residue channel, Equation 4.2 gives us a method for computing x’s RNS representation

using x’s binary representation (Algorithm 10).

Example 1. Let us convert x = 5 from its binary representation (1, 0, 1) to its RP-RNS

representation (1, 2, 0, 5, 5; 1). We detail the mod 11 channel only. We provide the powers

of 2 and their residues in Table 4.1.

x = (1, 0, 1) =
((

22 mod 11
)

+
(
20 mod 11

))
mod 11 = 5 (4.3)

As our example system’s theoretical range is [0, 2310), we must be able to support 12-bit

binary numbers.

Algorithm 10: Forward Conversion
Input : Integer z in binary representation with length n
Output : Integer z in RNS representation (including extra channel)

1 begin
2 foreach mj ∈M do
3 z̄j ← 0;

4 for i← n to 0 do
5 foreach mj ∈M do
6 z̄j ← (z̄j + PowerTablej (zi)) mod mj;

7 ze ← (ze + PowerTablee (zi)) mod me;

8 return (z̄, ze);

4.2.2 Time and Space Analysis

While slow, one can compute the residues of the powers of 2 using a division circuit.

However, the most common forward conversion algorithm – detailed in Koren [21] – uses a
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i 2i mod 2 mod 3 mod 5 mod 7 mod 11 mod 4
0 1 1 1 1 1 1 1
1 2 0 2 2 2 2 2
2 4 0 1 4 4 4 0
3 8 0 2 3 1 8 0
4 16 0 1 1 2 5 0
5 32 0 2 2 4 10 0
6 64 0 1 4 1 9 0
7 128 0 2 3 2 7 0
8 256 0 1 1 4 3 0
9 512 0 2 2 1 6 0

10 1024 0 1 4 2 1 0
11 2048 0 2 3 4 2 0

Table 4.1: Forward Conversion Algorithm ROMs (period in bold)

precomputed table to relate the powers of 2 to their residues. The largest channel, mK , at

≈ lgN bits is the slowest to convert where N is the number of bits required to represent a

number in our RNS. Assuming we have access to an adder tree and parallel table lookup,

then the running time is O (lgN).

The lookup table requires up to K entries per residue channel depending on the size of

the residue channel. Mohan [4] notes that we can reduce the size of the lookup tables by

taking advantage of the periodicity properties of residue exponentiation. Therefore a lookup

table requires no more entries than the sum of the moduli, which is O (K2).

4.3 Partial Reconstruction Algorithm

In this section, we describe Phatak’s partial reconstruction algorithm [30, 31]. In Sec-

tion 2.2.2 we distinguished full reconstruction from partial reconstruction. Whereas full

reconstruction is equivalent to reverse conversion, partial reconstruction only computes the
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reconstruction coefficient RcZ in Equation 4.4.

Z = ZT −RcZM (4.4)

where

ZT =

(
K∑
i=1

Mi

(
ziM

−1
i mod mi

))
. (4.5)

Current algorithms for base extension incorporate partial reconstruction, however the

two operations are not equivalent. It is therefore meaningless to compare the two. However,

we can use a partial reconstruction algorithm to perform a base extension by reducing

Equation 4.4 by some modulus in the extended base.

4.3.1 Pre-Computed Lookup Tables

The partial reconstruction algorithm lookup tables store truncated fractions for each residue

channel. For convenience, following [30, 31], we introduce the following notation:

ρr =
(
zrM

−1
r mod mr

)
(4.6)

and

fr = ρr/mr. (4.7)

The set {fr} contains all possible fractions for a given channel. The fr values are full-

precision fractions. Since full-precision division is as expensive as computing the CRT, we

approximate using reduced-precision fractions defined as

f̂r = trunc (fr, wF ) (4.8)
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ρ mod 2 mod 3 mod 5 mod 7 mod 11
0 0 0 0 0 0
1 32 21 12 9 5
2 – 42 25 18 11
3 – – 38 27 17
4 – – 51 36 23
5 – – – 45 29
6 – – – 54 34
7 – – – – 40
8 – – – – 46
9 – – – – 52

10 – – – – 58

Table 4.2: Partial Reconstruction Algorithm ROMs (Scaled by 26 = 64)

where wF ≥ dlgKe is the precision of f̂r. Since the fractions are fixed-precision, we may

represent them as integers after scaling them by wF or equivalently ignoring the decimal

point.

Table 4.2 is the lookup table associated with our example. The values in Table 4.2 use

the scaling technique we described.

4.3.2 Algorithm Description

Algorithm 11 [30, 31] is the partial reconstruction algorithm. It takes the RP-RNS repre-

sentation of a number z and computes the reconstruction coefficient Rcz. The algorithm

optionally returns the set of ρ values and the number of non-zero ρ values, which other

RP-RNS algorithms may use.

The algorithm requires a few precomputed values. Within each channel, the lookup tables

and M−1
r mod mr are precomputed. Within the redundant residue channel, Mr mod me

and M mod me are precomputed.
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Each channel uses its residue of z, zr to compute ρr using integer-domain arithmetic.

Each ρr serves as an index into the fraction lookup table for the algorithm. The algorithm

computes the sum of the truncated fractions retrieved from the lookup tables. The integer

portion of the sum becomes a reconstruction coefficient candidate. The alternate candidate is

the integer succeeding the primary candidate. These are the only candidates possible because

the truncated fractions are approximations of the full-precision fractions. To disambiguate

the candidates, we compute a sum and comparison within the redundant residue channel.

If the primary candidate is correct, the comparison will be true. If the comparison is false,

then the comparison will be off by exactly M mod me and the alternate candidate instead is

the correct reconstruction coefficient.

Correctness of the algorithms follows from the analytical derivations in [30, 31].

Example 2. Continuing our example, x = 5 has RP-RNS representation (1, 2, 0, 5, 5; 1).

The Mr values are (1155, 770, 462, 330, 210) and the precomputed values follow: the M−1
r

values are (1, 2, 3, 1, 1); the [Mr]me
values are (3, 2, 2, 2, 2); and [M ]me

= 2.

We compute the ρr values (1, 1, 0, 5, 5) (Line 3). We use the ρr values as lookup table

indices into Table 4.2 to derive the scaled truncated fractions (32, 21, 0, 45, 29) (Line 4).

Summing the scaled fractions results in the value 127 (Line 5). Scaling by wF (division by

64 in this example) yields the primary and alternate candidates: 1 and 2 (Lines 7 and 8).

In parallel with Line 5 we compute Line 6: ZT mod me as 1. Computing the right-hand

side of the equality on Line 9 results in 3. Since the two values are not equal, then the

alternate candidate, 2, is the reconstruction coefficient. The algorithm returns 2. As an aside,

we note that the two computed values differ by exactly [M ]me
.
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Algorithm 11: RP-RNS Partial Reconstruction
Input : Integer z in RNS representation (including me)
Output :Reconstruction coefficient of z: Rcz

1 begin
2 /* Computation of S and zTE are computable in

parallel. Other steps are dependent on their
previous steps. */

3 ρj ← (zjM
−1

j) mod mj 1 ≤ j ≤ K;
4 f j ← FractionTablej

(
ρj
)
;

5 S ←
K∑
j=1

f j;

6 zTE ←

(
K∑
j=1

M jρj mod me

)
mod me;

7 RcA ← RightShift (S,wF );
8 RcB ← RcA + 1;
9 if zTE = (MRcA + z) mod me then

10 Rcz ← RcA;

11 else
12 Rcz ← RcB;

13 return Rcz and optionally (ρ1, ρ2, . . . , ρK) and |{ρ1, ρ2, . . . , ρK |ρi 6= 0}|;
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4.3.3 Time and Space Analysis

The running time of the partial reconstruction algorithm depends on the hardware compo-

nents: memory, hardware channels, and the fraction adder for the precomputed fractions.

The fraction adder is the primary bottleneck. Assuming an adder tree for the K fractions

then the delay is O (lgN) where N is the number of bits required to represent a number in

our RNS.

The partial reconstruction algorithm requires storage for the lookup tables and other

precomputed values. The i-th residue channel has mi − 1 entries. Summing over all residue

channels yields an upper bound of KmK ≈ O (K2) ≈ O
(
(N/ lnN)2

)
entries. Each entry

uses wF , or O (lgN), bits of storage. Therefore the total number of bits is O (N2/ lnN).

4.4 Quotient-First Scaling Algorithm

Scaling is a special case of general division in which the divisor is a constant. The quotient-

first scaling (QFS) algorithm [30, 31] uses approximation in computing the Division Algo-

rithm to perform true division and modular reduction. Whereas the partial reconstruction

algorithm always outputs an exact reconstruction coefficient, the QFS algorithm can only

narrow the quotient down to two candidates without employing a correction step such as

sign-detection. For some applications, such as modular exponentiation, the estimate is

sufficient.

4.4.1 Pre-Computed Lookup Tables

The QFS algorithm has two types of lookup tables called QFS Table 1 and QFS Table 2.

Table 1 uses the ρ values from the partial reconstruction algorithm as its indices. Table 2
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uses the reconstruction coefficient as its index. Unlike the partial reconstruction algorithm,

these tables store both integer parts as residues and fractional parts as truncated fractions.

The truncated fractions for the QFS algorithm require slightly higher precision than those

for the partial reconstruction algorithm: wF ≥ dlgK + 1e.

Tables 4.3 and 4.4 are the lookup tables associated with our example. The fractional

values use the same scaling technique previously described.

4.4.2 Algorithm Description

Algorithm 12 [30,31] is the QFS algorithm. It takes the RP-RNS representation of a number

z and computes an estimate of z divD where the divisor D is a pre-determined constant.

The algorithm returns a flag relating to the exactness of the quotient. If the flag is true, then

the quotient is known to be exact. If the flag is false, then the algorithm could not determine

the exactness of the quotient and further checks are needed.

Unlike the partial reconstruction algorithm, the QFS algorithm requires only the lookup

tables.

Algorithm 13 is a modular reduction algorithm based on the Division Algorithm. It takes

the RP-RNS representation of a number z and computes z mod D assuming the quotient

z divD is known. Three cases arise depending on the quality of the quotient.

1. If the quotient is at most an underestimate (e.g., QFS algorithm) then the result may

exceed D, but will be in the proper residue class modulo D.

2. If the quotient is exact then the result will fall in the range [0, D − 1].

3. If the quotient is an overestimate then the result will underflow the range of the system.
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mr ρr Quotient (Qr) Qr mod 4 Qr mod mj Remainder (Rr)

2
0 0 0 (0, 0, 0, 0, 0) 0
1 72 0 (0, 0, 2, 2, 6) 12

3
0 0 0 (0, 0, 0, 0, 0) 0
1 48 0 (0, 0, 3, 6, 4) 8
2 96 0 (0, 0, 1, 5, 8) 16

5

0 0 0 (0, 0, 0, 0, 0) 0
1 28 0 (0, 1, 3, 0, 6) 56
2 57 1 (1, 0, 2, 1, 2) 48
3 86 2 (0, 2, 1, 2, 9) 40
4 115 3 (1, 1, 0, 3, 5) 32

7

0 0 0 (0, 0, 0, 0, 0) 0
1 20 0 (0, 2, 0, 6, 9) 40
2 41 1 (1, 2, 1, 6, 8) 16
3 61 1 (1, 1, 1, 5, 6) 56
4 82 2 (0, 1, 2, 5, 5) 32
5 103 3 (1, 1, 3, 5, 4) 8
6 123 3 (1, 0, 3, 4, 2) 48

11

0 0 0 (0, 0, 0, 0, 0) 0
1 13 1 (1, 1, 3, 6, 2) 8
2 26 2 (0, 2, 1, 5, 4) 16
3 39 3 (1, 0, 4, 4, 6) 24
4 52 0 (0, 1, 2, 3, 8) 32
5 65 1 (1, 2, 0, 2, 10) 40
6 78 2 (0, 0, 3, 1, 1) 48
7 91 3 (1, 1, 1, 0, 3) 56
8 105 1 (1, 0, 0, 0, 6) 0
9 118 2 (0, 1, 3, 6, 8) 8

10 131 3 (1, 2, 1, 5, 10) 16

0 ≤ ρr < mr, Qr =

⌊
Mrρr
D

⌋
, Rr =

⌊
Mrρr −QrD

D
2wF

⌋
, wF = 6

Table 4.3: QFS Algorithm Table-1 for our example.
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Algorithm 12: RP-RNS Quotient-First Scaling Estimation
Input : Integer z in RP-RNS representation
Output :z divD in RP-RNS representation and a confirmation flag for exactness

1 begin
2 /* Partial reconstruction algorithm dependence. */
3 (ρ1, ρ2, . . . , ρK , Rcz)← PartialReconstruction

(
z̄, [z]me

)
;

4 n← |{x|x ∈ {ρ1, ρ2, . . . , ρK , Rcz} ∧ x 6= 0}|;
5 /* Compute the integer part of the quotient. */
6 Q̄i ← QuotientTable1 (i, ρi, 5);
7 Q̄Rcz ← QuotientTable2 (Rcz, 4);

8 Q̄←
K∑
i=1

Q̄i − Q̄Rcz ;

9 [Q]me i
← QuotientTable1 (i, ρi, 4);

10 [QRcz ]me
← QuotientTable2 (Rcz, 3);

11 [Q]me
←

K∑
i=1

[Q]me i
− [QRcz ]me

;

12 /* Compute the fractional part of the quotient. */
13 Ri ← QuotientTable1 (i, ρi, 6);
14 RRcz ← QuotientTable2 (Rcz, 5);

15 Qf ←
K∑
i=1

Ri −RRcz ;

16 /* Attempt to determine the exactness of the
quotient. */

17 QL ← RightShift (Qf , wF );
18 QH ← RightShift (Qf + n,wF );
19 QExact← (QL == QH);
20 /* Combine the integer and fractional part of the

quotient. */
21 Q̄← Q̄+QL;
22 [Q]me

← Q̄+QL mod me;
23 return

(
Q̄, [Q]me

,QExact
)
;
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RcZ Quotient Q mod 4 Q mod mj Remainder
0 0 0 (0, 0, 0, 0, 0) 0
1 144 0 (0, 0, 4, 4, 1) 24
2 288 0 (0, 0, 3, 1, 2) 48
3 433 1 (1, 1, 3, 6, 4) 8
4 577 1 (1, 1, 2, 3, 5) 32
5 721 1 (1, 1, 1, 0, 6) 56

0 ≤ RcZ ≤ K, Qc =

⌊
MRcZ
D

⌋
, Rc =

⌈
MRcZ −QcD

D
2wF

⌉
, wF = 6

Table 4.4: QFS Algorithm Table-2 for our example.

Depending on the necessity of exactness, the first two cases are acceptable. The third case is

undefined since the value leaves the range of the system and therefore is never acceptable.

This algorithm requires no additional precomputations.

Correctness of the algorithms follows from the analytical derivations in [30, 31].

Algorithm 13: RP-RNS Modular Reduction Estimation
Input : Integer z in RP-RNS representation
Output :z mod D in RP-RNS representation and a flag confirming exactness

1 begin
2 (Q,Q mod me,QExact)← QuotientFirstScaling (z);
3 R← z −QD;
4 R mod me ← z mod me −Q mod meD mod me;
5 RExact← QExact;
6 return (R,R mod me,RExact);

Example 3. We continue our example by performing a modular squaring operation on

our example. x = 5 has RP-RNS representation (1, 2, 0, 5, 5; 1). Its square, x2 = 25, has

RP-RNS representation (1, 1, 0, 4, 3; 1). The result we seek is x2 mod D = 9, which has

RP-RNS representation (1, 0, 4, 2, 9; 1).

The Mr values are unchanged: (1155, 770, 462, 330, 210). The precomputed values

are also unchanged: the M−1
r values are (1, 2, 3, 1, 1); the [Mr]me

values are (3, 2, 2, 2, 2);
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and [M ]me
= 2. For the quotient tables, we refer to Tables 4.3 and 4.4. The divisor D is

(0, 1, 1, 2, 5; 0).

The partial reconstruction algorithm computes the ρ values and reconstruction coefficient:

(1, 2, 0, 4, 3) and 2. The total of non-zero values is 5.

Using the ρ values and reconstruction coefficient as indices, we compute the sums for

the integer and fractional parts of quotient: (1, 1, 1, 1, 1; 1) and 36. The fractional part of the

quotient does not change the integer part of the quotient because b36/64c = 0. Also, adding

the error from the non-zero ρ values and reconstruction coefficient, we have b41/64c = 0.

Hence QLO = QHI and the quotient is exact.

Since the quotient is exact and 1, computing z −QD yields the result we expected. The

algorithm returns (1, 0, 4, 2, 9; 1).

4.4.3 Time and Space Analysis

The running time of the QFS algorithm also depends on the same hardware components as

does the partial reconstruction algorithm, but less so. The fraction adder does not depend on

the hardware channels, so the fraction adder can run mostly in parallel with the hardware

channels. Furthermore, the modular adders sum many entries from the quotient tables.

The algorithm sums K entries from Quotient Table 1 and 1 entry from Quotient Table 2

per residue channel and in the fraction channel. It performs 1 addition to combine the integer

and fractional parts of the quotient. We use Phatak’s assumption that each hardware channel

has an adder tree and parallel access to all quotient table lookups. Under this assumption,

table lookup runs in lgN time and the summation using the adder tree runs in lgN time

also where N is the number of bits required to represent a number in our RNS. Reducing

the fractional part of the quotient and combining it with the integer part also runs in lgN

making the total execution time O (lgN).
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The QFS algorithm requires storage for the lookup tables. Both tables have the same

space requirements per row, which must support the quotient and remainder. The number of

rows in Quotient Table 1 equals the sum of the moduli (≈ O (K2)). Quotient Table 2 has

one row per possible reconstruction coefficient for a total ofK+1 rows. The total number of

rows between both tables is therefore O (K2). Each component of each row is no larger than

O (lg lgK) bits. Therefore the total memory needed is O (K3 lg lgK) ≈ O (N3 lg lgN)

bits.

The modular reduction estimation algorithm adds a negligible amount of time and space

to the QFS algorithm. The algorithm adds time for one set of modular multiplications

and modular subtraction for a minimum of 2 operations and a maximum of 2K operations

depending on the number of hardware channels. The algorithm requires additional storage

for the precomputed divisor D.

4.5 Modular Exponentiation Algorithm

The modular exponentiation algorithm in this section is a version of the binary modular

exponentiation algorithm adapted to use the RP-RNS algorithms [30, 31].

4.5.1 Algorithm Description

Algorithm 14 [30, 31] is the RP-RNS modular exponentiation algorithm. Given a number x

in RP-RNS representation and a number y in binary representation, it computes an estimate

of z ≡ xy mod D where the divisor D is a pre-determined constant. It also returns an

exactness flag that when true guarantees z < D and when false only guarantees z < 2D.

While the returned residue class will always be correct, we call this an estimate because it

may exceed the divisor D.
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The key modification to the binary modular exponentiation algorithm is the reduction

operation. We replace the modular reduction by D with the modular reduction estimate

algorithm (Algorithm 13). This algorithm places an additional requirement on the RP-RNS.

The RP-RNS range must exceed 4D2. Phatak notes full double length values could be

as large as 3D and therefore recommends a minimum range of 9D2. Correctness of the

algorithms follows from the analytical derivations in [30, 31].

Algorithm 14: RP-RNS Modular Exponentiation
Input : x̄ in RP-RNS representation and y =

(
1, yn−2, . . . , y0

)
in binary

representation
Output : z̄ ≡ x̄y mod D in RP-RNS representation where z̄ < 2D

1 begin
2 (z̄, z mod me,ZExact)← ModRedEst (x̄, x mod me);
3 for i← n− 2 to 0 do
4 (z̄, z mod me)← (z̄, z mod me)

2;
5 (z̄, z mod me,ZExact)← ModRedEst (z̄, z mod me);
6 if yi = 1 then
7 (z̄, z mod me)← (z̄, z mod me)× (x̄, x mod me);
8 (z̄, z mod me,ZExact)← ModRedEst (z̄, z mod me);

9 return (z̄, z mod me,ZExact);

Example 4. In our last example, we compute xy mod D or 55 mod 16 = 5. We do not

provide the computation in complete detail. The curious reader can check for himself or

herself. We instead provide the results after each modular multiplication in Table 4.5.

4.5.2 Time and Space Analysis

When performing modular exponentiation, the exponent y is within the range of the system

due to the ultimate periodicity of repeated modular multiplication. So lg y ≈ N where

N is the number of bits needed to represent a number in our RNS. The binary modular
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Step Operation Operation Result in RP-RNS

1. z mod D (1, 2, 0, 5, 5; 1)
2. z2 mod D (1, 0, 4, 2, 9; 1)

3a. z2 mod D (1, 1, 1, 1, 1; 1)
3b. xz mod D (1, 2, 0, 5, 5; 1)

Final Result z (1, 2, 0, 5, 5; 1)

Table 4.5: RP-RNS modular multiplication results by iteration for Example 4.

Algorithms Running Time

Partial Reconstruction O (lgN)
Quotient-first Scaling O (lgN)
Modular Reduction Estimate O (lgN)

RP-RNS Modular Exponentiation O (N lgN)

Table 4.6: Summary of running times for the RP-RNS algorithms.

exponentiation algorithm performs roughly a minimum of N modular multiplications and a

maximum of 2N . In the modular multiplication, the limiter on the running time is the QFS

algorithm. Using the analysis from the previous sections, we can conclude the running time

is O (lgN) where N is the number of bits needed to represent a number in our RNS.

The modular exponentiation algorithm structurally requires no storage. However, the

modular reduction algorithm may have space requirements. RP-RNS modular exponentia-

tion uses the partial reconstruction and QFS algorithms to perform the modular reduction.

We summarize the running times and storage requirements of all algorithms in Ta-

bles 4.6 and 4.7.
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Precomputations Space Requirements

Fraction Table O (N2/ lnN)
Quotient Tables O (N3 lg lgN)

Total O (N3 lg lgN)

Table 4.7: Modular exponentiation space requirements in bits.

4.6 Reverse Conversion Algorithm

Binary-based systems employing RNS-based components use reverse conversion to convert

the component output from RNS representation to binary representation. The CRT forms

the basis for reverse conversion.

RP-RNS also employs a CRT-based reverse conversion algorithm. We can use the

partial reconstruction algorithm to achieve a faster reverse conversion by taking advantage

of Equation 4.4. We formalize this method as the RP-RNS reverse conversion algorithm

(Algorithm 15). Correctness follows from the CRT and the correctness of the partial

reconstruction algorithm.

Reverse conversion using Gauss’s algorithm requires 4K high-radix arithmetic opera-

tions: K multiplications, K additions, and up to K subtractions and comparisons. Each

subtraction requires a comparison with M because the algorithm does not know the recon-

struction coefficient. This is a form of guess-and-check.

Algorithm 15 is of the same order requiring 2K + 1 high-radix arithmetic operations:

K + 1 multiplications, K − 1 additions, and one subtraction. However, Algorithm 15 is

faster because the partial reconstruction algorithm computes the reconstruction coefficient,

which eliminates all guesswork.
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Algorithm 15: RP-RNS Reverse Conversion
Input :z in RP-RNS representation
Output :z in binary representation

1 begin
2 (ρ1, ρ2, . . . , ρK , Rcz)← PartialReconstruction (z̄, z mod me);
3 for i← 1 to K do
4 z ← z + ρiM i;

5 z ← z −RczM ;
6 return z;

4.7 RP-RNS Design Strategies

We have seen how RP-RNS modular exponentiation achieves theoretically faster running

time than do other forms of RNS modular exponentiation by using a time-memory tradeoff.

For now, we shall focus on the theoretical aspects of designing RP-RNSs. We defer

quantifying the price of the tradeoff until Chapter 6.

For the fast operations in RNS, more moduli results in higher performance due to the

parallelism of RNS. For the slow operations in RNS, fewer moduli results in fewer high-radix

operations. RP-RNS seeks to increase speed of the slow operations. It follows we should

use few large moduli, regarding less the memory overhead from the RP-RNS algorithms.

However, the RP-RNS algorithms completely avoid high-radix arithmetic because of the

approximation. Therefore, Phatak suggests we choose the small prime moduli for our

RP-RNS bases. It follows from the Prime Number Theorem that our base grows with

K ≈ O (lgM/ ln lgM).

Now suppose we bring storage into our design analysis. The lookup table for the partial

reconstruction algorithm is negligible in size compared to the QFS tables. The size of each

QFS table row is proportional to lgM lg lgM . The number of rows roughly equal to the

sum of the moduli in the RNS base. In most cases we minimize this sum by selecting small
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prime moduli as Phatak suggests. However, optimal RP-RNS base selection is remains an

open problem.

4.8 Conclusion

In this chapter, we defined the reduced-precision residue number systems. We explained the

theory behind RP-RNSs and the algorithms to manipulate them. To summarize the system

and algorithms, they work by taking advantage of constant divisors and precomputing

low-radix approximations instead of computing high-radix arithmetic operations.

The RP-RNS modular exponentiation algorithm uses the partial reconstruction algorithm

and quotient-first scaling algorithm to implement modular exponentiation using the Division

Algorithm instead of RNS Montgomery multiplication.

We presented Phatak’s time and space analyses using his assumptions. The QFS al-

gorithm runs in O (lgN) time and requires O (N3 lgN) bits. The QFS algorithm is the

largest contributor to the modular reduction estimate algorithm’s running time and storage

requirements. The analyses provide insight into our results and analysis of our hardware

implementation in Chapter 6.
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Chapter 5

RP-RNS Implementations

We developed two working implementations of modular exponentiation using RP-RNS

algorithms: software-based and hardware implemented on an FPGA. In this chapter we

describe our design, architecture, and implementation.

We discuss two design decisions we made in which we exchanged performance for

additional hardware channels. Our decisions increase the delay of performing QFS from

O (lgN) to O (N). The architecture we describe is standard and our implementation section

provides enough detail for the reader to replicate a design similar to ours.

At the end of the chapter, we explain important points the reader should use to interpret

the results in Chapter 6.

5.1 Software Implementation

Though our focus is hardware, we first developed a software implementation to fulfill two

purposes: to validate our understanding of the RP-RNS system and algorithms and to
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re-verify the correctness of the algorithms numerically. Beside analytical derivations, Phatak

has done extensive simulations to numerically verify all the algorithms [30, 31].

We wrote our software implementation in C originally and later ported it to a Python-

based mathematics software called Sage [3] for its support of vector-based operations,

which represents the parallelism explicitly. We executed this software on commodity 64-bit

architecture hardware, which carries two limitations on parallelization.

The first limitation is commodity hardware. As of the year 2013, most commodity

hardware features at most 16 cores with 64-bit arithmetic logic units [11, 18, 29]. An RP-

RNS using the first 15 prime numbers achieves a 60-bit main modulus with at most 6-bit

channels; the last core is reserved for the redundant channel. We can mitigate this waste of

hardware resources by using moduli optimal for the hardware (e.g. 32-bit or 64-bit moduli),

but using larger moduli results in higher storage requirements as noted in Chapter 4.

The second limitation is due to software. Software may not leverage all available pro-

cessing cores making the software effectively sequential [39]. Our software implementation

suffers from this issue. These two limitations drive the need for our specialized RP-RNS

hardware.

5.2 Hardware Platform

For our target chipset, we used a Xilinx Spartan-3E FPGA (XC3S500E) with a clock

frequency of 50 MHz. We used the vendor’s toolchain, Xilinx ISE v14.5, for design

synthesis for compatibility and to take advantage of the performance offered by intellectual

property blocks. Table 5.1 summarizes the interesting attributes of the chip. The logic

cell structure includes a 4-input lookup table (LUT), a register, a 2-to-1 multiplexer, and

carry/arithmetic logic. While not specific to this particular FPGA, the number of dedicated
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Hardware Attributes Quantity

Clock frequency 50 MHz

Configurable logic blocks 1,164
Logic slices 4,656
Lookup Tables/Flip-flops 9,312
Equivalent Logic cells 10,476
Equivalent System gates 500K

Distributed memory 74,496 bits
Block memory 360K bits

Multipliers 20
Clock domains 4
I/O pins 232

Table 5.1: Xilinx Spartan-3E (XC3S500E) specifications

multipliers is interesting because they are faster than logic cell-based equivalents. In a sense

the number of dedicated multipliers can limit the number of residue channels on a single

FPGA.

We note the literature often uses a higher performing FPGA and clock (e.g., Xilinx

Virtex 5 at 100 MHz) and our hardware is non-standard. We chose this hardware simply

because it was available. We hopefully provide enough information for a useful comparison

in Chapter 6.

It is worth mentioning that while our development board (Figure 5.1) includes 256 MB

of RAM, we did not leverage it out of concern for an execution time penalty.

5.3 Hardware Design

We developed our hardware implementation using VHDL, which is a platform-agnostic

hardware design language (HDL).
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Figure 5.1: Spartan-3E development board by Digilent, Inc.
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We originally planned a speed-optimized implementation and to fully implement

Phatak’s assumptions:

1. the RP-RNS base consisting of the first K prime numbers; and

2. use of parallel-access storage and adder trees.

We ultimately chose to design our hardware to allow for more residue channels by replacing

hardware entities based on the number of logic cells used. Impacted hardware included

the parallel-access storage and adder trees, which we replaced with equivalent sequential

hardware. This carries a theoretical running time penalty from O (lgN) to O (N) where

N is the number of bits to represent a number in our RNS. In Chapter 6 we quantify this

penalty more precisely. In attempt to maximize execution time, we decided to store the

precomputed lookup tables on the FPGA close to the logic that uses them.

We chose to keep Phatak’s choice of RP-RNS base for comparison with Phatak’s

theoretical results and due to the growth rate of the channel word lengths. In reality, however,

our hardware design language (HDL) code supports arbitrary RNS bases and generates an

appropriate FPGA implementation.

Though our emphasis is residue domain modular exponentiation, we designed our

hardware to be compatible with existing binary-based digital systems. By implementing the

forward and reverse conversion algorithms, our hardware is usable as a drop-in component

into existing systems.

We designed our hardware with pre-configured parallelism in mind. We allow multiple

residue channels to share a single hardware channel. Reducing the parallelism increases

execution time by the same factor.

As a convenience, our HDL code also generates the lookup tables. In retrospect we

determined this feature is both unnecessary and undesirable. It is unneeded because if the
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RP-RNS modular exponentiation hardware can support a divisor D, then it can support all

smaller divisors by simply rewriting the lookup tables. It is undesirable because the vendor’s

synthesis software could not handle the processing required to generate the lookup tables.

5.4 Hardware Architecture

Figure 5.2 is a graphical representation of our architecture. This architecture is standard

and possesses no distinguishing features. Our hardware architecture comprises four major

components: the controller, the hardware channels, the redundant residue channel, and the

fraction channel.

The diagram depicts several moduli per hardware channel to illustrate the configurable

parallelism mentioned earlier. We employ this when the number of residue channels

exceeds the number of hardware channels we can instantiate on the FPGA. We denote the

number of hardware channels as p. p represents the amount of parallelism inherent in the

implementation.

The controller contains the logic for performing five operations: forward conversion,

partial reconstruction, scaling, modular exponentiation, and reverse conversion. We imple-

mented all operations using the descriptions contained in Chapter 4.

A hardware channel executes residue operations for each residue channel – possibly

multiple channels. We divided the moduli equally across all hardware channels such that

each hardware channel supports at most m = dK/pe residue channels. To keep hardware

small, we distributed the moduli in increasing order (i.e. channel 1 has the smallest m

moduli, channel 2 has the next smallest m moduli, etc.). Furthermore, each hardware

channel stores the lookup tables for its respective residue channels.
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Figure 5.2: RP-RNS Architecture
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The redundant residue channel is roughly identical to the hardware channels, but dedi-

cated to the extra modulus me. The redundant residue channel also stores its own lookup

tables. Since the redundant modulus is either 2 or 4, we were able to make some optimiza-

tions in implementing this channel.

The fraction channel is similar to the redundant residue channel, except dedicated to the

approximated fractional values. The channel’s arithmetic logic must support word lengths

of wT bits where wT = wI + wF and wI = dlgKe. wF is the fractional precision specified

in the RP-RNS algorithms. wI supports the overflow of adding two truncated fractions.

5.5 Hardware Implementation

In this section we expand on our architecture and explain our implementation in detail. We

quantify the number of registers, arithmetic blocks, and lookup tables. We do not provide

a gate-level description since we used the hardware synthesizer’s logic inference where

possible to take advantage of the performance offered by the vendor’s intellectual property

blocks.

5.5.1 Controller

The controller comprises several registers, multiplexers, counters, and two state machines.

We summarize the quantities and sizes of these components in Table 5.2.

The I/O registers store the base, exponent, and solution in binary form and provide an

interface to binary-based systems. One register stores the reconstruction coefficient used in

the partial reconstruction algorithm, QFS algorithm, and reverse conversion algorithm. The

residue registers store the base, solution, ρ values, quotient, and intermediate values (e.g.,

reducing the scaled fractional part of the quotient).
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Purpose Size Quantity

I/O registers lgM bits 3
Reconstruction coefficient register dlgKe bits 1
Residue registers ≈ lgM bits 5
Multiplexers dK/pe-to-1 3p
Counters dlgKe 2

Table 5.2: RP-RNS controller composition.

The multiplexers map the residue registers to the hardware channels. Two sets are for

channel input and the other for channel output. The multiplexers use a counter to determine

which portions of the residues with which to compute. Our implementation uses a second

counter for keeping track of accumulations for the partial reconstruction algorithm.

The two state machines implement the algorithms. The higher-level state machine

implements the modular exponentiation and conversion logic. The lower-level state machine

implements the partial reconstruction and QFS algorithms.

The state machines are less than optimal in two respects. First, to enable easy software

debugging, the state machines use more states than necessary to implement the algorithms.

Second, the state machines do not take full advantage of the parallelism inherent in the

partial reconstruction and QFS algorithms. The reconstruction coefficient computation and

ρ-based quotient accumulations are parallelizable, but we did not implement this to save on

FPGA resource utilization and possibly gain an additional hardware channel.

5.5.2 Hardware Channel

Each hardware channel has a modular ALU, multiplexers, storage for constants, and storage

for the lookup tables.

A hardware channel’s modular ALU is large enough to support the largest modulus

distributed to that channel. Our choice of moduli distribution results in a design using the
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smallest modular ALUs possible. A time-optimized hardware channel would include a

modular adder tree and an additional modular ALU to take advantage of the full parallelism

inherent in the QFS algorithm.

We designed the hardware to keep the lookup tables local to their respective residue

channels. There are a total of 4K lookup tables: 1 for forward conversion, 1 for partial

reconstruction, and 2 for QFS. This decision enables simultaneous querying of all 4K tables,

which can increase performance. On FPGAs, the number of entries in each memory element

must be a power of 2. More often than not this simplifying requirement leads to waste,

which we quantify in Chapter 6.

We did not specify explicit memory constructs for storing the non-table constants and

left that choice to the hardware synthesis software.

The multiplexers enable hardware resource sharing within each channel. The hardware

channel, based on controller input, uses the multiplexers to select the modulus for the

modular ALU and to select which lookup tables to reference. Each hardware channel has a

total of 4p multiplexers.

5.5.3 Redundant Residue Channel

The redundant residue channel consists of a modular ALU and storage for constants and

lookup tables. Since the redundant modulus is either 2 or 4, we were able to make some

optimizations in the design.

The first optimization is the modular ALU. It requires at most 3 inputs for a multiply-

accumulate operation, so we were able to implement it as a lookup table.

The second optimization is the lookup tables. We used the same storage approach for

the redundant channel as the hardware channels resulting in 2 lookup tables for the QFS
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algorithm. Since the modulus is a power of 2, we implemented forward conversion using

truncation instead of lookup tables.

5.5.4 Fraction Channel

The fraction channel consists of a wT -bit ALU and storage for 2 look-up tables. Phatak notes

that the ALU should include a K-operand adder tree. Our original hardware implementation

supported the adder tree, but was removed due to area constraints. The implementation

discussed in this thesis does not include the adder tree and instead uses a simple 2-operand

adder in a sequential manner.

The two look-up tables are for the truncated fraction remainders specified in the QFS

algorithm. We stored the partial reconstruction look-up tables with the hardware channels

because the values and table size depends solely on the residue channel.

5.6 Remarks

Figure 5.2 reflects our hardware architecture, which is typical.

As a design decision, we modified two of Phatak’s assumptions: exchanging the per-

hardware channel adder tree for a single adder in each channel; and supporting single-access

storage due to the hardware synthesizer’s logic inference. This increases the execution time

complexity of the modular multiplication from O (lgN) to O (N). In turn, this increases

the execution time complexity of the modular exponentiation from O (N lgN) to O (N2).

We kept Phatak’s assumption regarding the choice of RP-RNS base.

We made these decisions to optimize FPGA resource utilization to accommodate more

hardware channels. Moving forward, the reader should keep these decision in mind when

interpreting the results in Chapter 6, particularly regarding the execution time.
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Chapter 6

Testing Methodology and Results

In this chapter we describe our testing methodology and results. Our testing methodology

includes a description of our test apparatuses, validation of the apparatuses, and the metrics

we collect. We present standard metrics including FPGA utilization, storage, and cycle

counts. All measurements were derived directly from the physical hardware or a simulation

validated against the hardware. We conclude this chapter with our findings, which include

the following.

1. The size of the hardware logic grows at a rate K lgK where K is the RNS base size.

2. Storing the precomputed tables as distributed RAM on the FPGA requires significantly

more storage than the projected theoretical model. This is a result of our design

decisions and not reflective of the theory.

3. We confirmed the overall storage growth rate, however, agrees with the theoretical

model up to a difference in coefficients.

4. Storing the precomputed tables on the FPGA leads to a hardware logic growth rate

proportional to the theoretical memory growth rate.
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5. Our design compromises led to a suboptimal growth in execution time.

6. We confirmed the theoretical logarithmic performance trend of RP-RNS modular

multiplication.

6.1 Purpose

Commonly cited metrics in the literature include hardware area, storage requirements,

and execution time (or cycle count). We designed experiments to collect these metrics.

Another common metric often studied separately is power consumption. We chose not to

measure power consumption since the additional chips on our development board would

have complicated the collection process.

As an additional note, the literature we cited in Chapter 3 implemented their hardware

as ASICs and measure hardware area as the number of logic gates. Since we implemented

our hardware on FPGA, the closest applicable metric we can collect is the FPGA resource

utilization.

6.2 Testing Methodology

We designed experiments to collect three different metrics: FPGA utilization, storage, and

cycle counts. Our experiments incorporated testing our implementation on three different

platforms: synthesized hardware, hardware simulation, and software simulation. We used

all three platforms to collect data, but most of the data came from our software simulation

for the ease of automation.
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6.2.1 Test Apparatus Descriptions

Our synthesized hardware test apparatus consisted of the FPGA development board and a

personal computer. From the computer, we commanded the hardware, via serial Universal

Asynchronous Receiver/Transmitter (UART) as the communications protocol, using a test

harness written in the Python programming language.

For hardware simulation, we used our FPGA vendor’s simulation software: Xilinx iSim

v14.5. The hardware simulator has two modes: pre-synthesis and post-synthesis simulation.

We used both modes in our testing, however this made no difference as we describe in our

discussion of validation.

We wrote our software simulation in the Python programming language. Our software

simulation differs from our software implementation described in Chapter 5; in addition to

verifying correctness, our software simulation performs all operations that could cause varia-

tions in our cycle count (e.g., resource sharing and residue channel modular multiplication).

6.2.2 Test Apparatus Validation

It is important to confirm the validity of our simulations as the data are valid only if the

simulation is valid. We consider our apparatuses valid when all tested inputs and outputs

between all apparatuses are in agreement. In our setup we trusted the vendor’s synthesis

software for correct FPGA utilization metrics. We used the VHDL code directly to derive

the storage metric. The two remaining items requiring validation are functional correctness

and performance models.

Our validation method could be considered unconventional, but is justifiable. A chain of

validations underlies the flow of our argument. We start with the software implementation

and through a validation chain prove correctness of the hardware. Once we know the
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hardware is functionally correct, we use a second validation chain to prove our software

simulation correctly models performance. We now describe this process in detail.

Validation Process Summary

We started off with our software implementation to numerically verify the functional cor-

rectness of the RP-RNS modular exponentiation algorithm and its dependent algorithms.

From there we used the software implementation to validate correctness of the hardware

simulation. For FPGAs this is sufficient to confirm the physical hardware has the correct

wiring, however the hardware may not be correct due to an incorrect timing model. At this

stage, an appropriate timing model is equivalent to correct hardware.

We developed a conservative timing model by doubling values from the vendor’s data

sheets and used counters to integrate the delay model into the VHDL. This method has the

benefit of producing an accurate hardware simulation timing model since both derive from

the same VHDL. We verified the correctness of the hardware. In the final step we used

the hardware simulation to develop the cycle count model for the software simulation. As

an extra sanity check, we compared the inputs, outputs, and cycle counts of the software

simulation to the physical hardware.

Validation Process Details

Now let us discuss quantity of validation. Phatak [30, 31] performed software verification

for correctness using the Maple mathematics software [1]. He verified the algorithms with

random bases and exponents for main moduli up to 220 bits (i.e., 219-bit divisor). We

independently verified the same algorithms using Sage [3], which is similar to Maple and

built on top of Python [2]. Our independent verification included main moduli up to 216 bits

(i.e., 215-bit divisor).

75



For each link in our validation process, we used 100 sets of random inputs – base,

exponent, and divisor – for all divisor bit-lengths between 4 and 20 bits producing 1,600

data points at each step in the validation process. For the hardware and software simulators

we were able to verify up to 256 bit divisors.

Validation Process Limitations

We acknowledge the quantity of physical tests is less than ideal. Three factors limited the

number of physical tests we could perform.

The first was a flaw in the vendor toolchain: the vendor’s synthesis tool and hardware

simulator often generated different lookup tables. The simulator always generated the correct

tables whereas the synthesizer often would not. Manual modification of the simulator’s

lookup tables to match the synthesized hardware resulted in agreement.

The second was the fragility of the protocol we used to interface the FPGA with the test

driver software. Any deviation would put the FPGA into a bad state requiring a reset of the

FPGA and the test driver software. Despite these issues, we are confident the 1,600 tests

were sufficient to validate our three platforms.

The third was the autonomy feature of our hardware implementation. The precomputed

tables are independent of the system in a sense. Aside from different values in the QFS

tables, two synthesized instances may be otherwise identical. Embedding the lookup table

generation into the VHDL required hardware re-synthesis when the divisor changed.

Our validation process resulted in three consistent test apparatuses including a function-

ally correct hardware implementation. While we feel our process was sufficient, we would

have preferred a more direct and faster validation process.
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6.2.3 Metric Description and Collection

Our choice of metrics are standard: FPGA resource utilization, storage, and cycle counts.

The collection process for these metrics is straightforward.

Information regarding FPGA resource utilization comes from the vendor’s synthesis

report as an occupied logic slice count. It is hard to compare utilization between two FPGAs

because their logic slice structure may differ. Using the vendor’s synthesis report we track

three additional resource types: flip-flops, logic lookup tables (LUTs), and routing LUTs.

These resources are contained in the occupied slice count.

We determine storage by adding up the size of the precomputed RP-RNS algorithm

tables using bits as our unit. We wrote software to compute this value based on the VHDL

code.

In addition to cycle counts, we provide execution time based on our FPGA’s clock rate

of 50MHz. We measured this data from all three test apparatuses though most of our data

came from the software simulator.

6.3 Test Results

In this section we present our data for each metric described in the previous section: FPGA

resource utilization, storage, and cycle count. As our metrics are sensitive to the choice

of RP-RNS base, we remind the reader that we selected the first K prime numbers for our

RNS bases. In the sections that follow, we state briefly with each metric whether the results

depend on the RP-RNS base choice and defer detailed discussion to the analysis.
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K
Slice Logic Routing 4-input Occupied

Flip-flops LUTs LUTs LUTs Slices

4 952 (10.22%) 2,119 69 2,188 (23.50%) 1,344 (28.87%)
5 1,112 (12.03%) 2,496 80 2,576 (27.66%) 1,592 (34.19%)
6 1,217 (13.07%) 2,967 90 3,057 (32.83%) 1,857 (39.88%)
7 1,364 (14.65%) 3,513 85 3,598 (38.64%) 2,178 (46.78%)
8 1,506 (16.17%) 3,871 91 3,962 (42.55%) 2,408 (51.72%)
9 1,643 (17.64%) 4,654 106 4,760 (51.12%) 2,854 (61.30%)

10 1,872 (20.10%) 5,416 116 5,532 (59.41%) 3,330 (71.52%)
11 2,011 (21.60%) 6,448 114 6,602 (70.90%) 3,920 (84.19%)
12 2,178 (23.39%) 6,608 130 6,738 (72.36%) 4,040 (86.77%)
13 2,359 (25.32%) 7,833 130 7,963 (85.51%) 4,654 (99.96%)
14 2,491 (26.75%) 8,541 134 8,675 (93.16%) 4,654 (99.96%)
15 2,692 (28.91%) 9,836 132 9,968 (107.04%) 5,322 (114.30%)

Available 9,312 9,312 4,656

Table 6.1: Utilization of Spartan-3E (XC3S500E) FPGA for K channels.

6.3.1 FPGA Utilization Metrics

Table 6.1 captures the impact of RNS base size on the utilization of our Spartan-3E

(XC3S500E) FPGA. The FPGA utilization metrics depend solely on the number of moduli

because the channel growth is negligible (i.e., ≈ lg lgM where M is the range of the

system). The most interesting columns are the numbers counting slice flip-flops, LUTs, and

occupied slices. Since we derived these data from the physical hardware, the data set is

small and what we can say is limited.

The flip-flops are related to the registers in our implementation. The number of flip-

flops increases at a rate proportional to K. This rate actually depends on M because K is

logarithmically related to M . This is exactly what we expect, however. While it is hard to

see the impact from this data set, we would see a greater impact on a larger data set. This

FPGA would run out of flip-flops near 40 moduli.
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Now we turn to the relation between flip-flops and LUTs. First note the number of

flip-flops and LUTs available is twice the number of total slices available. Furthermore, the

number of flip-flops and LUTs are the same. This is because slices contain two identical

logic cells consisting of both flip-flops and LUTs (see Chapter 2). Therefore correlating

these two columns is pointless.

The distinction between logic LUTs and routing LUTs helps quantify how much FPGA

space is lost due to inefficient design. If we were to plot the number of routing LUTs against

K, we would see a trend that is either logarithmic or linear. Furthermore, the proportion of

routing LUTs to logic LUTs decreases. For now we will just say that this trend is deceptive

and defer explanation to the analysis section.

The most interesting trend with respect to Table 6.1 is the superlinear growth rate of

the total number of LUTs as a function of the RNS base size. We provide a graph of this

trend in Figure 6.1. We used the Levenberg-Marquardt algorithm found in most statistical

software packages to fit the following superlinear curve to our data:

# LUT (K) ≈ 151.094K log (K) + 663.406. (6.1)

The limited data prevents us from drawing significant conclusions, but the clear superlinear

trend indicates there is a stronger contributor to LUT utilization than the hardware channel

logic. The logarithmic increase leads us to suspect the precomputed lookup tables as a

factor., particularly the QFS tables.

The synthesis report also provided details regarding inferred logic, which we summarize

in Table 6.2. We can infer from these data that the synthesizer uses roughly the same

structure for all of the hardware channels.
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Figure 6.1: Superlinear dependence of FPGA logic utilization on RNS base size.

Hardware Redundant Fraction Modular ALU
Channel Channel Channel

# ROMs 3 dK/pe < 3 2 –
# Adders 3 5 4 4
# Multipliers – 1 – –
# Comparators 7 4 3 2
# Counters – – – 1
# Multiplexers – – – 1

Table 6.2: Inferred logic for our hardware implementation.
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6.3.2 Storage Metrics

Figures 6.2 and 6.3 illustrate the precomputed lookup table storage for our implementation.

We emphasize these data are specific to our implementation due to decisions made during

hardware design. These metrics are absolute for our implementation since they were

computed using the VHDL specifying our design. We also emphasize our implementation

lies between the theoretical minimum and theoretical maximum from an unoptimized

implementation.

The storage requirements depend on two factors. The first factor is the choice of RP-RNS

base, which we used the first K prime numbers with 4 as the redundant modulus. As noted

in Chapter 4, the number of QFS table entries equals the sum of the moduli. We aimed to

minimize the sum of the moduli; whether we succeeded or not requires solving a separate

optimization problem. The second factor is how the lookup tables are embedded into an

RP-RNS implementation. We divided each LUT to be local to its respective channels.

Despite Phatak’s recommendation, we did not enable parallel access to Quotient Table 1.

We explore the impact of these decisions as they relate to the results in the analysis section.

We performed a regression against Phatak’s O (K3 lg lgK) result from Chapter 4:

Memory (K) ≈ 18.783K3 lg lgK + 5.234 ∗ 107GB. (6.2)

The overall trend of the graph resembles the theoretical results excepting two properties: the

large coefficients and the alternation between linear trends and sudden jumps. Both of these

are a result from our design decisions and how the hardware translates to synthesized logic.

The linear increases derive directly from the theory. As the divisor length increases, the

RNS base increases, which requires adding additional columns to the partial reconstruction

table and QFS tables.

81



0 200 400 600 800 1000 1200 1400
RNS base size

0

5

10

15

20

S
to

ra
g
e
 s

iz
e
 (

G
B

)

Combined Precomputed Lookup Table Sizes (in GB)

Implementation Table Sizes
Phatak's Theoretical Table Sizes
Regression Table Sizes

Figure 6.2: Total size of precomputed lookup tables for our implementation.
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Figure 6.3: Cutout of storage requirements for our synthesized hardware from Figure 6.2.
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The jumps are a result of how the hardware realizes the implementation. Our implemen-

tation used the synthesizer’s logic inference to generate the lookup tables. This requires

the number of table entries to be a power of two for all tables. The jumps occur when the

number of QFS table entries crosses a power of two because the number of QFS table entries

depends on the sum of the moduli. Note the partial reconstruction tables do not contribute

significantly to these jumps because adding additional channels does not require modifying

existing channels.

6.3.3 Cycle Count Metrics

In this section we only discuss data we consider to have high utility. We relegate the raw

data tables to Appendix B.

Before we proceed, we caution the reader on two points. First, other RNS modular

exponentiation studies use ASICs optimized for a set of fixed divisor lengths; their results

do not include a wide range of divisors. Second, unlike other studies in the literature, we did

not optimize our implementation for speed. Therefore, the cycle count data we present are

valid only for our implementation. While a direct comparison with the literature is invalid,

the trends deriving from our data are valuable and useful.

Figure 6.4 summarizes our cycle count data for computing a single multiplication

modulo-D. There are four types of data represented on this graph. Each type comes as a pair

depicting average case and worst case cycle counts. The first three types of data represent

different levels of parallelization (top-to-bottom): single hardware channel (sequential),

three hardware channels (semi-parallel), and K hardware channels (full parallel). The fourth

type of data is a theoretical modification of our implementation; we address this data further

in the analysis section. Though not well-represented in the figure, the confidence interval
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Figure 6.4: Cycle counts for divisors up to 1024-bits using four varieties of parallelization.

200 400 600 800 1000
Divisor Length (bits)

0

1000

2000

3000

4000

5000

C
lo

ck
 C

y
cl

e
s

RP-RNS MM Average and Worst Case Performance in Cycles

p=1 (sequential)
p=3 (semi-parallel)
p=K (full parallel)
Parallel PR/QFS computation (predicted)

Figure 6.5: Cutout of theoretical cycle counts from Figure 6.4.
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around the mean is quite small. The 95% confidence interval around the mean was within

±3 cycles for small divisors and no more than ±10 cycles for 1024-bit divisors.

As we explain our result, the reader should keep in mind that the total number of residue

channel modular multiplications to implement modulo-D multiplication is 3K: the initial

multiplication, the ρ computation, and the remainder computation.

The first trend worth noting is the quadratic growth of the cycle count for the sequential

and semi-parallel runs. This is due to our decision to forego Phatak’s assumptions and our

suboptimal implementation of the state machine. Since the number of channel modular

multiplications is constant, the main contributing factor is the K modular additions. Our

fully parallel implementation, despite our design decisions, comes close to the theoretical

speed estimates of our implementation (see Figure 6.5).

The second trend worth noting is the variance between the average and worst case

decreases rapidly as we increase the parallelism. The two variable computations in our

implementation are the residue channel modular multiplications and the modular reduction

of the fractional part of the quotient – the former having the most variance. The difference

is a result of sequential modular multiplications. In a full parallel implementation, we see

this difference becomes negligible and obeys the lgN trend overall.

6.4 Analysis

In the previous section we presented our data and highlighted the interesting trends. We

also identified how some trends were misleading, saving the details for this section. In this

section we combine our metrics to reason about our implementation and its limitations.

We shall first address the fourth type of cycle count data (see Figure 6.5). These data

do not derive directly from our implementation; they are a theoretical modification of
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our implementation using the same timing model. We generated the data using software

simulation.

There is a lot of potential parallelism inherent in the QFS algorithm. The reconstruction

coefficient and quotient accumulations are parallelizable by adding a second adder to the

fraction channel. This is the first modification. Our second modification is to replace the

sequential adders with the adder tree Phatak suggests. The fourth type of data represents

these theoretical modifications and demonstrates a dramatic performance increase. Even

with this modification our unoptimized implementation does not outperform the hardware in

Gandino, et al. [16].

Earlier we noted the invalidity of comparing our unoptimized FPGA implementation

against the optimized ASICs in the literature. Had our implementation outperformed the

implementations in the literature, we would be able to conclude the superiority of RP-

RNS modular exponentiation with respect to speed. However, we did not achieve this for

the system sizes documented in the literature. There is not enough data to support that

other systems will continue to outperform our implementation as the system size increases.

Furthermore, it is possible an optimized version of our implementation could outperform

the current literature. For these reasons our running time results are inconclusive.

Now we address the other two metrics (i.e. FPGA resource utilization and storage). We

alluded to the relation between the storage and the number of utilized logic LUTs. Since

we used distributed storage on the FPGA, the synthesizer stored the precomputed tables

in the logic LUTs. We reached our FPGA’s capacity at a meager 13 channels, which only

achieves a 22-bit divisor. We asked whether a high-capacity FPGA would meet our storage

and resource utilization requirements.

Using our choice of RNS base, a 4096-bit divisor requires over 1500 moduli. We note

this requires nearly 18GB of storage. The Xilinx Virtex-7 (XC7VX1140T) is a high-capacity
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FPGA costing nearly $40,000 as of October 2013. It can store at most 10.42 MB of data.

Our choice to store the tables on the FPGA renders the system cost prohibitive for us.

Let us assume for now storing the precomputed tables is not a problem. The number

of flip-flops scaled linearly with the number of residue channels. The amount of hardware

scaled linearly with the number of hardware channels. These growth rates together, however,

do not necessarily imply the logic scales at a rate affordable to implement on cheap com-

modity hardware. So we ran an experiment in which we removed the precomputed tables

from the VHDL. We verified our Spartan-3E could support a full parallel implementation

using the first 30 prime numbers as our RNS base.

A high-capacity Virtex-7 has 5.5 times the capacity as a Spartan-3E. The Virtex-7 also

uses 6-input LUTs instead of the 4-input LUTs used by the Spartan-3E. The modulus size

does not grow very fast; the largest modulus for a 8192-bit divisor does not exceed 16-bits.

We estimate a high-capacity FPGA could support at least 4 times as many channels (i.e. 120

per chip). This implies the logic of our implementation is scalable even though we could

not synthesize systems for divisors in excess of 22-bits.
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Chapter 7

Conclusion

We address the following three questions. The first is whether we can engineer RP-RNS

modular exponentiation hardware supporting at least a 1024-bit divisor. The second is

whether there is a divisor size limit for engineering this system using commodity FPGAs.

The third is how the well our hardware performs against the Gandino’s work with respect to

running time.

7.1 Design Improvements

Despite having refined our design to optimize for FPGA resource utilization, we were unable

to synthesize hardware for divisors exceeding 20 bits. Our decision to store the precomputed

lookup tables on the FPGA limited our system size and was due to our lack of familiarity

with FPGA hardware design. In retrospect, we could have foreseen this obstacle by better

understanding the technology and its limitations.

The advantage to storing the tables on the FPGA is the unlimited ability to partition

the tables to maximize the parallelism. It is infeasible with today’s FPGAs to implement
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RP-RNS modular exponentiation as we attempted. As FPGA capacity has only doubled

over the last 10 years [43, 44], we do not foresee this problem being overcome.

While our ideas are not novel, we propose two improvements to our implementation:

1. external lookup table storage; and

2. pairing each FPGA with its own dedicated storage element.

By removing the lookup tables from the hardware, we were able to achieve 30 hardware

channels. For high-capacity FPGAs made in 2013 (e.g., Virtex-7), up to 120 hardware

channels are possible.

The capacities of FPGAs have almost doubled every three years over the last decade [41–

43]. We predict a full-parallel 1,000 channel RP-RNS FPGA implementation will become

reality within ten years. For now though, the number of channels needed to engineer systems

of sufficient size (i.e., 1024-bit and higher) requires multiple FPGAs.

The lookup tables require persistence, high-capacity, and fast random access read.

Sufficient technology exists to support these requirements such as a combination of SDRAM

for picosecond random-access reads and NAND flash memory for persistence; both offer

high capacity storage. For an ASIC composed of multiple FPGAs, it is tempting to use

a single storage device to save circuit area and cost. Even with picosecond read access,

however, the storage becomes the bottleneck when the system requires hundreds (e.g., for

1024 bits) or thousands (e.g., for 4096 bits) of channels. So we propose each FPGA have its

own dedicated storage element or preferably multiple dedicated storage elements.

These two improvements together would enable us to fully implement Phatak’s recom-

mendations: parallel table access and per-channel adder trees.
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7.2 Reflecting on Performance

To address the first questions related to divisor size, our implementation as-is is incapable of

supporting even modest divisors.

Assuming our two improvements were implemented, a single high-capacity FPGA could

support a fully parallel 512-bit RP-RNS modular exponentiation hardware implementation.

For 1024-bit, a fully parallel hardware implementation would require 3 medium-capacity

FPGAs (i.e., approximately 75 channels).

Let us suppose the system needed to fit on only one FPGA. We have two options to

address this: resource sharing and RNS base modification.

We could share each hardware channel among multiple residue channels by taking a

penalty on execution time. The penalty would scale linearly with the number of residue

channels per hardware channel. For example, a 4096-bit system requires over 1,500 and

would require around 15 high-capacity FPGAs. We could fit the logic on a single FPGA,

but the running time would suffer by around a factor of 15.

Nothing in RP-RNS requires the base consist of the first K prime numbers. We could

reduce the number of channels by using a different RNS base. Based on Phatak’s analysis,

this would entail larger lookup tables and less than optimal execution time. However, the

question of whether resource sharing is preferable to modifying the RNS base is an open

problem.

Addressing the question of running time now, we verified the performance trend stated

in Phatak’s theoretical papers in Figure 6.5. Since the literature did not provide a regression

for various divisor lengths, we were unable to determine the divisor size beyond which

our implementation would outperform systems based on Bajard’s RNS-based Montgomery
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multiplication including Kawamura. We, however, remain optimistic that a divisor size

exists even for our unoptimized implementation due to Phatak’s theoretical results.

7.3 Open Problems and Future Work

Our first open problem is regarding RP-RNS as a general-purpose system of computation.

Subsequent open problems relate to our implementation of RP-RNS modular exponentiation.

Our last open problem is of a theoretical nature.

As of the year 2013, RP-RNS is not yet ready for general-purpose use. Phatak’s

theoretical work on sign-detection [33] and his current research on general division appear

promising. Hardware prototypes such as our implementation are necessary to analyze how

these new algorithms perform.

While we studied the modular exponentiation algorithm, we did not focus on the partial

reconstruction algorithm specifically. A more focused study on partial reconstruction to

include a dedicated hardware implementation is desirable. A follow-on to this study should

focus on an implementation of Bajard’s RNS-based Montgomery translation using base

extension based on the partial reconstruction algorithm.

A direct follow-on to our research includes implementing the improvements we described

earlier, fully implementing Phatak’s assumptions, and repeating the experiments described

in this report.

The last open hardware problem we discuss concerns ASICs. Beyond the modular ALU,

our implementation used synthesizer-inferred logic blocks. FPGA vendors protect these

intellectual property (IP) blocks and these blocks vary from vendor to vendor. An ASIC

requires a complete gate-level specification. Since each hardware channel will be similar

in structure, a single specification should be sufficient; increasing the word length of the
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hardware channel components should be trivial. Due to the design fixing of ASICs, we

recommend this gate-level specification first be implemented using FPGAs with external

memory.

An open theoretical problem concerns optimal RP-RNS base selection. It remains

unproven whether the first K smallest primes are optimal with respect to execution time

and table size. We suggest optimal base selection research address optimality with respect

to three constraints at a minimum: execution time, table size, and number of hardware

channels.

7.4 Contributions

The sum of our contributions is to guide future investigations that will expand on our work.

We provided a description of our design, architecture, and implementation in Chapter 5, a

testing methodology in Chapter 6, and performance data including FPGA utilization, storage

requirements, and execution time in Chapter 6. In Appendix B we provide tables of our data.

Together these should be sufficient for future researchers to replicate our implementation

and findings.

Our reflections in this chapter provide a direct path for another to pick up our work and

what our next steps would be. Furthermore, the open problems we described provide other

avenues for exploring RP-RNS hardware.

7.5 Final Musings

RNS is an interesting number system due to its ability to perform arithmetic in parallel.

RNS-based Montgomery approaches are tailored to address the modular exponentiation

92



problem. The RP-RNS approach has the potential to address all arithmetic operations

and bring RNS to general-purpose computing. The way it accomplishes this is equally

interesting. Our hardware implementation confirms this system is on the right track.

FPGAs were sufficient for our research, however, high-capacity FPGAs are still expen-

sive and slow compared to mass-produced ASICs. The development of an efficient RP-RNS

ASIC implementing all RP-RNS algorithms we believe will help bring RNS to commodity

hardware. It is our conviction that RNS is the future of general-purpose computing and

RP-RNS will be the first generation.
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Appendix A

Notation

Set S, {·}

Approximation of f f̂

a divides b a|b

Greatest common divisor gcd (a, b)

Congruence modulo n x ≡ a mod n

Modular reduction by n x = a mod n

Integers modulo n Zn

Product ring
K∏
i=1

Zmi
= Zm1 × · · · × ZmK

RNS base M = m1,m2, . . . ,mK

RNS representation of z (z1, z2, . . . , zn)

RNS representation of z in base A [z]A

Residue of z with respect to modulus m [z]m
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Appendix B

Tables of Performance Metrics

Table B.1: Cycle count for p = 1 sequential implementation.

Includes all synthesized hardware sizes and divisors that are powers of 2.

Divisor Length Average Number of Cycles 95% Confidence Interval

4 639.190 [631.182, 647.198]

5 819.010 [810.754, 827.266]

6 1064.820 [1055.931, 1073.709]

7 1063.820 [1054.598, 1073.042]

8 1310.480 [1298.715, 1322.245]

9 1326.830 [1315.533, 1338.127]

10 1324.280 [1313.401, 1335.159]

11 1559.190 [1547.018, 1571.362]

12 1559.000 [1545.675, 1572.325]

13 1813.800 [1799.194, 1828.406]

14 1801.970 [1787.470, 1816.470]

Continued on next page
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TableB.1 – continued from previous page

Divisor Length Average Number of Cycles 95% Confidence Interval

15 2068.660 [2052.401, 2084.919]

16 2067.340 [2050.513, 2084.167]

17 2087.780 [2072.062, 2103.498]

18 2428.590 [2412.616, 2444.564]

19 2429.690 [2411.685, 2447.695]

20 2730.390 [2714.142, 2746.638]

32 4233.980 [4209.875, 4258.085]

40 5550.050 [5515.338, 5584.762]

60 8455.450 [8424.423, 8486.477]

64 9037.750 [9001.851, 9073.649]

80 12422.870 [12370.669, 12475.071]

100 15718.040 [15639.040, 15797.040]

120 20217.220 [20152.640, 20281.800]

128 21981.100 [21929.011, 22033.189]

140 24649.760 [24589.562, 24709.958]

160 29358.760 [29285.344, 29432.176]

180 35052.080 [34972.065, 35132.095]

200 40770.790 [40652.050, 40889.530]

220 46603.170 [46410.017, 46796.323]

240 51315.930 [51155.887, 51475.973]

256 56571.770 [56450.916, 56692.624]

260 58017.860 [57894.065, 58141.655]

Continued on next page
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TableB.1 – continued from previous page

Divisor Length Average Number of Cycles 95% Confidence Interval

280 65149.890 [65026.520, 65273.260]

300 71245.470 [71131.738, 71359.202]

320 79227.060 [79098.036, 79356.084]

340 85934.070 [85791.229, 86076.911]

360 94896.830 [94732.110, 95061.550]

380 102084.850 [101894.682, 102275.018]

400 111510.160 [111378.010, 111642.310]

420 119399.600 [119234.492, 119564.708]

440 127534.790 [127369.762, 127699.818]

460 135895.820 [135711.434, 136080.206]

480 146582.680 [146315.928, 146849.432]

500 155740.360 [155378.202, 156102.518]

512 159790.670 [159372.554, 160208.786]

520 163931.400 [163537.577, 164325.223]

540 172598.410 [172239.324, 172957.496]

560 182214.810 [181898.443, 182531.177]

580 194462.650 [194207.467, 194717.833]

600 204748.890 [204529.291, 204968.489]

620 215339.490 [215098.020, 215580.960]

640 226539.260 [226287.954, 226790.566]

660 237213.770 [236973.261, 237454.279]

680 248500.110 [248273.906, 248726.314]

Continued on next page
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TableB.1 – continued from previous page

Divisor Length Average Number of Cycles 95% Confidence Interval

700 260140.350 [259894.492, 260386.208]

720 272681.610 [272434.274, 272928.946]

740 285208.240 [284959.446, 285457.034]

760 297631.400 [297341.765, 297921.035]

780 310427.670 [310146.342, 310708.998]

800 323218.760 [322855.589, 323581.931]

820 335596.870 [335247.574, 335946.166]

840 349083.290 [348716.546, 349450.034]

860 359429.250 [359014.147, 359844.353]

880 372424.310 [372113.527, 372735.093]

900 387142.520 [386790.804, 387494.236]

920 401497.340 [401154.530, 401840.150]

940 415987.720 [415653.802, 416321.638]

960 431409.630 [431067.762, 431751.498]

980 446333.160 [445972.914, 446693.406]

1000 457751.840 [457391.392, 458112.288]

1020 473487.370 [473119.886, 473854.854]

1023 477337.840 [476972.226, 477703.454]

End of table
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Table B.2: Cycle count for p = 3 semi-parallel implementation.

Includes all synthesized hardware sizes and divisors that are powers of 2.

Divisor Length Average Number of Cycles 95% Confidence Interval

4 293.250 [289.987, 296.513]

5 329.890 [326.975, 332.805]

6 500.740 [496.725, 504.755]

7 500.320 [496.268, 504.372]

8 555.600 [551.008, 560.192]

9 561.590 [557.229, 565.951]

10 560.010 [555.827, 564.193]

11 601.240 [597.139, 605.341]

12 601.810 [597.298, 606.322]

13 808.050 [802.169, 813.931]

14 802.820 [797.032, 808.608]

15 846.650 [840.659, 852.641]

16 846.540 [840.428, 852.652]

17 853.390 [847.647, 859.133]

18 910.670 [905.287, 916.053]

19 910.340 [904.241, 916.439]

20 1140.640 [1134.388, 1146.892]

32 1636.280 [1627.797, 1644.763]

40 2094.750 [2082.419, 2107.081]

60 3121.770 [3111.247, 3132.293]

Continued on next page

99



TableB.2 – continued from previous page

Divisor Length Average Number of Cycles 95% Confidence Interval

64 3230.240 [3218.257, 3242.223]

80 4514.810 [4497.036, 4532.584]

100 5795.570 [5767.905, 5823.235]

120 7367.500 [7344.915, 7390.085]

128 7669.910 [7652.441, 7687.379]

140 8609.430 [8589.379, 8629.481]

160 10405.900 [10380.991, 10430.809]

180 12515.770 [12488.033, 12543.507]

200 14069.970 [14030.521, 14109.419]

220 16278.740 [16213.080, 16344.400]

240 17653.180 [17599.371, 17706.989]

256 19920.740 [19879.154, 19962.326]

260 20175.200 [20133.470, 20216.930]

280 22911.150 [22868.969, 22953.331]

300 24732.060 [24693.835, 24770.285]

320 27732.780 [27688.683, 27776.877]

340 29726.250 [29678.167, 29774.333]

360 33003.280 [32947.244, 33059.316]

380 35124.790 [35060.639, 35188.941]

400 38671.590 [38627.086, 38716.094]

420 41008.740 [40953.257, 41064.223]

440 43417.460 [43362.437, 43472.483]

Continued on next page
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TableB.2 – continued from previous page

Divisor Length Average Number of Cycles 95% Confidence Interval

460 46952.170 [46889.345, 47014.995]

480 49819.820 [49730.170, 49909.470]

500 53699.930 [53577.261, 53822.599]

512 54259.620 [54120.272, 54398.968]

520 56060.790 [55928.974, 56192.606]

540 58587.670 [58467.958, 58707.382]

560 62651.430 [62544.266, 62758.594]

580 66040.490 [65955.324, 66125.656]

600 70390.190 [70315.865, 70464.515]

620 73505.030 [73423.819, 73586.241]

640 76832.160 [76748.168, 76916.152]

660 81375.670 [81294.853, 81456.487]

680 84701.000 [84624.614, 84777.386]

700 88129.800 [88047.354, 88212.246]

720 93249.770 [93166.227, 93333.313]

740 96941.370 [96857.786, 97024.954]

760 100615.130 [100518.854, 100711.406]

780 105992.990 [105897.749, 106088.231]

800 109764.620 [109642.479, 109886.761]

820 113355.640 [113238.656, 113472.624]

840 119037.310 [118913.514, 119161.106]

860 122514.410 [122374.053, 122654.767]

Continued on next page
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TableB.2 – continued from previous page

Divisor Length Average Number of Cycles 95% Confidence Interval

880 126305.560 [126201.075, 126410.045]

900 130659.200 [130542.229, 130776.171]

920 136706.840 [136591.899, 136821.781]

940 140960.570 [140848.674, 141072.466]

960 145493.120 [145379.492, 145606.748]

980 151799.460 [151678.154, 151920.766]

1000 155637.900 [155516.090, 155759.710]

1020 160283.530 [160160.732, 160406.328]

1023 160884.360 [160762.139, 161006.581]

End of table
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Table B.3: Cycle count for p = K full-parallel implementation.

Includes all synthesized hardware sizes and divisors that are powers of 2.

Divisor Length Average Number of Cycles 95% Confidence Interval

4 185.850 [184.152, 187.548]

5 206.910 [205.353, 208.467]

6 233.430 [231.945, 234.915]

7 233.520 [232.049, 234.991]

8 257.600 [255.979, 259.221]

9 259.790 [258.264, 261.316]

10 259.170 [257.685, 260.655]

11 277.390 [276.050, 278.730]

12 277.400 [275.853, 278.947]

13 294.820 [293.339, 296.301]

14 293.660 [292.214, 295.106]

15 311.390 [309.907, 312.873]

16 311.270 [309.722, 312.818]

17 312.830 [311.356, 314.304]

18 333.440 [332.039, 334.841]

19 333.210 [331.597, 334.823]

20 350.380 [349.097, 351.663]

32 431.380 [429.930, 432.830]

40 484.450 [482.633, 486.267]

60 589.590 [588.386, 590.794]

Continued on next page

103



TableB.3 – continued from previous page

Divisor Length Average Number of Cycles 95% Confidence Interval

64 610.200 [608.800, 611.600]

80 705.210 [703.590, 706.830]

100 789.580 [787.424, 791.736]

120 892.120 [890.553, 893.687]

128 928.030 [926.854, 929.206]

140 981.430 [980.138, 982.722]

160 1068.280 [1066.867, 1069.693]

180 1159.690 [1158.267, 1161.113]

200 1248.920 [1247.061, 1250.779]

220 1335.200 [1332.316, 1338.084]

240 1398.620 [1396.366, 1400.874]

256 1467.840 [1466.163, 1469.517]

260 1485.670 [1484.007, 1487.333]

280 1572.340 [1570.786, 1573.894]

300 1643.170 [1641.835, 1644.505]

320 1730.410 [1728.948, 1731.872]

340 1801.140 [1799.542, 1802.738]

360 1886.310 [1884.526, 1888.094]

380 1954.180 [1952.288, 1956.072]

400 2043.650 [2042.435, 2044.865]

420 2113.090 [2111.614, 2114.566]

440 2184.170 [2182.731, 2185.609]

Continued on next page
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TableB.3 – continued from previous page

Divisor Length Average Number of Cycles 95% Confidence Interval

460 2252.490 [2250.887, 2254.093]

480 2338.880 [2336.764, 2340.996]

500 2411.260 [2408.506, 2414.014]

512 2442.260 [2439.024, 2445.496]

520 2472.010 [2469.084, 2474.936]

540 2535.700 [2533.069, 2538.331]

560 2604.040 [2601.799, 2606.281]

580 2690.780 [2689.032, 2692.528]

600 2759.540 [2758.086, 2760.994]

620 2827.660 [2826.096, 2829.224]

640 2900.300 [2898.713, 2901.887]

660 2967.060 [2965.541, 2968.579]

680 3035.120 [3033.706, 3036.534]

700 3104.780 [3103.308, 3106.252]

720 3172.450 [3171.002, 3173.898]

740 3244.600 [3243.235, 3245.965]

760 3315.420 [3313.782, 3317.058]

780 3385.880 [3384.299, 3387.461]

800 3453.250 [3451.334, 3455.166]

820 3519.420 [3517.585, 3521.255]

840 3588.980 [3587.114, 3590.846]

860 3640.870 [3638.785, 3642.955]

Continued on next page
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TableB.3 – continued from previous page

Divisor Length Average Number of Cycles 95% Confidence Interval

880 3706.460 [3704.885, 3708.035]

900 3778.060 [3776.368, 3779.752]

920 3847.950 [3846.272, 3849.628]

940 3915.920 [3914.394, 3917.446]

960 3986.880 [3985.270, 3988.490]

980 4054.030 [4052.375, 4055.685]

1000 4106.250 [4104.665, 4107.835]

1020 4176.220 [4174.571, 4177.869]

1023 4191.880 [4190.251, 4193.509]

End of table
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