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We introduce three new mechanisms that allow trust to be built into cloud computing 

called the Private Virtual Infrastructure (PVI), the Locator Bot (LoBot), and the Trusted 

Virtual Environment Module (TVEM). Cloud computing requires that organizations trust 

that a service provider’s platforms are secured and provide a sufficient level of integrity 

for the client’s data. Once a client’s sensitive data are released into the cloud under the 

control of a third party, a significant level of risk is placed on the security and privacy of 

the data. PVI, LoBot, and TVEM provide a means for clients to establish trust in cloud 

platforms, thus reducing their risk exposure. 

PVI is a new management and security model that shares the responsibility of 

security management in cloud computing between the service provider and client, 

decreasing the risk exposure to both. The PVI datacenter’s security posture is set by the 

  



client, while the cloud’s configuration is under control of the service provider. Clients 

can then protect their information independently of the cloud configuration. 

The LoBot pre-measures the cloud for security properties which can be used to 

determine the integrity and trustworthiness of the destination platform. LoBot then 

provides secure provisioning and live migration for the virtual datacenter. LoBot protects 

information by preventing data from being placed in malicious environments. 

The TVEM helps solve the core security challenge of cloud computing by 

establishing trust in a virtualized cloud computing environment. The TVEM is a software 

appliance that merges trust from multiple sources, typically the information owner and 

service provider, to derive a root of trust for a virtual environment on a remote host. A 

unique Trusted Environment Key (TEK) combines trust from the information owner and 

the service provider to create a dual root of trust for the TVEM that is distinct for every 

virtual environment and separate from the host platform’s trust. 

PVI, Locator Bot, and TVEM can be used individually or combined to provide a 

foundation for trust in cloud computing. They enable organizations to maintain control of 

their information in the cloud and realize benefits of cloud computing. 
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Technical Overview 

Cloud computing is poised to revolutionize Information Technology (IT) acquisition 

and service models. Delivering massively scalable computing resources as a service with 

Internet technologies, resources are shared among a vast number of consumers allowing 

for a lower cost of IT ownership. Cloud computing provides on-demand computing 

resources dynamically, which allows companies to fundamentally change their 

information technology strategy. 

As with any new technology, this new way of doing business brings with it new 

challenges, especially when considering the security and privacy of the information 

stored and processed within the cloud. This dissertation examines these challenges and 

proposes unique solutions to solve the core security problems of cloud computing. 

Utility cloud computing allows users to rent Virtual Machine (VMs) from a service 

provider, placing an organization’s sensitive data in the control of a third party. This 

situation places a significant level of risk on the privacy and security of the data 

processed by the VMs in the cloud. We propose a new management and security model 

for utility cloud computing called the Private Virtual Infrastructure (PVI) that shares the 

responsibility of security in cloud computing between the service provider and client, 

decreasing the risk exposure to both. The PVI datacenter is under control of the client or 

information owner while the cloud fabric is under control of the service provider. A cloud 

Locator Bot (LoBot) pre-measures the cloud for security properties and securely 

provisions the datacenter in the cloud. PVI and Locator Bot provide the tools that 
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organizations require to maintain control of their information in the cloud and realize the 

benefits of cloud computing. 

To address the core security challenge of cloud computing where an information 

owner creates and runs a virtual environment on a platform owned by a separate service 

provider, we introduce a new mechanism for rooting trust in a cloud computing 

environment called the Trusted Virtual Environment Module (TVEM). The TVEM is a 

software appliance that merges trust from multiple sources, typically the information 

owner and service provider, to derive a root of trust for a virtual environment on a remote 

host. The TVEM helps solve the core security challenge of cloud computing by enabling 

parties to establish trust relationships in a cloud computing environment. 

Contributions provided by this dissertation are: 

• An architecture for protecting privacy and confidentiality in a cloud datacenter that 

separates security relationships between the user and consumer of cloud services 

and combines trust from both for the virtual and physical environments. 

• The concept of an agent or “bot” virtual appliance to protect provisioning and 

migrations of Virtual Machines (VMs) in a cloud datacenter through fabric pre-

measurement. 

• Protocols to ensure secure provisioning and secure live migration of virtual 

machines in the cloud datacenter. 

• A new Trusted Virtual Environment Module for rooting trust in a cloud computing 

environment. 

 xiv 
 



 

• A Trusted Environment Key that combines components of trust from the virtual 

environment owner and the platform to form a complex virtual environment trust. 

• A Virtual Trust Network and TVEM Factory for managing and provisioning 

TVEMs from a central control facility. 

Private Virtual Infrastructure is a security architecture for cloud computing that uses a 

new trust model to share the responsibility of security in cloud computing between the 

service provider and client, decreasing the risk exposure to both. PVI is under control of 

the information owner while the cloud fabric is under control of the service provider. The 

PVI architecture comprises a cluster of trusted computing fabric platforms that host 

virtual servers running an application server with a LoBot security service. The cloud 

LoBot pre-measures the cloud platform for security properties to determine the 

trustworthiness of the platform. LoBot uses Trusted Execution Technology and virtual 

Trusted Platform Modules to pre-measure the target environment and securely provision 

the Private Virtual Infrastructure in the cloud thus protecting information by preventing 

data from being placed in malicious or untrusted environments. 

The LoBot Secure Provisioning (LSP) and LoBot Secure Migration (LSM) protocols 

ensures that when a VM is provisioned within the PVI it is not subverted in any manner 

and the VM that is provisioned is exactly the same as the VM intended to be provisioned. 

Secure provisioning is achieved through the combination of determining a target 

platform’s trustworthiness, ensuring correct provisioning, and verifying the VM is 

created and launched on the host platform as intended. Live migration is an extension of 

the secure provisioning protocol where a live VM is relocated from one platform to 

another while remaining operational. LSM ensures that the VM’s state is not 
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compromised by the migration and that the VM migrated to the new platform resumes 

operation at the point of suspension on the originating machine. 

The TVEM provides enhanced features for cloud virtual environments over existing 

Trusted Platform Module (TPM) virtualization techniques including an improved 

application program interface, cryptographic algorithm flexibility, and a configurable 

modular architecture. TVEMs are managed via a Virtual Trust Network (VTN) with a 

central control facility called the TVEM Factory that manufactures and provisions 

TVEMs in the cloud. A unique Trusted Environment Key (TEK) is defined that combines 

trust from the information owner’s VTN and the service provider’s platform to create a 

dual root of trust for the TVEM that is distinct for every virtual environment and separate 

from the platform’s trust. 

Private Virtual Infrastructure, LoBot, and TVEM provide organizations with 

assurance that their information is protected. By providing a foundation for trust in cloud 

computing, they enable organizations to maintain control of their information in the cloud 

and realize benefits of cloud computing. 

 



 

Chapter 1  

The Future is Cloudy 

Luke: I saw – I saw a city in the clouds. 

Yoda: [nods] Friends you have there. 

Luke: They were in pain. 

Yoda: It is the future you see. 

Luke: The future? 

 Star Wars Episode V: The Empire Strikes Back 

 

A fundamental shift is occurring in the way Information Technology (IT) and 

computing services are delivered and purchased. Cloud computing is poised to 

revolutionize computing as a service where IT becomes a computing utility [1] delivered 

over the Internet. Cloud computing utilizes massively scalable computing resources 

delivered as a service using Internet technologies, which allows these computational 

resources to be shared among a vast number of consumers to allow a lower cost of 

ownership of information technology. 

Companies can fundamentally change their information technology strategies as they 

turn to the cloud for datacenter and information technology services to improve 

scalability and global reach, and to lower overhead. There are many benefits to cloud 
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computing: lower overall cost of IT ownership, increased flexibility, fault tolerance, 

locality flexibility ability, and to respond to new business requirements quickly and 

efficiently. As with any new technology, this new way of operating brings new risks and 

challenges, especially when considering the security and privacy of information stored 

and processed within the cloud. 

One of the risks of cloud computing is that the users, who are the information owners, 

lose control of their data when they release the information into the cloud for processing. 

Relinquishing physical control of the datacenter infrastructure and information increases  

the risk of data compromise considerably [2]; however, benefits (including lower 

operating costs and increased availability [3]) of moving to cloud computing for services 

may be significant enough to justify the risk. This dissertation provides solutions for 

information owners to increase their trust level in cloud computing providers and assure 

that their private and confidential information is kept secure. 

1.1 Motivation 

Ensuring the security and integrity of information in the cloud becomes an issue as 

the management and ownership of the hosting platforms is removed from the 

consolidated control of a single facility and a single owner. Many organizations such as 

financial institutions, health care providers, and government agencies are legally required 

to protect their data from compromise due to the sensitivity of their information. 

Generally, these organizations are required to manage and maintain their own datacenters 

with stringent physical and logical protection mechanisms ensuring that their data 

remains protected. These organizations simply cannot utilize cloud computing in a 
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generic manner due to the inherent risk of data compromise from systems they do not 

control. 

To date, there has been minimal research published on cloud computing security. This 

dissertation introduces three new mechanisms for cloud management and security called 

the Private Virtual Infrastructure (PVI), the Locator Bot (LoBot), and the Trusted Virtual 

Environment Module (TVEM). These mechanisms allow organizations to use cloud 

resources with the level of assurance that is required to meet their confidentiality 

concerns. 

1.2 Thesis 

Cloud computing requires a new trust model that shares the security responsibility 

between service provider and client. The core security challenge of cloud computing is 

that the information owner does not control the hardware that is operating on his data. 

Complicating the situation is that the hardware is multi-tenant with shared resources 

among many users. 

We leverage trusted computing technology to build trust into utility cloud computing; 

however, existing techniques do not satisfactorily solve the problem. We define a new 

trust model for cloud computing and introduce three new mechanisms that provide for 

building trust into utility cloud computing environments and help solve the core security 

challenge of cloud computing. 

We propose the following four tenets to cloud security to provide a secure framework 

and increase the security posture for utility cloud computing: 

1. Provide a trusted fabric on which to build utility clouds. 
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2. Provide a secure management facility for utility clouds that also serves as a policy 

decision point and root authority for utility clouds. 

3. Provide a measurement mechanism to validate the security of the fabric prior to 

provisioning of utility clouds. 

4. Provide secure methods for provisioning, shutdown and destruction of virtual 

machines in utility clouds. 

PVI, LoBot and TVEM implement the four tenets to allow organizations to build 

trustworthy datacenters, maintain control of their information in the cloud, and realize the 

benefits cloud computing provides. 

1.3 Cloud Computing Models and Technologies 

The National Institute of Standards and Technology (NIST) definition of cloud 

computing is a model for enabling convenient, on-demand network access to a shared 

pool of configurable computing resources (e.g., networks, servers, storage, applications, 

and services) that can be rapidly provisioned and released with minimal management 

effort or service provider interaction. This cloud model promotes availability and is 

composed of three service models: Software as a Service (SaaS), Platform as a Service 

(PaaS), and Infrastructure as a Service (IaaS) [4]. 

This dissertation only focuses on the IaaS model of cloud computing, which provides 

on-demand online computing infrastructure resource at a reduced overall cost of 

ownership [5]. The NIST definition for IaaS is a capability provided to the consumer to 

provision processing, storage, networking, and other fundamental computing resources 

where the consumer is able to deploy and run arbitrary software, which can include 

operating systems and applications. The consumer does not manage or control the 
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underlying cloud infrastructure but has control over operating systems, storage, deployed 

applications, and possibly limited control of select networking components (e.g., host 

firewalls) [4]. The two major technologies that enable IaaS cloud computing are 

virtualization and elastic computing which are described in depth later in this section. In 

IaaS, all of the facilities required for a datacenter application are available over the 

Internet which clients purchase as an outsourced service and are shared among a large 

number of consumers to allow for lower costs. 

This section also provides a brief introduction to trusted computing technologies. 

While trusted computing technologies are not specifically related to cloud, the merging of 

cloud and trusted computing technologies is the focus of this dissertation. 

1.3.1 Virtualization 

Virtualization is the process of decoupling hardware from the operating system on a 

physical machine. A Virtual Machine (VM) is the virtualized representation of a physical 

machine that is run and maintained on a host by a software virtual machine monitor or 

hypervisor [6]. The hypervisor implements the virtualization on the physical machine and 

can be one of two types. Type 1 hypervisors are sometimes referred to as native 

hypervisors as they run on “bare metal,” or directly on the host's hardware to control the 

hardware and to monitor guest operating-systems. Type 2 hypervisors are hosted 

hypervisors, meaning they are software applications running within a conventional 

operating-system environment. This dissertation focuses entirely on Type 1 hypervisors. 

Xen [7] is an example of a Type 1 hypervisor. Xen provides full virtualization to 

partition the host machine into multiple VMs. Xen can also use a technique known as 
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paravirtualization, where the operating system is aware of virtualization and works with 

the hypervisor, to improve the efficiency of operation. 

VMs provide many advantages to increase efficiency and decrease cost to 

datacenters; however, VMs have significant security implications. A primary concern is 

ensuring the proper virtual environment is operating within a VM and whether the VM is 

configured properly. Another concern is virtual machines specific vulnerabilities that can 

be exploited to mount attacks specialized to subvert the built in defenses of the guest 

operating systems. 

As all virtual machines have a standard interface and appear identical to the software 

running within it, we consider all attacks that can take advantage of that interface. 

Examples of such attacks include an adversary copying a virtual machine to maliciously 

run multiple copies of licensed software on multiple computers since their environments 

are identical, thus breaking the licensing agreement. Another problem of abstracting the 

real hardware interface from the guest VM is that it has no binding to physical hardware, 

thus disallowing it to determine its physical location and being able to decide whether the 

host environment is safe. By not knowing what else is operating on the platform, the 

guest VM cannot determine the trust level of the host platform. If the authenticity of the 

VM is not known and the trust of host environment cannot be determined, the guest VM 

cannot be trusted. 

Trusting Virtual Machines 

The security and integrity of the VMs in the cloud becomes a major concern as more 

organizations turn to cloud virtualization solutions [8]. We wish to place a level of trust 

in the VM that it will perform its intended task without compromise or lose the data it is 

processing. 
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To trust the virtual execution environment, a method is needed to measure the 

environment to ensure that the VM meets all of the requirements and report that 

measurement to a Policy Decision Point (PDP) to authorize a VM for operation. The 

entire process of measuring a configuration and reliably reporting the measurement is 

attestation [9]. 

Trusted hardware is one technology we can leverage to achieve our goals of building 

trusted virtual machines. Hardware protection mechanisms such as Trusted Platform 

Modules (TPMs), secure virtual machine technology, and secure execution technology 

measure and securely execute software through hardware enforcement. Additionally, 

hardware protection is also provided to protect from rogue processors and to detect other 

malicious behaviors. We consider applications for this technology to build trust models 

for virtual execution environments. 

1.3.2 Elastic Computing 

Elastic computing provides scalable on-demand computing resources that are 

delivered as a service over Internet technologies [10]. Elastic compute clouds have 

automated management that handles the allocation and provisioning of VMs on cloud 

computing resources. This management layer provides up and down scalability of 

infrastructure resources. Amazon’s Elastic Compute Cloud (EC2) [11] is one 

implementation of elastic computing. EC2 can have many different applications and 

servers, from many clients, simultaneously running within its cloud. Each client’s view of 

the cloud will be different from another client’s view. 

Elastic computing biggest advantage is its payment and use model. In a traditional IT 

approach, organizations would have to purchase enough processing, storage, and network 
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hardware to support their peak computing requirements, as well as provide for space, 

power, and cooling for the hardware. In elastic computing, processing, storage and 

bandwidth incur charges of actual usage based on a normalized unit of measurement. The 

elastic computing payment model allows clients to reduce their IT cost by only paying for 

the resources when they are used. 

1.3.3 Trusted Computing 

Trusted computing technology provides a robust foundation on which to build a 

secure cloud. A Trusted Computing Platform (TCP) uses a trusted component to provide 

a foundation for trust for software processes [12]. The Trusted Computing Group’s 

(TCG’s) specification [13] states that TCPs have a two roots of trust, a Root of Trust for 

Measurement (RTM) and a Root of Trust for Reporting (RTR). For x86 based trusted 

platforms the RTM is included in the BIOS boot block and the RTR is in the TPM [14]. 

The RTM provides secure measurement of the platform and the RTR allows a verified 

report of the measurement through the process of attestation. 

Trusted Platform Module 

The TPM [15] is the cryptographic component of the TCP serving as the RTR. The 

TPM also serves as the Root of Trust for Storage (RTS) providing a Storage Root Key 

(SRK) to protect encryption keys and other information. Other useful features of the TPM 

include a Non-Volatile Random Access Memory (NVRAM) for secure storage of keys and 

user data, and a true random number generator for key and nonce generation. 

Measurement of the platform is accomplished by performing a Secure Hash 

Algorithm (SHA-1) hash on the code loaded on the platform and storing the result in the 

TPM’s Platform Configuration Registers (PCRs). The attestation process allows clients 
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to request a quote of the PCRs signed by the TPM and verify that the platform they are 

using meets their policy and configuration requirements. Clients can then determine 

whether they wish to use the services provided by the platform based on the attestation 

from the platform’s TPM. 

Each TPM has an Endorsement Key (EK) and EK certificate that provides a unique 

identity for the TPM and validates that the TPM is legitimate. An Attestation Identity Key 

(AIK), signed by a privacy CA, can also be created that is used to verify that the TPM is 

legitimate; however, an AIK has no information that is uniquely identified to a single 

platform. 

Virtual TPM 

One problem associated with the TPM is that it works only for non-virtualized 

environments. Most TPM implementations closely follow the TPM specification for a 

one-to-one relationship between the OS and trusted platform; therefore, the TPM has a 

limitation in that it can be owned by only one entity at a time. If platform virtualization is 

used, the TPM must be virtualized to provide full TPM functionality for each guest 

entity. For this reason, specifications have been developed for a Virtual TPM (VTPM) 

[16] to provide the TPM functions for each virtual environment on the platform. 

There are several implementations of the VTPM; each uses different methodologies 

to virtualize the TPM. For LoBot we chose to use the Generalized VTPM framework the 

TCG is proposing [17]. In the framework, each VTPM is implemented as a software 

based emulator that has its own emulated resources including EK, SRK, PCRs, and 

NVRAM allowing it to function identically to a hardware TPM. 
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Trusted Execution Technology 

Trusted eXecution Technology (TXT) is a feature of Intel’s microprocessors and 

chipsets commonly referred to as Intel vPro [14]. TXT provides a late launch capability 

for the secure creation and launch of virtual execution environments called Measured 

Launch Environments (MLEs). MLEs can be launched anytime after a platform is booted. 

Hardware protections are provided by TXT against software based attacks on MLEs 

during launch and while the MLE is executing. 

Late launch is initiated through function called SENTER, which provisions the MLE 

on the TCP. The SENTER process measures and verifies the MLE with a secure hash 

algorithm built into TXT and correctly configures the processor and chipset prior to 

passing control of the processor to the MLE. This capability ensures that the MLE 

launched is the proper MLE the user wishes to use and that the MLE has been 

provisioned on the platform as intended. 

1.4 Contributions  

This dissertation contributes the following novel concepts and specifications: 

• An architecture for protecting privacy and confidentiality in a cloud datacenter that 

separates security relationships between the user and consumer of cloud services 

and combines trust from both for the virtual and physical environments. 

• The concept of an agent or “bot” virtual appliance to protect provisioning and 

migrations of virtual machines in a cloud datacenter through fabric pre-

measurement. 
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• Protocols to ensure secure provisioning and secure live migration of virtual 

machines in the cloud datacenter. 

• A new Trusted Virtual Environment Module for rooting trust in a cloud computing 

environment. 

• A Trusted Environment Key that combines components of trust from the virtual 

environment owner and the platform to form a compound virtual environment 

trust. 

• A Virtual Trust Network and TVEM Factory for managing and provisioning 

TVEMs from a central control facility. 

1.5 Dissertation Organization 

This dissertation is organized into six chapters, including this introduction. The 

remainder of the dissertation is organized into four main chapters and a conclusion. 

Chapter 2 discusses the trust and security assumptions used throughout this 

dissertation. The chapter then provides a catalog of known vulnerabilities and the threats 

of IaaS cloud computing. 

Chapter 3 introduces the Private Virtual Infrastructure. PVI is our solution for 

managing trust and security that allows organizations with data confidentiality concerns 

to leverage the economies of scale of cloud computing technologies. PVI is based on the 

tenets of cloud security we propose. By sharing the responsibility for security between 

the service provider and the customer, PVI reduces the risk of using cloud computing 

services.  
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Chapter 4 presents the Locator Bot and LoBot Secure Provisioning (LSP) and LoBot 

Secure Migration (LSM) protocols in detail. LoBots are virtual appliances, or agents, for 

secure provisioning of virtual machines in IaaS clouds. LoBot pre-measures a host 

platform to determine whether the host is trustworthy and provides sufficient security 

controls for the intended application and information. 

Chapter 5 describes the Trusted Virtual Environment Module, a new mechanism for 

rooting trust in a cloud computing environment. The TVEM helps solve the core security 

challenge of cloud computing by enabling parties to establish trust relationships in a 

cloud computing environment where an information owner creates and runs a virtual 

environment on a platform owned by a separate service provider. 

Chapter 6 concludes the dissertation with a summary of the contributions, a brief 

discussion of areas of future work, and final thoughts. 



 

Chapter 2  

Assumptions, Vulnerabilities, and Threats 

Cloud computing introduces new security threats and vulnerabilities that are not 

present in traditional IT environments. Current IaaS technologies lack adequate security 

mechanisms to handle these new threats and risks, potentially exposing information 

stored in the cloud to the service providers, attackers with Internet access, and all the 

other users of the cloud. This chapter describes the assumptions of trust used throughout 

this dissertation, the vulnerabilities associated with cloud computing, and provides the 

threat model. 

2.1 Assumptions 

This dissertation uses the following assumptions regarding trust: 1) we implicitly trust 

all TPMs, PVI and TVEM factories (see Sections 3.3.2 and 5.5.1 respectively for details 

on PVI and TVEM factories); 2) we trust standard cryptographic primitives and 

protocols; 3) we trust that users have an authenticated channel for receiving public keys 

need to authenticate TPMs; and 4) we trust that the cloud service provider runs certified  

hypervisor software on trustworthy physical machines. This section describes these 

assumptions in detail. 
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2.1.1 TPM and Factory Trust 

For the information owner to have full trust in the PVI and individual components of 

the system, he must implicitly trust two components: TPMs and factories. Without trust 

in these components, he cannot have assurance in the security of his information in the 

cloud. It is reasonable to expect the information owner can trust these components as they 

are trustworthy devices. 

A TPM is an explicitly trusted component of a computer system. A TPM is 

implemented as an integrated circuit that is physically attached to a platform’s 

motherboard. The TPM has well-defined commands that allow software running on the 

platform to control it. Because the TPM is implemented in hardware and presents a 

carefully designed interface, it is resistant to software attacks [18]. An Endorsement Key 

(EK) certificate allows anyone to validate that a transaction signed by a TPM is genuine 

[19]. 

A factory is a trusted component of the architecture presented in this dissertation. 

Factories, whether they are PVI or TVEM factories, are the only components of the 

architecture that the information owner has complete control over. The factories generate 

and manage critical components of the architecture as well as the keys to secure the 

components. The information owner has assurance that the factory will perform as 

intended because he has complete control of the factories configuration and physical 

security. 

2.1.2 Cryptographic Primitive Trust 

We assume that standard cryptographic protocols and algorithms are in place and not 

compromised. Protocols such as SSL and TLS are required to provide secure links and 
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transmission of data between the service provider and client. Both symmetric and 

asymmetric encryption primitives are required to protect data confidentiality and must be 

able to decrypt ciphertext when required. We also assume cryptographic hash algorithms 

such as SHA-1 provide sufficient resistance to collisions that weaken the cryptographic 

strength of the hash. 

2.1.3 Authenticated Public Key Channel 

Our solution requires that TPM public key certificates are published in a location that 

is accessible by users of the cloud. The public key certificates allow users to validate the 

genuineness of any TPM with which they transact. The authenticated public key 

certificate channel prevents TPM spoofing by providers ensuring that all transactions 

with second party TPMs are confidential. 

2.1.4 Service Provider Trust 

A cloud service provider is trusted to provide a certified hypervisor and services that 

enable the client to verify the configuration of the provider’s platform. The service 

provider should publish the configuration of their platforms and provide attestation 

signatures that clients can use to verify the configuration of the host platforms. We 

assume that the service provider does not lie about their configuration or there are other 

mechanisms to verify the configuration of the host platforms. 

2.1.5 Other Assumptions 

The control of the host machines at the service provider facility is done through a 

localized management network that is not accessible from the public Internet. Most 

servers have two network interfaces for this purpose. One network interface is used 
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exclusively for a management interface and services interface; the other interface is used 

for external access to the system from the Internet. These two interfaces are physically 

separated and the software on the host system isolates them. The means that an external 

attacker cannot gain access to the management interface from outside the physical 

premises; therefore, an external attacker cannot gain root privileges from an external 

network. 

The host provider’s datacenter has physical access control mechanisms in place 

preventing unauthorized personnel access to the servers and networking equipment. This 

is necessary to prevent attacks against the hardware and physical components of the 

system. 

2.2 Known Vulnerabilities 

The largest vulnerability in cloud computing is that data are processed on a machine 

that is owned by an entity different from the information owner. In the case of IaaS, the 

virtual machine is owned by the information owner and the host platform is owned by the 

service provider. Since the information is stored and processed on the service provider’s 

machine, the information owner does not have full control of the data. 

Utility cloud computing is, by definition, multi-tenancy with other users also using 

the same hardware resources, which introduces the risk of exposing sensitive information 

to unauthorized users. Information owners do not control the hardware resources used to 

operate on the information and must rely on the virtualization to provide the security 

needed to protect their information. The shared components that make up the underlying 

IaaS fabric (e.g., CPU, caches, storage, etc.) were typically not designed to offer strong 

isolation for multi-tenancy. A hypervisor addresses this gap by mediating access between 
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guest operating systems and the physical computing resources; however, hypervisors 

have exhibited flaws that have enabled attackers to gain inappropriate levels of control of 

the platform [20]. 

Other vulnerabilities in the cloud computing environment are poor random number 

generation from low entropy of cloned machines [21]. Low entropy reduces the strength 

of the cryptographic operations performed in the cloud environment, increasing the risk 

of exposure by cryptanalysis. 

2.3 Threat Model 

The threat profile increases considerably for cloud computing compared to traditional 

IT environments. Attackers have much more access to attack exposed cloud computing 

services due to the open nature of cloud computing compared to the closed environment 

of traditional IT. 

Potential adversaries in the cloud computing environment that we defend against are 

other tenants in the cloud and outside attackers. A cloud tenant can potentially eavesdrop 

on other tenants in the cloud or escalate his privilege by breaking virtualization 

containment and attacking other tenants. The outside attacker is generally the same as the 

outside attacker for a regular IT scenario with the exception that the attacker has a higher 

incentive to attack clouds since the opportunity for accessing valuable data is higher due 

to the concentration of users. 

For this threat model, consider a platform running virtual machine machines under 

the Xen hypervisor. Figure 2.1 show the virtual execution environment (i.e. hypervisor 

and host OS) and the communication channel to a policy decision point that are in the  
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Figure 2.1 – The target of concern for threats to the guest virtual machine is 
the execution environment and its communication channel to a policy decision 
point. 
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target of concern for threats to the guest VM. We consider threats for the IaaS model in 

this section. We categorize the threats into two groups, those that are circumvented by 

our solutions and those that are not. 

2.3.1 Circumvented Cloud Computing Threats 

This section describes attacks which are prevented, handled, or detected by our 

solution. 

Outside Attackers 

An outside attacker is an adversary who does not have physical access to the 

hardware and attacks the system through the Internet. An outside attacker could place a 

malicious VM in cloud. This malicious VM, or malvm, in the cloud can purport to be a 

valid host machine of the service provider and receive information environments from 

unsuspecting users. This malvm could also snoop on the traffic within the datacenter. 

Once an attacker is able to implant a malvm in the cloud, the entire datacenter could 

potentially be compromised. An example attack is a malvm spoofing itself as a valid host 

machine on the service provider’s network. When a new Virtual Server (VS) is requested 

in the cloud, the malvm receives the new VS from the customer, copies all confidential 

data, and transmits it back to the attacker. These actions are performed undetected 

without alerting the user that they are operating on a compromised machine. As far as the 

users know, their data assets are on a valid host server as it appears they sent the 

information to the service provider directly. 

A similar attack we wish to defend against is the malicious host (malhost). In this 

scenario, an attacker gains control of a node by compromising the hypervisor or host OS. 

Once malicious control of the host is established, the malhost can accept new VS 
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requests. The malhost is legitimate and on the provider’s network; therefore, it is 

implicitly trusted and treated as a non-malicious host. Since the malicious hypervisor and 

host have higher privilege than the guest machine, the malicious host has access to all 

operations and memory of the guest and ability to compromise any sensitive information 

to which the guest has access. 

The LoBot Secure Provision and LoBot Secure Migration protocols ensure that PVI 

and TVEMs are provisioned only on authorized platforms of the service provider. The 

protocols prevent information from ever being sent to a malhost or malvm. 

The Hypervisor 

The hypervisor poses a significant threat to the virtual environment. The hypervisor 

has the highest privilege in the system; therefore, it has the ability to manipulate the guest 

operating system in multiple manners. The threat of a malicious or compromised 

hypervisor is that it can intentionally disrupt the guest’s security mechanisms. A 

malicious hypervisor could also perform a man-in-the-middle attack on any 

communication between the guest VM and any outside entity, furthering the threat to the 

guest virtual environment. 

This type of attack is demonstrated with Time Traveling Virtual Machines (TTVMs). 

TTVMs are VMs whose state can be changed through the intervention of the hypervisor 

[22]. A TTVM has two capabilities. First, it can reconstruct the complete state of the 

virtual machine at any point. Second, it can start from any point in a run and from that 

point replay an instruction stream. This capability allows attackers to manipulate VMs to 

states which occurred in the past or force the VM into a state that it would not normally 

enter (e.g., error states which force the VM into debug mode or disable security features). 

TTVMs were originally designed to help debug operating systems and complex 
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applications by replaying state and instruction information; however, a TTVM can be 

used for malicious purposes such as falsifying time stamps for transactions, and for 

replay and rollback attacks. 

Our solution provides a mechanism to verify whether an approved hypervisor is in 

use. Assuring an approved hypervisor provides the information owner confidence that 

attacks against the virtual environment will not be performed by the hypervisor. 

The Host Operating System 

The host operating system is the controlling system on the platform, referred to as 

dom0 since it has higher privilege than other VMs, which are in unprivileged domains 

referred to as domU. A domU guest relies on the dom0 host for many services including 

VM control and management, device drivers, and in the case of Hardware Virtual 

Machines (HVMs) BIOS and system emulation. This forces the domU guest to place a 

large amount of trust in the host environment. If an attacker gains access to dom0, she 

could manipulate the control, drivers and emulators to force the domU to an untrusted 

state. 

Device drivers are another threat associated with the host operating system. Since 

drivers typically operate at the highest privilege of the platform [9], equivalent to the host 

OS they can be compromised to obtain “root” access to the system through vulnerabilities 

such as buffer overflows and poorly designed interfaces. Drivers could also contain 

malicious code embedded within them. These vulnerabilities could allow an external 

entity to use a device driver to gain access to a domU. 

Again, our solution provides a mechanism to verify whether an approved host OS is 

in use. Assuring an approved OS provides the information owner confidence that attacks 

against the virtual environment will not be performed by the OS. 
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Hypervisor and Rootkit Malware 

A new class of attacks has evolved around building malicious hypervisors and 

operating system rootkits that subvert the built in security measures of many operating 

systems [23]. These malwares utilize a hypervisor or rootkit that allows them operate at a 

privilege level above that of the guest OS or maintain root access to the system. The 

malware at the higher privilege level can then intercept system calls from a victim OS 

and modify the calls in a manner that thwarts the security mechanisms of the victim VM. 

The malware can gain access to protected memory, intercept passwords or cryptographic 

keys, and perform a multitude of other malicious acts that the guest OS has no chance of 

defending against as it would be able to do on a physical machine. 

An example of this type of attack is SubVirt [24] created by a University of Michigan 

research team, which is essentially a Virtual-Machine Based Rootkit (VMBR). SubVirt 

has been used to implement a phishing web server, a keystroke logger, a service that 

scans the target file systems system looking for sensitive files, and a defensive 

countermeasure that defeats a virtual-machine detector. 

The Blue Pill attack is another example of this type of attack. The Blue Pill is an 

attack to virtualize a Windows operating system by installing a malicious hypervisor 

underneath the kernel that is theoretically undetectable even though the algorithm and 

code are publicly available. It avoids detection by trapping all attempts by the victim OS 

to determine it is in a virtualized environment and reporting fake information back to OS 

to make it believe it is operating normally. The Blue Pill attack can be performed on 

already virtualized machine, thus nesting itself between the real hypervisor and the victim 

machine [25]. 
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By verifying the validity of the hypervisor and host OS, we can determine if any 

malware was present in hypervisor and OS at boot time; however, an infection after boot 

time may not be detected. For this reason, we use encryption of data to reduce the risk of 

data exposure. 

Virtual Machine Migration and Duplication 

VMs can be duplicated and migrated to help balance load. This process is performed 

by copying or moving a VM from one physical platform to another and can either be 

performed live or offline. The live migration poses a significant challenge to trusting a 

VM because the migration is done while a VM is operating. 

The following scenario shows the critical flaw. A virtual machines launches, is 

attested and verified by the PDP, then the VM migrates to another platform. The virtual 

execution environment is changed, but since the VM has already attested to the PDP and 

keeps it authentications, it continues to operate as though it were on the previous 

platform. Migration is behavior we wish to know about and properly control, as changing 

the platform changes the security properties of the VM. 

A man-in-the-middle attack against VM provisioning or live migration is another 

attack we defend against. In this scenario, the attacker wishes to gain access to encrypted 

information on the Storage Area Network (SAN) or database. The attacker listens for 

provisioning or migration requests by the target and intercepts the image and state 

information from the source machine. This interception can be accomplished through 

spoofing, ARP poisoning [26], DNS poisoning [27], or any other attacks that redirect 

traffic from the destination machine to the attacker. Since the state information is a copy 

of the VM’s memory and processor state, the attacker can manipulate the image and 

machine state by implanting malicious software and then placing the compromised image 
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on destination server. The attacker now has access to the server’s secure data stored on 

the SAN through the malicious software implant. 

We ensure that these attacks are not possible by verifying the integrity of the image 

before and after provisioning. Providing keys for the LoBot and TVEM that are specific 

to a host platform reduces the risk of cloning and duplication of VMs and protects the 

information from being used on an unauthorized machine. 

Data Loss and Leakage 

The threat of data compromise is much greater in the cloud [28]. There are many 

ways data may be compromised in the cloud including deletion or alteration of records 

without a backup, loss of or changing an encryption key that results in the effective 

destruction of any data stored with the key, and unauthorized access by insiders or other 

cloud users. Again, encryption of sensitive data reduces the exposure of data loss and 

leakage. 

Another area of vulnerability of the VM is while the VM is at rest (i.e. inactive). A 

VM that uses a virtual file system – as opposed to a physical one – is susceptible to data 

modification while the system is at rest. It is possible for an attacker to modify the 

configuration of the VM by manipulating the virtual file system and alter the behavior, 

properties, and data stored on the VM. If an attacker gains access to a virtual file system, 

the data are vulnerable to theft as the attacker has full access to all data contained in the 

file system. Our solution detects data modifications through the attestation process during 

secure provisioning. Additionally, encryption of data in the VM image with keys locked 

to specific platforms reduces the exposure of data at rest attacks and data loss. 
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2.3.2 Non-circumvented Threats 

This section describes additional attacks against cloud computing for which we do not 

provide solutions. These attacks are provided as a reference and to help frame the 

capabilities of our solution. 

Malicious Insiders 

Malicious insiders can have a huge impact on an organization using cloud computing 

technologies. A malicious insider is anyone in the service provider’s organization with 

approved access or privilege to the cloud information systems that is motivated to 

compromise information confidentiality, integrity, and/or availability [29]. The insider 

threat is compounded when combined with lack of transparency into service provider 

processes and procedures. There is often little or no visibility into the hiring practices for 

cloud provider employees. For example, a provider may not reveal how it monitors 

employees or grants access to physical and virtual assets. Depending on the access 

granted, an insider could collect confidential data or even gain control of the cloud 

services with little or no risk of detection. 

There are several attacks against the VMs that can be performed by malicious actors 

inside the Cloud Virtual Fabric (CVF). A malicious administrator can surreptitiously 

attack a VM in the cloud using her higher privileged access to inspect memory, monitor 

VM communications, and perform suspend and reboot attacks. This attack is very 

difficult to defend against as the insider needs to have these privileges to administer and 

maintain the host systems and it is difficult to determine legitimate access versus 

malicious access. While our solution does not prevent malicious insiders from accessing 

sensitive information, encryption of sensitive data reduces the exposure. Therefore, we 
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must be vigilant in determining the security settings and configuration of the host 

environment prior to provisioning. 

Network-Based Attacks 

A VM is vulnerable to network-based attacks during attestation and migration 

(especially live migration [30]). Network attacks that can be performed include 

eavesdropping, man-in-the-middle, data modification, spoofing, etc. It is imperative that 

the network communication be thoroughly understood and examined to understand all the 

possible attacks against it. While our solution does not provide any direct protection from 

network attacks, our protocols do use cryptographic protocols which limit the exposure to 

network attacks. 

Hardware Attacks 

An attacker that has access to a physical machine can mount a hardware attacks 

against the VM. The attacker can install monitoring hardware (via any number of buses 

including USB, Firewire, PCI, etc.), replace existing hardware, or even copy a VM 

configuration via hijacked memory via a cold boot attack [17]. Since our solution is 

entirely software based, we cannot defend against hardware attacks. We assume that even 

though the threat of hardware attacks is present, the likelihood of such attacks is rare and 

thwarted by non-technical means such as physical security, personnel background checks, 

and policy. We will not examine technical defenses to those attacks beyond the 

capabilities built into the existing hardware protection mechanisms in the Intel vPro 

architecture. 
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Chapter 3  

Private Virtual Infrastructure 

Cloud computing requires a new trust paradigm that shares responsibility for security 

between providers and consumers of cloud computing services. Private Virtual 

Infrastructure (PVI) first introduced in [31] is our approach to managing trust and 

security in cloud computing environments. We introduce Locator Bot (LoBot) to 

implement the PVI on cloud resources with a level of assurance that is required to meet 

data confidentiality and privacy concerns of sensitive information. LoBot is a Virtual 

Machine (VM) appliance that acts as an agent to locate trustworthy platforms, provides a 

root of trust for PVI virtual servers (VSs) via a Virtual Trusted Platform Module (VTPM), 

and provisions PVI within the cloud. 

Many organizations such as financial institutions, health care providers, and 

government agencies are legally required to protect their data from compromise due to its 

sensitivity. Consider a healthcare provider that wants to move a database of patient 

medical records to a utility cloud to allow patients and insurance companies easier access 

to the information. Medical records are considered private and must be protected under 

the Health Insurance Portability and Accountability Act (HIPAA) of 1996; therefore, 

medical records in the cloud must be protected from unauthorized disclosure. A utility 

cloud potentially exposes the information to the operators of the cloud, other users of the 

cloud, and anyone who has access to the Internet. Typically, organizations with privacy 
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requirements manage and maintain their own datacenters with stringent physical and 

logical protection mechanisms ensuring that their data remains protected. These 

organizations simply cannot use cloud computing in a generic manner due to the inherent 

risk of data compromise from systems they do not control. PVI provides these 

organizations a means to manage security in a utility cloud by facilitating sharing of 

security management roles and responsibilities between service provider and customer. 

PVI for cloud computing enables organizations to maintain control of their information in 

the cloud and realize benefits of cloud computing. 

Private Virtual Infrastructure is an architecture for utility cloud computing that meets 

the information owner’s requirements for data protection and privacy. The PVI 

architecture is a cluster of Trusted Computing Fabric Platforms (TCFPs) that are owned, 

operated and configured by cloud service providers. The TCFPs host VSs for clients, 

which are two tightly coupled virtual machines, an Application Server (AS), and a LoBot 

that provides security services for the AS. Each PVI instance has a single trusted central 

control and policy decision point called the PVI Factory (PVIF), which provides the root 

of trust for PVI. The PVIF maintains and manages keys for PVI and serves as the 

certificate authority for the LoBot’s Endorsement Keys (EKs). 

Cloud security requires total situational awareness of the threats to the network, 

infrastructure and information. One of the biggest advantages to the cloud’s utility is 

abstraction [10], but is also its biggest security weakness. Abstraction allows the cloud to 

be pervasive and removes knowledge of the underlying fabric of processors, storage, and 

networking; however, without knowledge of the underlying fabric, information owners’ 

understanding how to secure their applications and information becomes very complex. 

 28 



 

Many of the security principles used today to secure datacenters and networks rely on the 

information owners’ ability to manage the underlying fabric of servers, routers, firewalls, 

and intrusion detection devices to understand when attacks are occurring and to responds 

to the threats by shutting down access to resources and isolating pieces of the fabric that 

are being attacked. 

Outline: This chapter is organized as follows. Section 3.1 discusses related work. 

Section 3.2 presents our computing model introduces an illustrative example. Section 3.3 

describes the PVI architecture in detail. Section 3.4 discusses the benefits, security and 

costs of PVI. 

3.1 Related Work 

Virtualization is a fundamental technology for implementing IaaS cloud services and 

PVI. Virtualization is the capability to share a single physical computer among many 

simultaneous guest VMs via a virtual machine monitor, or hypervisor. Xen [7] is an open 

source hypervisor that provides a the ability for VMs to run full operating systems as well 

as smaller “helper VMs” called stubs that provide services, such as hardware emulation 

and virtual TPMs. 

There are many security issues that must be considered when using virtualization 

technology including separation of private data between VMs, virtualization containment 

attacks, and hypervisor attacks against the VM. IBM developed a secure hypervisor 

called sHype [32] to help solve some of these problems. SHype provides isolation 

between the VMs and controls resource sharing but does nothing to verify the integrity of 

the VMs launched on the host. Terra [33] is a trusted virtual machine monitor that can 

create isolated tamper resistant VMs on a host with the ability to verify the VMs; 
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however, it does not provide the ability to measure the environment before provisioning 

of the virtual machine and does not guarantee a secure launch of the virtual environment. 

There are also disaggregation techniques developed to improve Xen security [34] that 

reduce the trusted computing base of the hypervisor and VMs, which is useful for our 

needs; but we still need to validate that the environment is properly configured prior to 

provisioning our VMs. 

A proposal for trusted cloud computing made by Santos [35] focuses on building 

trusted cloud computing platforms using the Trusted Computing Group’s specifications. 

PVI does not focus on the host platform, rather the architecture for the virtual datacenter 

operating on the trusted cloud computing platforms. PVI also introduces our cloud trust 

model that accounts for trust beyond the trusted platform. 

3.2 Our Cloud Computing Model 

Consider a landlord of an apartment building and the tenants of each individual unit. 

Tenants expect the landlord to provide basic services such as facility maintenance, 

security for the complex, while the landlord expects the tenants maintain their personal 

property and personal security (keep their doors locked). As long as the tenants uphold all 

the requirements of their lease agreement, they expect the landlord will respect the 

privacy and not spy on them or interfere with their personal property. A trust relationship 

is established between the landlord and tenant that each will uphold their end of the 

agreement. 

In the cloud computing realm, the service provider can be thought of as the landlord 

and the client can be thought of as the tenant. Infrastructure as a Service (IaaS) [36] is a 

model of cloud computing where all of the facilities required for datacenter applications 
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are available over the Internet, which clients purchase as an outsourced service. An IaaS 

datacenter is similar to the apartment building above in that it provides infrastructure 

hosting for multiple customers. A datacenter could have the capability to host thousands 

of VSs for clients who rent or lease the servers much as apartment tenants. By using 

cloud IaaS as a datacenter replacement, companies can manage traffic and loading agility. 

The clients can run web servers, applications, or databases on their VSs, dynamically 

increasing or decreasing their server capacity as needed. As long as customers abide by 

the service agreement, the provider should not interfere with the operation of the clients’ 

VSs, monitor the clients’ communications, or view or modify the clients’ data. Since 

security is not an integral part of IaaS, and since the management and ownership of the 

hosting platforms is removed from the information owner, ensuring the security and 

integrity of information in IaaS is a major unresolved issue. 

Let us consider a hypothetical example of a healthcare provider called CloudHealth. 

CloudHealth maintains a database of patients’ records, insurance companies, and billing. 

CloudHealth needs to reduce overhead. Reasoning that being an IT tenant would be 

cheaper than being an owner, they choose Fabricorp as their service provider. Fabricorp 

is a reputable Internet company that has been in business since the early days of the 

Internet and recently moved into cloud datacenter services. Fabricorp built several 

massive datacenters, each with several thousand servers; thousands of individual clients 

may be using its cloud datacenter services at any given time. CloudHealth will move all 

of its corporate servers and data assets into Fabricorp’s cloud, maintaining only thin 

clients, laptops or nettops, and mobile computing devices on site for doctors and 

administrators to access the cloud datacenter. This scenario allows CloudHealth to 
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leverage large amounts of computing power at Fabricorp to run analytics on healthcare 

data and perform billing operations when needed without having to maintain those 

computing resources locally, thus considerably reducing IT costs. The cloud datacenter 

contains all the personal and private information about CloudHealth’s patients, 

relationships with other companies, and financial information. To comply with HIPAA 

regulations, CloudHealth needs to have assurances that its data are protected from 

Fabricorp’s other cloud users, Fabricorp’s personnel at the cloud datacenter, and other 

Internet users who have access to Fabricorp’s services. We will show how PVI is used to 

help CloudHealth leverage the benefits of cloud computing. 

 
Figure 3.1 – Cloud Virtual Fabric topology consists of a server farm, SAN farm, virtual
severs and virtual disk. 

3.2.1 Cloud Virtual Fabric 

Fabricorp uses an IaaS topology called the Cloud Virtual Fabric (CVF) for their 

cloud datacenter. CVF is a network of computing platforms that provides elastic cloud 
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computing services. No client should be able to see what any other client is doing within 

the cloud. 

Figure 3.1 shows the topology of CVF which accommodates many VSs (known 

domains) and unknown domains (other users) on a fabric of computing platforms. These 

known and unknown domains need to be isolated from each other to provide privacy and 

security within the cloud. SANs provide virtual storage for the computing fabric and VSs. 

Virtual storage is accessed by VSs via a protocol like iSCSI, Fibre Channel over IP, or a 

similar protocol that physically separates storage from processing servers, providing the 

illusion of local storage for the VSs. This fabric configuration allows servers and storage 

to be spread across many physical facilities, while supporting dynamic provisioning and 

live migration capabilities for the VSs. 

3.2.2 Cloud Trust Model 

This cloud computing datacenter environment is laden with trust issues. The client 

must not only trust the datacenter operator, but each of the individual clients that are 

collocated in the facility and each third party service provider of the operator. Clients 

needs assurance that their sensitive information is protected from compromise and loss 

and that their application is available when demanded. If only one of the thousands of 

client VSs in the datacenter were malicious, it would have to capability to compromise 

and threaten all the remaining clients in the datacenter destroying the trust and integrity 

of all parties involved. 

We define a new model for trust in the cloud that accounts for various sources of trust 

and multiple trust relationships. Figure 3.2 show trust relationships that are present in our 

CloudHealth example. The cloud by definition is owned and operated by a second party, 
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Fabricorp. A trust relationship is established that Fabricorp will provide trustworthy 

services to CloudHealth when they enter into a business relationship. This relationship is 

an inferred trust in that it is a social trust, not a logical trust. Other inferred trust 

relationships in the example are that patients trust CloudHealth with their medical records 

and Fabricorp trusts vendors to supply support services. CloudHealth’s patients have no 

relationship with Fabricorp and want to be assured that their medical records are secure, 

which is CloudHealth’s responsibility. A Fabricorp vendor, for example a billing 

processor, does not have a trust relationship with CloudHealth nor its patients, yet it is 

critical that the bills for Fabricorp’s services are processed and the billing vendor does 

not interfere with CloudHealth’s operations. Our trust model solves the problem of 

maintaining CloudHealth’s trust with its ASs in FrabriCorp’s CVF, and ultimately, its 

patients. This trust relationship must be maintained in the presence of parties who have 

no relationship with CloudHealth or its patients. 

As can be seen from Figure 3.2, the trust relationships are not linear. An application 

server has two sources of trust, trust in the CVF (provider), and trust in the PVI (client). 

The PVIF first needs to establish a logical trust in the TCFP before it initiates any 

provisioning of PVI. This is done by inheriting the root of trust in the TCFP and 

combining it with the PVI root of trust with a LoBot. LoBot’s compound trust 

relationship is then used as a root of trust for the VS. The VS’s root of trust is distinct in 

that LoBot has combined two unique roots of trust into a third compound root of trust 

with attributes inherited from both sources. This LoBot root of trust is unique to the 

TCFP it is running on such that it cannot be cloned and used on another platform without 

unbinding the trust relationship to the TCFP. Additionally, the VS cannot be used by 
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other entities in CVF, even on the same TCFP, as the trust is bound to PVI as well as the 

TCFP. 

 
 

Figure 3.2 – Trust relationships in the cloud are complex with multiple 
relationships both inferred and inherited. 

3.2.3 PVI Security Model 

In a cloud, traditional security methodologies do not work as the service providers 

cannot allow information owners, or clients, to manipulate the security settings of the 

fabric. If this were allowed, it would be possible for one client to change security settings 

illicitly in their favor, or change security settings of other clients maliciously. This 

situation is unacceptable since the information owner cannot manage the security posture 

of their computing environment. Therefore, a security model is needed that allows 
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information owners to protect their data while not interfering with the privacy of others in 

the cloud. 

We propose a model for security that is shared between operators and clients. 

Operators need to give clients visibility into the security posture of the fabric while 

maintaining control of the fabric. The clients need to have assurance that they can control 

the privacy and confidentiality of their information at all times and have assurances that if 

needed, they can remove, destroy, or lock down their data at any time. Adding security to 

any system inevitably leads to a compromise in some fashion. For PVI, the abstraction of 

the fabric is removed. It is impossible to have a completely obscure fabric for IaaS that 

provides the assurances of security properties required for the sensitive data contained in 

a PVI. 

The PVI security model is a virtual datacenter over the existing cloud infrastructure. 

This virtual datacenter is under control of the information owner while the fabric is under 

control of the operator. Both parties must agree to share security information between 

themselves and possibly other parties in the cloud to achieve situational awareness of the 

security posture at all times. 

The key benefit of the PVI security model is the ability to verify security settings of 

the underlying fabric. The service provider needs to supply security services which 

protect and monitor the fabric. Each service in the cloud needs to be able to report 

security properties present and the report must be verifiable. These properties must be 

cryptographically bound and signed such that anyone wishing to verify the properties, 

and has the proper authorizations, can do so. This ability means that clients need visibility 

into the security settings and configuration of the fabric. We have chosen to use trusted 
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computing techniques to provide the visibility into these settings and verifiably report the 

configuration of the fabric in PVI. 

The service level agreement between the client and provider is critical to defining the 

roles and responsibilities of all parties involved in using and providing cloud services. 

The service level agreement should explicitly call out what security services the provider 

guarantees and what the client is responsible for providing. Clients should thoroughly 

examine and negotiate Service Level Agreements with their vendors to define and 

minimize their risk exposure before agreeing to use any cloud computing service. 

Additional requirements for PVI are that communications to, from and within PVI 

should be done through a Virtual Private Network (VPN) and all links should be 

encrypted with IPsec or SSL tunnels. The encryption provides confidentiality on the 

network and prevents other users within the cloud from eavesdropping and modifying 

communications of PVI. 

3.3 Private Virtual Infrastructure Cloud Security Architecture 

Information owners need the ability to manage their cloud datacenters to respond to 

the threats and balance their computation and network loads. The PVI architecture 

provides this capability through two layers that separate the security and management 

responsibility between the service provider and the client. The CVF layer provides 

computation resources managed by the service provider, while the PVI layer provides a 

virtual datacenter managed by the client. The service provider assumes responsibility for 

providing the physical security and the logical security of the service platform required 

for the PVI layer. Clients are then able to configure their computing environment with the 

level of security required to meet their confidentiality and privacy requirements. 
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The primary requirement for the PVI architecture is protecting the AS where sensitive 

information is processing, which we call the Application Domain (aDom). To do so, we 

need to ensure that the aDom is provisioned exactly as intended, provisioned where 

intended, and provisioned when intended. To achieve this requirement, each TCFP in the 

cloud needs to be able to report security properties and configuration information to the 

PVI. These properties must be cryptographically bound and signed such that any 

authorized person can verify the properties. We use trusted computing techniques to 

provide cryptographically verifiable reports of the security properties and configuration 

of the TCFP. 

A TCFP is the basic computing platform of the CVF. On each TCFP, multiple cloud 

VSs can be provisioned, along with VMs from other clients in the cloud; therefore, strong 

isolation is required on the platform. A VS is the basic component of processing within 

PVI. The VS consists of two sub-components, the aDom VM running applications with 

sensitive data, and its companion LoBot virtual appliance. Provisioning and migration 

require a management layer, which is controlled via the PVIF. Trusted storage and 

networking are also required components of the PVI; however, trusted storage and 

network issues are out of the scope of this research. 

3.3.1 Trusted Cloud Fabric Platform 

A TCFP is one single physical machine in the CVF. Each TCFP implements Intel’s 

vPro specification with TXT and a TPM version 1.2. The TPM implements a random 

number generator for nonces, encryption key generation, RSA 2048-bit encryption, and 

the SHA-1. Each TCFP may have multiple CPUs, but only has a single shared memory 

and a single TPM. A type 0 hypervisor is used to virtualize processing and most 
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resources are shared amongst all virtual environments; however, local configuration 

could provide unshared resources for certain applications or domains. The platform can 

support many unprivileged domains with strong hypervisor isolation and hardware 

support via TXT. 

The TCFP must have a Trusted Computing Base (TCB) defined that can be measured 

via the TPM. We wish to have as small of a TCB as possible; however, there are certain 

components we wish to include in the TCB which make it rather large. At a minimum, 

the TCB should consist of the hardware components of the TCFP and the hypervisor. 

Additionally, we would like to include the kernel of the host OS in the TCB and possibly 

the management layer. 

The TCFP node architecture shown in Figure 3.3 is developed around the Xen 

hypervisor [7]. The hypervisor runs at the highest privilege on the host platform; 

therefore, it must be a trusted and part of the TCB of the TCFP. The host operating 

system runs as a privileged domain (dom0), which provides the management layer for 

PVI; therefore, it is desired that dom0 be a trusted component as well. The hypervisor 

and host OS can be verified through attestation of the host system by attestation from the 

host TPM’s PCRs. 

3.3.2 Management Layer 

The management layer is responsible for controlling PVI provisioning and migration 

of VSs to trustworthy platforms within CVF. The management layer is a function of 

several components including Xen Management (XM) and the PVIF. XM is used to 

manage local tasks on the TCFP while the PVIF manages task across multiple platforms 

throughout the entire PVI. Secure provisioning and live migrations are initiated through 
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the PVIF and performed through the XM instances on the TCFPs. Secure provisioning 

and live migration are monitored and controlled by the PVIF via the LoBot Secure 

Provisioning (LSP) and LoBot Secure Migration (LSM) protocols. 

The management layer must have privileges to read and write information into the 

TCFP’s TPM to obtain information about the configuration of the TCFP and bind the 

LoBot’s VTPM to the TPM. This requirement makes the management layer a trusted 

 
Figure 3.3 – Architecture of a Trusted Cloud Fabric Platform showing the Virtual 
Server Domain, Application Domain and LoBot Domain 
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component of the architecture, which means that everything it is built upon must also be 

trusted. 

PVI Factory 

The PVI Factory serves as the controller, root authority, and policy decision point for 

the PVI. Figure 3.4 shows the overall PVI architecture with the PVIF as the management 

structure for PVI outside of the CVF. The PVIF is responsible for ensuring the integrity 

of the PVI and handling incidents in the event of a security breach. If any problems are 

detected, PVIF can shutdown the PVI, recall and inspect all images for tampering, and 

generate alarms and reports. 

The PVIF is the most sensitive component of the PVI. The PVIF is the management 

controller and root of trust for PVI providing the following functions: virtual machine 

provisioning, VTPM key generation, EK certificate authority (VTPM Entity), and VTPM 

NVRAM storage. The PVIF is where all components of the PVI are provisioned and it is 

the root authority for provisioning, VTPM key generation, and certificate generation. 

Since VTPMs do not have valid EKs, an EK must be generated for each VTPM used 

within the PVI to trust the operations of the VTPM. The factory also maintains master 

images for ASs, LoBots, and handles data transfers within the PVI through the VPN 

configuration and management. 

The PVIF is an application that runs on a dedicated trusted server, which could have 

built-in hardware to accelerate cryptographic operations and to provide true 

randomization, but a software-only implementation would suffice for most applications. 

Because the PVIF is the root authority, if it is compromised, then all existing PVI 

components are at risk of compromise and future provisioned components cannot be 

trusted. The PVIF should be a standalone component under full control of the information 
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owner and isolated to the greatest extent possible from other systems. If the PVIF is 

collocated within the service provider’s datacenter facility, it should be physically 

isolated in an access controlled area. 

 

Figure 3.4 – PVI Architecture showing the PVI Factory and two TCFPs hosting 
three VSs and one unknown domain. The PVI Factory manages images and keys for 
the PVI and is the certificate authority. 

3.3.3 Virtual Server Domain 

Each Virtual Server Domain (vsDom) is a combination of an unprivileged aDom and 

a tightly coupled LoBot. The LoBot is implemented as an unprivileged stub driver 

domain to provide isolation and protection for the VTPM. VsDoms are provisioned, 

managed, and controlled by the client, not the operator, to ensure that the client maintains 

control of the information contained in the application server. 
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Application Domain 

The aDom is the VM that the client runs application on in the cloud. This aDom is 

where all critical processing is performed and confidential data are processed; therefore, 

the domain needs to be protected at the highest level possible. ADom is the domain we 

wish to protect with PVI and LoBot. PVI’s primary goal is protecting the aDom. 

Compromise of aDom would allow an attacker to gain access to or corrupt the sensitive 

data begin processed within the AS. 

LoBot Domain 

LoBot is a virtual appliance that is used to secure ASs in PVI. A LoBot is a self-

contained VM image that has no external storage requirements, thus allowing it to move 

and replicate within a cloud environment efficiently. The LoBot domain’s primary 

responsibility is to serve as the protector of the aDom. LoBot protects aDom with the 

following primary functions: 1) emulate a physical TPM for the aDom and provide a root 

of trust for aDom, 2) act as a probe to measure target platforms, and 3) provide secure 

provisioning and live migration services. The probing function ensures the destination 

platform provides sufficient security properties to protect information of the aDom. 

The LoBot architecture is a driver stub domain bound to a single aDom creating a 

vsDom. The LoBot provides TPM services via a VTPM to the aDom. The VTPM is the 

core of the LoBot architecture providing the same level of trust to the virtual platform as 

the TPM does on the physical platform. The LoBot’s VTPM is bound to the physical 

TPM of the TCFP tightly coupling the LoBot and aDom to the host. Note PVI is owner of 

VTPM and CVF is owner of TPM. Placing the VTPM in the LoBot has several 

advantages over operating the VTPM in the host domain including isolation of the VTPM 

process and reducing the burden of VTPM migration. The VTPM instance is isolated in 
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LoBot via Intel’s Virtualization Technology (VT-x) and TXT such that no direct 

interactions with other domains are allowed. The only way to access the VTPM is 

through a rigidly controlled device interface between the LoBot and aDom ensuring that 

data stored by the VTPM is protected from other processes on the same platform. All 

information that a LoBot and VTPM are required to save, such as keys and non-volatile 

storage, is encrypted in a blob and sent to the PVIF for storage. The PVIF manages 

storing data for each LoBot eliminating the need for local storage. 

Upon launch of the LoBot, the VTPM binds itself to the target’s TPM then the probe 

application reads the platform configuration from the target TPM’s PCRs and obtains 

identifying information about the platform. Identity information is provided in the form 

of cryptographic certificates. This information is then combined with the VTPM’s PCR 

which is cryptographically sealed in a blob that is transferred to the PVIF. The PVIF 

decrypts the blob and examines the information received to make a trust decision. If the 

PVIF determines the target environment is trustworthy, it configures the aDom image and 

securely transfers it to the target environment in a blob encrypted such that only the target 

platform may execute source environment. 

At the target environment, the LoBot probe application receives and unseals the 

aDom image. If the image was tampered with during transfer, it will be detected during 

the decryption phase. To make sure everything is safe, the probe measures the source 

environment one more time to validate its integrity to ensure the launch in the target 

environment was successful. 
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3.3.4 Trusted Storage and Networking 

Each aDom in PVI needs a virtual storage device to serve as the system disk and to 

store the software and data. Storage must be in a location that is accessible to both source 

and destination nodes during migrations. It is assumed the underlying management layer 

of the CVF will handle availability of the drives during migrations. In CVF, storage is 

implemented as drive images files stored on the SAN which emulates a block storage 

device. For our Xen prototype system, we used NFS4 with simple files as drive images. 

Storage must be trusted to maintain trust in the vsDom. For this dissertation, we assume 

virtual storage is trusted such that the confidentiality, availability, and integrity are all 

uncompromised. Further discussions on trusted storage are beyond the scope of this 

research. Virtual storage issues are also out of the scope; however, storage migration may 

be necessary in the case a vsDom is migrated off of a network served by the SAN. 

LoBots do not require block storage devices as they are non-persistent. This alleviates 

the need to have a trusted store for LoBots and ensures that the LoBot images are correct 

if the image is properly provisioned on the destination platform. 

PVI operates on a high speed local area network inside CVF which is isolated from 

the Internet by firewalls, network address translation, and other security devices. To 

ensure private networking within PVI, encrypted VPNs and virtual LAN partitioning are 

used to isolate PVI from the other CVF network traffic. We assume the network 

boundary protection devices are robust enough to thwart attacks from the Internet 

including viruses, worms, and denial of service attacks. 
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3.3.5 Measurement and Secure Provisioning 

Removing the abstraction of the fabric is a trade off that we must be willing to take to 

increase the security of the virtual datacenter. This means that service providers must 

allow clients transparent insight into their infrastructures. Most providers today do not 

want to provide details about their inner workings as they fear this will remove their 

competitive advantage; however, we feel that providing a synergistic relationship with 

their customer base can also be their competitive advantage. 

Fabric pre-measurement is what allows PVI to share the responsibility of security 

management between the service provider and client. Pre-measurement is performed by a 

LoBot, which tests the fabric’s security posture before provisioning occurs, allowing the 

information owner to determine the safeness of the fabric before deployment of a PVI. 

After LoBots probe target platforms for security properties they can securely provision 

VMs on those platforms. The probe application reads the platform configuration from the 

target TPM’s PCR and obtains identifying information about the platform. This 

information is then combined with the VTPM’s PCR which is cryptographically sealed in 

a blob that is transferred to the PVI factory. 

The PVI factory decrypts the blob and examines the information received to 

determine whether the environment is safe. Once the target environment is determined to 

be safe, the PVI factory configures the VM and securely transfers it to the target 

environment, via the LoBot protocol, in a blob encrypted such that only the target 

platform may execute source environment. 

At the target environment, the LoBot probe application receives and unseals the 

source environment. If the source environment was tampered with during transfer, it will 
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be detected during the decryption phase. To make sure everything is safe, the probe 

measures the source environment one more time to validate its integrity and to ensure the 

launch in the target environment was successful. 

3.3.6 Secure Shutdown and Data Destruction 

Since PVI runs on shared hardware platforms, secure shutdown and data destruction 

is required to ensure all sensitive data are removed before new processes are allowed to 

run on it. All memory used by virtual machines should be zeroized such that object reuse 

attacks [37] are thwarted. 

Current virtual machine monitors do not provide secure shutdown or data destruction 

capabilities. A vulnerability occurs when a VM with sensitive information is shut down 

and a new VM is provisioned with the same memory space. The new VM could simply 

read its entire memory space looking for data left behind by the previous VM. The 

security and privacy implications of such a threat are very serious as many organizations 

process sensitive information that can be stolen and used for identity theft, fraud, 

blackmail, and other illicit activities. We recommend that secure shutdown and data 

destruction capabilities be built into future virtual machine monitors; however, we 

believe that through LoBot, we can provide the capability to wipe a virtual machine’s 

memory space securely after shutdown thus eliminating any data that may have been left 

behind by the virtual machine. 

3.4 Discussion 

PVI is a new paradigm for securing and managing cloud computing services based on 

a synergistic relationship between the vendor and customer of cloud services. This 
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relationship provides an increased security posture while allowing both parties to set 

security controls required to protect the infrastructure and data within the cloud and 

virtual datacenter. 

3.4.1 Security 

Private Virtual Infrastructure meets the goals of a shared security posture where all 

resources necessary for the virtual datacenter are securely isolated from the greater cloud. 

LoBots provide secure provisioning of commodity internet resources within the PVI. 

Isolation of the client’s virtual datacenter is accomplished through VM containment, 

encryption, and access control. 

Improving the overall security of the cloud is the ultimate contribution of PVI and 

LoBot. The PVI architecture creates the shared security posture necessary to manage the 

virtual datacenter in the cloud and securely isolates the virtual datacenter from malicious 

actors, other applications, VMs, and malware (e.g., viruses and worms), enabling the data 

owner to use commodity internet resources and reduce their overall IT overhead. 

PVI reduces the risks of using cloud computing by allowing the information owner to 

set the security posture they require. PVI’s security properties are in addition to any link 

encryption, secure tunneling, virtual private networking, virtual LANs, and other 

techniques used to protect the virtual datacenter. PVI is another layer of a good defense in 

depth strategy allowing us to achieve a very high security posture within the cloud and 

provide a high level of assurance that sensitive information is not being comprised. 

Since PVI is an architecture and framework, many of the security features of PVI are 

implemented as sub-components of the architecture. The threats and vulnerabilities of 
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those components and their specific configuration will have will determine the security to 

the overall PVI. 

3.4.2 Cost and Performance 

Performance and cost of PVI is a major consideration for deployment. There are two 

phases where performance and cost are of concern: provisioning and operation. 

During provisioning, PVI has a high overhead as LoBots and application servers have 

to be moved from the PVIF to the TCFP. An AS image could be as large as several 

gigabytes, which could consume a large amount of time and bandwidth. Bandwidth bills 

could be quite large as some service provider charge per gigabyte, megabyte or kilobyte 

used. For example, Amazon EC2 currently charges up to $0.15 per gigabyte, meaning a 

single machine could cost a dollar or more to provision. If thousands of machines are 

needed, then cost to provision a large datacenter could reach into thousands of dollars. 

The time of provisioning could be large as well, at modest Internet speeds, a single server 

could take over an hour to transfer. This would not be feasible for a large number of 

machines that are needed instantaneously. Therefore, we recommend an agreement with 

the service provider to establish PVI factories on site and used shared storage to reduce 

the overhead of provisioning. 

Once a PVI is in the operating phase, performance impacts are not as severe. Cost 

becomes an hourly rental charge, on the order of pennies to dimes per hour. There is 

minimal performance impact from swapping between the AS and LoBot, and some 

communication between them, but this would be present in any virtualized environment. 

Bandwidth costs would only be required for any communication between the end users 

and the PVI Factory, which can vary depending upon the application. 





 

Chapter 4  

Locator Bot 

LoBot answers the question of whether a cloud computing platform is trustworthy. 

While determining whether a particular cloud platform is secure is an undecidable 

problem, there are certain properties we can measure to help determine a level of 

trustworthiness of the platform. These properties include the EK and Attestation Identity 

Keys (AIK) of the cloud platform, an attestation of security properties from the TCFP, and 

an attestation of the configuration of the TCFP. Using these property measurements from 

the LoBot, the PVIF can decide whether to trust a particular cloud platform. Once the 

level of trustworthiness is determined, LoBot provides secure provisioning, migration, 

and monitoring services for the VSs in PVI. 

The AS has trust rooted both in the TCFP and in the PVIF. The TCFP’s physical 

Trusted Platform Module (TPM) binds the LoBot’s VTPM to the TCFP’s root of trust. 

The LoBot’s VTPM trust is rooted with the PVIF that generates its EK and VTPM proof. 

This trust relationship is a new model that removes the root of trust for the AS solely 

from the physical server by adding a component from the virtual infrastructure. Typical 

trusted computing techniques have a single root of trust in the TPM, but due to the unique 

nature of the cloud computing environment, we propose this new model of combined 

trust as a method to verify the authenticity of a virtual server in a cloud environment. 
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Outline: This chapter is organized as follows. Section 4.1 reviews background of 

related security research in the virtualization and cloud computing. Section 4.2 presents 

the LoBot protocols. Section 4.3 analyzes how the components and protocols of PVI and 

LoBot work together to provide security and privacy in the cloud. 

4.1 Related Work 

This chapter extends our previously published work on Private Virtual Infrastructure 

[31] with more specific details on the protocols for secure provisioning and secure 

migration implemented by LoBot. 

IBM’s Integrity Measurement Architecture (IMA) [38] validates all executable 

content on a platform, from the hypervisor up to the application layer, by measuring the 

content before execution. IMA uses the TPM to store the measurements for attestation 

and validation at a later time. IMA provides guarantees that content integrity is 

maintained but provides no guarantees of confidentiality if the information owner decides 

not to trust the environment. IMA led to several proposals for endpoint integrity 

including [39, 40]. These techniques measure the endpoint, set up secure tunnels, and 

verify security properties of the target to determine the trustworthiness of the endpoint. 

LoBot uses similar techniques to pre-measure a target environment by combining the 

cloud trust model with endpoint trustworthiness verification and provides secure 

provisioning services. 

Distributed Mandatory Access Control (MAC) research by McCune [41] defines a 

shared reference monitor that enforces MAC policies across a distributed set of machines, 

allowing the setting of a consistent security policies and access controls across them. PVI 
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uses a form of distributed MAC for the PVI layer, but MAC may or may not be in place 

on the CVF layer; therefore, we must still determine the security properties of the host. 

Property based attestation [42] is one method to determine security properties of a 

host that allows a platform to attest to properties about itself rather than performing a 

binary measurement of the platform. Property based attestation provides more flexibility 

for attestation and is more resilient to configuration changes and patches than 

measurement based attestation. A protocol for property based attestation proposed in [43] 

provides a means to perform remote property based attestations but does not provide any 

provisioning capabilities. 

IBM’s Trusted Virtual Datacenter (TVDc) [8] incorporates trusted computing 

technologies into virtualization and systems management providing many features that 

can be used for securing a cloud datacenter including VM isolation via sHype, vTPM 

support, and system management software. TVDc uses Trusted Virtual Domains [44] to 

provide strong isolation and integrity guarantees that significantly enhance the security 

and management capabilities of virtualized environments. The capabilities of the PVI 

architecture and LoBot provisioning protocols enhance TVDc’s features when used in a 

cloud environment. 

An agent transfer protocol [45] for moving a trusted agent around the cloud between 

fixed and mobile platforms closely resembles LoBot; however, LoBot is designed 

specifically for building trust in PVI and securing provisioning and live migration of 

virtual machines. LoBot has an entirely different purpose than the trusted agent, but there 

are many similarities in the way trust is established on the remote platform. Both agents 
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use property based attestation to determine the security properties of the destination 

platform 

4.2 The LoBot Protocols 

The LoBot Secure Provisioning (LSP) and LoBot Secure Migration (LSM) protocols 

ensures that when a VM is provisioned within the PVI it is not subverted in any manner 

and the VM that is provisioned is exactly the same as the VM intended to be provisioned. 

LoBot ensures a safe provisioning by pre-measuring a target platform for trustworthiness. 

By sending a LoBot before provisioning an aDom, the target platform can be measured to 

determine whether the target provides a trustworthy operating environment. This allows 

us to make a decision to provision to the target based on the results of the probe. Secure 

provisioning is achieved through the combination of determining a target platform’s 

trustworthiness, ensuring that provisioning is not subverted in any manner, and verifying 

the VM is created and launched on the host platform as intended. 

Live migration uses the LSM protocol, which is an extension of the LSP protocol. 

The requirements of secure provisioning and secure live migration are the same: ensure a 

virtual machine is placed on the cloud platform as intended. Secure live migration is 

slightly more difficult than secure provisioning as there are three entities involved (PVI 

Factory, source and destination platforms) and the state of the source VM must be 

preserved to have a successful migration. In a live migration, LSM ensures that the VM’s 

state is not compromised by the migration and that the VM migrated to the new platform 

resumes operation at the point of suspension on the originating machine. 
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We created a new management application on the PVIF called pvif that is used to 

initiate the provisioning and live migration LSP and LSM protocols. When pvif is 

initiated with a create subcommand, a secure provisioning is initiated. The migrate 

subcommand initiates the secure live migration. The protocol uses the symbols shown in 

Table 4.1. 

Symbol Meaning 
S or SP Source Platform 
D or DP Destination Platform 

L or LoBot Locator Bot 
P or PVIF PVI Factory 

aDom Application Domain 
vsDom Virtual server 

domain 
(aDom + LoBot) 

Table 4.1 – Abbreviations used in LoBot Protocols 

4.2.1 LoBot Secure Provisioning Protocol 

The following steps describe the secure provisioning of a VS (both aDom and LoBot) 

from the PVI Factory (PVIF) to a Destination Platform (DP) machine using the LSP 

protocol in detail. A diagram of the protocol can be seen in Figure 4.1. 

 

1. PVIF initiates a provisioning of vsDom on the DP via: PVIF:  pvif create vsDom DP 
The PVIF starts the process of provisioning vsDom, which consists of aDom and 

associated LoBot 
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2. PVIF requests an AIK certificate from DP. 

 

Figure 4.1 – Diagram of LoBot Secure Provisioning protocol. 

ܨܫܸܲ ←  ௨൯ܭܫܣ൫ݐݎ݁ܿ  :ܲܦ

The AIK is used to verify that DP has a valid TPM and determine whether that TPM 

is a real or virtual. This step also verifies that the TPM has a feature set which is 

acceptable to the PVIF. Note that we chose to use the AIK in this step to preserve 

privacy of the CVF; however, an EK could be used if privacy is not a concern of the 

CVF operator or the AIK is not available. 

 56 



 

3. PVIF creates a non-predictable 160-bit nonce and sends it to DP requesting a quote of 

the AIK. 

ܨܫܸܲ →  ݁ܿ݊݊  :ܲܦ

4. PVIF requests DP’s SRK public key, which is sent along with the nonce signed with 

DP’s private AIK. 

ܨܫܸܲ ← ,௨ܭ൛ܴܵ݊݃݅ݏ  :ܲܦ  ௩ܭܫܣൟ݁ܿ݊݊

PVIF then verifies the nonce is the same as previously sent and that the signature is 

validated by the CA that created the AIK. 

5. PVIF creates a Migratable Storage Key (MSK), wraps it with DP’s SRK, and sends to 

DP. PVIF then generates the EK for the LoBot’s VTPM, encrypting it with the MSK 

so that is will be bound to the DP ensuring no other entity can use it. The encrypted 

EKL is then placed in LoBot image. 

ܨܫܸܲ → ܭܴܵ  :ܲܦ ሼܭܵܯ ሽ ௨ ܸܲܨܫ →  ሽܭܧሼܭܵܯ  :ݐܤܮ

6. PVIF then encrypts the entire LoBot image using the SRK public key and a 

symmetric encryption key (K ), and sends the entire package to DP. 1ܸܲܨܫ →  ሽൟݐܤܮଵሼܭ௨൛ܭܴܵ  :ܲܦ
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7. DP receives the encrypted LoBot package and decrypts it using its SRK private key 

and K1. ܲܦ →  ሽൟݐܤܮଵሼܭ௩൛ܭܴܵ  :ݐܤܮ
If LoBot is successfully decrypted, then it is launched by DP creating a VM and 

verifying that the LoBot is launched correctly. 

8. The newly launched VM measures LoBot, storing the results in the LoBot’s vTPM’s 

PCRs 0-5 and extends DP’s PCR 6 with the measurements. The LoBot’s PCR 6 is 

extended with DP’s PCR(0-6). 

ܴܥሼܲ݀݊݁ݐݔ݁  :ݐܤܮ (6), ℎܽݏℎ(ܴܲܥ(0 − 5))ሽ ݀݊݁ݐݔ݁  :ݐܤܮ൛ܴܲܥ(6), ℎܽݏℎ൫ܴܲܥ(0 − 6)൯ൟ 
9. LoBot quotes DP’s PCRs and its own PCRs to PVIF 

ݐܤܮ → (0ܴܥሼܲ݊݃݅ݏ  :ܨܫܸܲ − 15), (0ܴܥܲ − 6)ሽܭܫܣ 
10. PVIF determines trustworthiness of DP based on measurement returned from LoBot. 

10a. If DP is deemed trustworthy, PVIF continues provisioning by initiating transfer 

of app domain. 

10b. If DP is deemed untrustworthy, PVIF notifies LoBot to destroy itself and 

terminates provisioning. 

11. PVIF hashes aDom and encrypts aDom and hash value with K2. PVIF then wraps K2 

with the LoBot’s SRK and PCR(0-6) to ensure only the LoBot can unseal and the 

state of the DP has not changed. Note that PVIF has LoBot’s keys and the ability to 

emulate a TPM enabling PVIF to seal images for LoBot. 
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ܨܫܸܲ → ,ܭ൫ܴܵ  :ݐܤܮ (0ܴܥܲ − 6)൯൛ܭଶሼℎܽݏℎሼܽ݉ܦሽ,  ሽൟ݉ܦܽ

12. LoBot unseals aDom and the hash measurement, hashes aDom and compares it to the 

sent hash to determine the transfer success. 

ݐܤܮ → ,ܭ൫ܴܵ  :݉ܦܽ (0ܴܥܲ − 6)൯൛ܭଶሼܽ݉ܦሽൟ 
ሽ݉ܦℎሼܽݏℎܽ :ݐܤܮ == ൫ܴܵܭ, (0ܴܥܲ − 6)൯ ቄܭଶ൛ℎܽݏℎሼܽ݉ܦሽൟቅ 

13. If the hashes compare, aDom is launched via SENTER. If SENTER succeeds, a safe 

provisioning occurred; otherwise, the LoBot reports unsuccessful migration to PVIF, 

destroys the aDom and then itself. 

4.2.2 LoBot Secure Migration Protocol 

A live migration can be initiated at the source platform or PVI factory, but to 

maintain trust in PVI, the PVI Factory manages the live migration. The following steps 

describe LSM protocol for live migration of a VS (both aDom and LoBot) from a Source 

Platform (SP) to DP. 

 

1. Initiate a live migration from the source platform to the destination platform on PVIF 

via the following command: PVIF:  pvif migrate domA1 DP 
In the event the source platform needs to initiate the migration, the command must be 

sent to the PVIF to start the migration. 

2. PVIF requests an AIK certificate from DP to verify DP’s TPM. 
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ܨܫܸܲ ←  ௨൯ܭܫܣ൫ݐݎ݁ܿ  :ܲܦ



 

PVIF already knows the AIK of SP since it would have had to previously provision it. 

3. PVIF creates a non-predictable nonce and sends it to both SP and DP. 

ܨܫܸܲ → ܵܲ,  ݁ܿ݊݊  :ܲܦ

4. PVIF requests DP’s SRK public key be sent to SP, which is sent along with the nonce 

signed with DP’s private AIK. 

ܵܲ ← ,௨ܭ൛ܴܵ݊݃݅ݏ  :ܲܦ  ௩ܭܫܣൟ݁ܿ݊݊

SP then verifies the nonce is the same as previously sent and that the signature is 

validated by the CA that created the AIK. SP reports nonce back to PVIF. 

5. PVIF requests P to halt aDom, capture its state, and begin migration process. SP then 

clones the LoBot and rewraps the MSKSP for the VTPM with the public SRK from 

DP. 

ܵܲ →  ሽܭܵܯ௨ሼܭܴܵ  :ܲܦ

6. SP encrypts LoBotS image and sends to DP. 

ܵܲ →  ௌሽൟݐܤܮଵሼܭ௨൛ܭܴܵ  :ܲܦ

7. DP receives encrypted LoBot blob and decrypts it using its SRK private key and 

symmetric key K1. ܭܴܵ  :ܲܦ௩൛ܭଵሼݐܤܮௌሽൟ 
If LoBot is successfully decrypted, then it is launched by DP creating an VM. LoBotS 

becomes LoBotD. 
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8. The VM measures LoBotD, storing the results in the LoBot’s vTPM’s PCRs 0-5 and 

extends DP’s PCR 6 with the measurements. The LoBot’s PCR 6 is then extended 

with DP’s PCR(0-6). 

ܴܥሼܲ݀݊݁ݐݔ݁  :ݐܤܮ (6), ℎܽݏℎ(ܴܲܥ(0 − 5))ሽ ݐܤܮ:  ݁݀݊݁ݐݔ൛ܴܲܥ(6), ℎܽݏℎ൫ܴܲܥ(0 − 6)൯ൟ 
9. LoBotD quotes DP s  P t’s PCR  to PVIF and its own CRs o LoBotS. 

ݐܤܮ → ܲ ሼ ( ሽ   ݊݃݅ݏ  :ܨܫܸ ܴܥܲ 0 − 15) ݐܤܮܭܫܣ → (0ܴܥሼܲ݊݃݅ݏ  :ௌݐܤܮ − 6)ሽܭܫܣ 
10. PVIF determines the trustworthiness of destination based on measurement returned 

from LoBot. 

10a. If DP is deemed trustworthy, PVIF notifies SP to continue transfer aDom. 

10b. If DP is deemed untrustworthy, PVIF notifies LoBot to destroy itself and 

terminates migration. 

11. Source binds measurement with LoBot’s PCRs and sends to LoBot. 

ௌݐܤܮ → ,ܭ:   ൫ܴܵݐܤܮ (0ܴܥܲ − 6)൯൛ܭଶሼℎܽݏℎሼܽ݉ܦሽ,  ሽൟ݉ܦܽ

12. LoBotD measures aDom, unseals measurement and compares its measurement to the 

sent measurement. 

ݐܤܮ → ,ܭ൫ܴܵ  :݉ܦܽ (0ܴܥܲ − 6)൯൛ܭଶሼܽ݉ܦሽൟ 
ሽ݉ܦℎሼܽݏ: ℎܽݐܤܮ == ൫ܴܵܭ, (0ܴܥܲ − 6)൯ ቄܭଶ൛ℎܽݏℎሼܽ݉ܦሽൟቅ 
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13. Determine migration success. 

13a. If the hashes compare, aDom is launched via SENTER. If SENTER succeeds, a 

safe migration occurred; LoBotD reports successful migration and LoBotS 

destroys aDom and itself on SP. 

13b. If the hashes do not compare or SENTER fails, LoBotD reports unsuccessful 

migration to SP, SP unsuspends operation of LoBot and aDom, and reports 

failure. LoBotD destroys aDom and itself on DP. 

4.3 Discussion 

LoBot along with the LSP and LSM protocols provide high-assurance mechanisms to 

provision and migrate virtual machines securely in the cloud. LoBot uses VTPMs to 

provision trustworthy VMs in the cloud requiring individual computing platforms within 

the cloud to have a TPM accessible by LoBot. The LoBot’s trust authority for the VTPM 

is the PVI Factory and linking the VTPM to the platform’s physical TPM creates a dual 

rooted trust for the application domain. This dual rooted trust anchors the application 

domain to the host platform and PVI preventing tampering and cloning and ensuring the 

data are protected from adversaries in the cloud. 

4.3.1 Security 

The LSP protocol provides an assured mechanism to provision a VM securely on a 

destination platform. There are several advantages of this protocol over existing 

provisioning techniques. Existing provisioning protocols do nothing to assure the safety 

and integrity of the destination environment before the provision occurs and little to 

ensure that the provision occurred safely. The existing protocols have fallback 
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mechanisms in the event of a failed transfer, but once a VM is placed in a malicious or 

unsafe environment, the VMs confidential data are compromised and cannot be 

recovered. 

The LSP protocol provides two assurances that were previously unavailable: first, the 

target platform we wish to provision on is a platform we trust (e.g., it has a configuration 

and security properties that are acceptable) and second, we know if the VM provisioning 

or migration occurs successfully. The trust decision is made by the PVIF from the LoBot 

pre-measurement of the platform made by reading the PCRs of the target’s TPM and 

measuring other properties of the target platform. If target platform is deemed 

trustworthy, we continue with the provisioning as planned; otherwise, we back out of 

provisioning preventing data in the VM image from being sent to an untrustworthy 

machine. The only risk of contacting a malicious server is an attacker would be able to 

obtain some information and keys from a LoBot, but since LoBot has a minimal set of 

functions, the risk is insignificant. If the LoBot is compromised, all keys and references 

to that individual LoBot must be destroyed to ensure that no compromises can be 

achieved via the LoBot’s credentials. Determining if a VM provisioning occurred as 

intended and not subverted in any manner is accomplished by cryptographically binding 

the VM image to the target configuration ensuring that the VM cannot be provisioned 

anywhere other than the intended target and the configuration of the target is not be 

altered between measurement and provisioning. 

From the above analysis, we can see that the LSP and LSM protocols defend against 

all three of the attacks discussed in Section 2.3.1. The malvm and malhost are detected by 

the LoBot during initial probe phase. LoBot detects if a machine is not registered, has an 

 63 



 

invalid certificate, or has an alternate configuration from what is expected, and prevents 

the VM from provisioning on the machine. A man-in-the-middle attack is thwarted by the 

protocol through encryption of the VM image and tampering is detected by the hash 

comparisons. 

A current limitation of the LSP protocol is the vulnerability of compromise to host 

machine after provisioning. Changes to the node’s configuration are not detected after the 

initial trustworthiness of the node is determined. If the attacker gains control of the host 

machine after provisioning, the CVF architecture could be compromised. The PVI 

architecture and LoBot protocols are designed to protect the application server from 

being migrated to an environment that is predetermined to be malicious, but if the host 

becomes malicious after provisioning it may be possible to circumvent the security 

controls and compromise data. 

4.3.2 Cost and Performance 

This section examines the performance and cost of LoBots. There are three areas 

where performance and cost are of considered: provisioning, operation, and key 

management. 

Provisioning has an impact as the entire VM must be transferred from the factory to 

the host. A LoBot is not a large device and should be an order of magnitude smaller that 

an operating system. Bandwidth cost and provisioning time are the largest concern. 

LoBot has performance overhead while in operation that comes from context 

switching and communications. The impact to performance of context switching between 

the virtual environments is a slowdown of overall processing as the processor has to 

switch from one virtual environment to another. Communication with the PVI factory 
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and possibly other LoBots in the PVI are the largest component of overhead. If there is a 

large number of LoBots communicating at the same time, the communication overhead 

could impact the overall performance of the system. 

The PVIF must create and maintain keys for each VTPM generated and used in the 

PVI. The PVIF is the certificate authority for keys it generates, therefore, it must be 

permanently keep a record of each key generated and used in order to prevent reuse 

attacks. This database could get quite large over time if large numbers of LoBots are 

created and destroyed. 





 

Chapter 5  

Trusted Virtual Environment Module 

The Trusted Virtual Environment Module (TVEM) introduced in [46] is a new 

mechanism for rooting trust in a cloud computing environment. The TVEM helps solve 

the core security challenge of cloud computing by enabling parties to establish trust 

relationships in a cloud computing environment where an information owner creates and 

runs a virtual environment on a platform owned by a separate service provider. The 

TVEM is a software appliance that merges trust from multiple sources, typically the 

information owner and service provider, to derive a root of trust for a virtual environment 

on a remote host. The TVEM provides enhanced features for cloud virtual environments 

over existing Trusted Platform Module virtualization techniques including an improved 

application program interface, cryptographic algorithm flexibility, and a configurable 

modular architecture. TVEMs are managed via a Virtual Trust Network (VTN) with a 

central control facility called the TVEM Factory that manufactures and provisions 

TVEMs in the cloud. A unique Trusted Environment Key (TEK) is defined that combines 

trust from the information owner’s VTN and the service provider’s platform to create a 

dual root of trust for the TVEM that is distinct for every virtual environment and separate 

from the platform’s trust. This chapter presents the requirements, design, and architecture 
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of the TVEM, VTN, and TEK in enough detail to support further analysis and 

implementation. 

The Private Virtual Infrastructure (PVI) cloud trust model [47] describes the unique 

trust relationships that occur in Infrastructure as a Service (IaaS) [36] cloud computing 

environments. This chapter applies the PVI cloud trust model to IaaS clouds with our 

new Trusted Virtual Environment Module (TVEM) and Virtual Trust Network (VTN). 

In IaaS cloud computing, an information owner, or client, rents virtual computing 

resources in the form of a Virtual Machine (VM) on a host platform operated by a second 

party service provider. The information owner wishes to protect private and sensitive 

data that are processed in the virtual environment on the rented VM. The virtual 

environment is the entity that is controlled by the information owner and consists of all 

software components, from the Operating System (OS) to the applications, that execute 

on the VM. To assure the information is protected, the client needs to verify the 

trustworthiness of the host platform and virtual environment. The TVEM and VTN 

provide the mechanisms to verify the host platform and virtual environment within an 

IaaS cloud and report the results back to an information owner. No current capability 

exists to perform these functions. 

A current means for establishing trust in computing platforms is the Trusted Platform 

Module (TPM), a core component of the root of trust for the platform. A root of trust is a 

component of a computing platform that is implicitly trusted to provide a specified set of 

controlled functions to measure and pass control to other platform components [9]. TPMs 

are designed to support a single operating system on a single platform and typically do 

not scale well when virtualization is introduced to the platform [48]. Support for multiple 
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virtual environments that simultaneously access TPM resources is required. A Virtual 

TPM (VTPM) that replicates the physical resources of a TPM in software is one method 

of virtualizing the TPM functions for sharing among multiple virtual environments. 

LoBot [31, 47] uses the VTPM to root trust for a virtual environment in a PVI; 

however, the VTPM implementation has several issues that make it problematic to use as 

a root of trust for cloud virtual environments. Three major shortcomings of the VTPM 

are: the VTPM’s trust is rooted to the physical platform on which it is operating, which is 

typically not owned by the information owner; a VTPM must follow the TPM 

specification [15], which includes extraneous functionality that is not useful for virtual 

environments; and a VTPM has non-persistent storage, meaning that it loses all keys, 

settings, and non-volatile storage upon termination. The TVEM solves these problems 

through application of the PVI cloud trust model, providing a modular and extensible 

architecture that allows algorithm and function flexibility, and providing persistent 

storage for keys, non-volatile memory and settings. 

The core challenge in cloud computing that TVEM solves is establishing trust that is 

distinct for the virtual environment and separate from the hosting platform. Virtual 

environment trust is defined as trust in the virtual environment that is a combination of 

trust in the service provider’s platform and trust from the information owner’s domain. 

Virtual environment trust is necessary to convey ownership and protect information in the 

cloud. To implement this virtual environment trust, a Trusted Environment Key (TEK) is 

defined and used as the Endorsement Key (EK) for the TVEM. The TEK, like the EK, is a 

unique value used as the Root of Trust for Reporting (RTR) to identify the TVEM and 

attest the virtual environment. The TEK is generated by the virtual environment owner 
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and secured with the service provider’s platform storage key creating a compound trust 

distinct and separate from the platform. 

The TVEM is a software appliance that is implemented as a helper, or stub, VM. The 

TVEM is protected by hardware enforced memory and process isolation via Intel’s 

Virtualization Technology for Directed I/O (VT-d) [49] and Trusted eXecution 

Technology (TXT) [50]. The TVEM provides attestation support and trusted storage for 

the virtual environment similar to functionality provided by VTPM; however, the TVEM 

does not have to conform to the TPM specification enabling the TVEM to be extensible 

through functional and cryptographic algorithm flexibility in a configurable modular 

architecture. The TVEM has multiple interfaces, including an Application Program 

Interface (API), which moves the Trusted Software Stack (TSS) into the TVEM 

eliminating the burden on the virtual environment to implement the TSS. The API 

provides for hardened and lightweight environments and reduces the opportunities 

implementation errors. These capabilities allow system designers to customize the TVEM 

and virtual environment to meet their information confidentiality and integrity 

requirements. 

TVEMs are not stand alone devices; they are part of a system to implement trust in 

cloud computing. The system includes: the TVEM; a TVEM manager in the host 

hypervisor for host platform TPM access and TVEM provisioning; a VTN control plane 

that provides system management and support for persistent storage; and a TVEM 

Factory (TF) to manufacture TVEMs, manage keys, and provision TVEMs securely on 

host platforms. 
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Outline: This chapter is organized as follows. Section 5.1 motivates our work with 

examples. Section 5.2 covers trust in cloud computing. Section 5.3 provides background 

on trusted computing and discusses related work. Section 5.4 overviews the requirements 

and design considerations. Section 5.5 presents the TVEM system architecture. Section 

5.6 is the detailed design of the TVEM. Section 5.7 discusses the advantages, cost, 

security, and requirements of TVEMs. 

5.1 Motivation 

Utility cloud computing can provide many benefits to companies wishing to reduce 

their IT expenses and overhead. Security of information in the cloud and the 

trustworthiness of the cloud environment is a major concern with IaaS clouds. We 

describe three example IaaS cloud computing applications: a cloud web server, a cloud 

datacenter, and a corporate virtual desktop. These applications benefit from the added 

security of using the TVEM and VTN to manage trust. 

5.1.1 Cloud Web Server 

A virtual web server in the cloud has many benefits over maintaining a web server 

locally, a significant advantage being increased availability. The cloud’s always-on 

presence and location flexibility enhance the availability of a web server by providing 

scalability, migratability, and redundancy. If a server is overwhelmed with requests, it 

can be migrated to a platform that has increased capacity, or new instances of the server 

can be instantiated to handle the increased load. Migration and failure restart can be used 

if host hardware fails or Internet service becomes unavailable. 
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A server certificate is a critical piece of data on the web server that authenticates its 

owner. If a company wants to prove that it is the owner of a web server, it would obtain 

an Extended Validation (EV) certificate and a Secure Socket Layer (SSL) certificate from 

a certificate authority. The EV and SSL certificates have a public and private key portion 

that a guest may use to verify the server owner and establish an encrypted SSL session 

with a server. In a cloud environment, the identity of the web server owner and the 

service provider needs to be differentiated, which is accomplished via the certificates. 

The certificates should be accessible only by the web server owner and must be protected 

from the service provider and other users of the cloud service. If the private portions of 

the keys are disclosed, anyone who gains access to the private keys can purport to be a 

valid web server for the information owner. If the private key is stored on a public cloud 

service, anyone with access to the system could possibly access the key; therefore, the 

owner of the certificate needs to keep the private key protected from compromise by the 

service provider, other cloud users, and attackers on the Internet. TVEM protects SSL 

certificates on a cloud web server by encrypting the certificate such that is accessible only 

by the TVEM and decrypted inside the host platform’s TPM ensuring the plaintext key 

cannot be observed. 

5.1.2 Cloud Datacenter 

A cloud datacenter is a network of virtual servers that allows a company to move all 

of its corporate data assets into the cloud. The only IT the company maintains on-site is 

data terminals, laptops, netbooks, or mobile computing devices for their employees to 

access the cloud datacenter. An example would be a company that maintains a database 

of client, suppliers, billing, and inventory. Moving the database to a cloud datacenter 
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would allow the company to leverage large amounts of computing power and throughput 

to run analytics and data mining operations as needed without having to maintain those 

computing resources locally. Moving to the cloud not only saves overhead for space, 

power, and cooling, but also provides employees at remote locations with easy access to 

the information. 

The cloud corporate datacenter contains all the sensitive and proprietary information 

about the company’s relationships, processes, and accounting. The company wants to 

have assurances that its data are protected from other cloud users, the service provider, 

and personnel at the cloud datacenter. The TVEM protects the information in the 

datacenter and verifies the configuration of the host platform and virtual servers meet the 

requirements of the information owner. 

5.1.3 Corporate Virtual Desktop 

A Corporate Virtual Desktop (CVD) allows an employee of a company to use her 

own computer to run a virtual image of the company’s standard desktop consisting of 

approved applications, data, and network connectivity [51]. The CVD is a virtual 

environment that connects the user’s laptop or home computer to a private corporate 

network. The CVD contains the user’s identity certificates, authentication credentials, 

and network encryption keys. These keys must be used only while in the CVD 

environment and not be accessible from outside of the environment. The TVEM encrypts 

the keys to ensure they are only used within the CVD. 

Since the CVD is executed on a laptop or home computer where there may be limited 

bandwidth to transfer large amounts of data (e.g., 3G wireless systems), the CVD image 

is stored on the user’s machine. The corporate owner uses a TVEM to verify that the 
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configuration of the CVD has not been modified prior to allowing the CVD access the 

corporate network. The TVEM also verifies the user’s computer configuration to ensure 

that it does not pose a threat to the secure information in the image or on the network. 

5.2 Trust in the Cloud 

Trust in cloud computing is more complex than in a traditional IT scenario where the 

information owner owns his own computers. Figure 5.1 shows the trust relationships in 

an IaaS cloud as defined by the PVI cloud trust model. The trust chain combines trust 

from the information owner’s domain (or PVI) and trust from the service provider’s 

platform into the virtual environment trust. The information owner has an inferred trust in 

the platform from a social trust relationship with the service providers. The information 

owner root of trust is established in the TF and is the core root of trust for the entire PVI. 

The TF needs to inherit trust from the host platform root of trust measurements to ensure 

that the PVI is being implemented on a trustworthy platform. The PVI combines the 

inherited platform trust and information owner trust in a TEK and places it in the TVEM. 

The TVEM trust is provisioned on the host platform such that it is bound to the platform 

root of trust, creating the dual rooted virtual environment trust. If either root of trust is 

revoked, the virtual environment trust is invalidated. 

5.2.1 Social Trust 

Social trust is a trust that arises between two entities based upon social relationships. 

Social trust is established based upon reputations, previous interactions, and contractual 

obligations. There are two critical social trust relationships that must be established in 

cloud computing from the perspective of the information owner: service provider trust 
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and cloud user trust. Social trust cannot be measured, but is important to build confidence 

that an entity is holding up its end of a contract. 

Service provider trust lies in the relationship between customer and vendor. If the 

provider has a good reputation, then there is sufficient reason for customers to trust the 

provider. A vendor that has questionable service or ethics would not be as trustworthy as 

a vendor with excellent service and ethics. 

 
Figure 5.1 – Trust relationships in an IaaS cloud computing environment consist of 
inferred trust (social trust) and inherited trust (technical trust). The TVEM’s virtual 
trust is a combination of the information owner’s trust and host platform trust. 
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Cloud user trust is the amount of trust the user places in the services delivered via the 

cloud. The user has to be confident that the system is going to protect their data, 

transactions, and privacy. The user’s trust is a social trust in the information owner. The 

information owner must assure that the services being provided meet the user’s 

expectations. 

5.2.2 Technical Trust 

In a cloud computing environment, multiple entities must trust the cloud services: the 

user of the cloud service or information owner, the provider of the cloud service, and 

third parties. PVI defined a new paradigm of cloud computing that separates the security 

responsibility between the service provider and information owner and accounted for 

third parties. A third party is an outside entity that is providing service to or receiving 

services from either the user or service provider. 

The cloud trust model is based on transitive trust, which is the notion that if entity A 

trusts entity B and entity B trusts entity C, then entity A trusts entity C. This property 

allows a chain of trust to be built from a single root of trust. 

There two basic sources of trustworthiness in a cloud: information owner trust and 

hosting platform trust. By combing these two sources of trust, virtual environment trust 

can be established. 

Information owner trust is the foundation of trust that the information owner places in 

the PVI. Information owner trust is implemented by the TF. Since the information owner 

has physical control of the TF, the configuration of the TF is a known quantity and can be 

used as the root of trust for the PVI. As long as the information owner maintains trust in 
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the TF, trust can be established in the PVI and used to build trust chains with cloud host 

platforms. 

Host platform trust lies in the hardware trust of the platform and is measurable. 

Trustworthiness starts with Core Root of Trust for Measurement (CRTM) of the platform. 

The CRTM is the core set of instructions run at boot or reset that are responsible for 

establishing trust in the system by measuring the BIOS, and then passing control to the 

measured BIOS and rest of the Trusted Computing Base (TCB) of the platform. The TCB 

consists of all measured components that provide the foundation of trust in the platform. 

Platform trustworthiness is determined by an outside entity via attestation from the TPM, 

which is the Root of Trust for Reporting (RTR) on the hosting platform. The TPM also 

serves as the Root of Trust of Storage (RTS) of the platform that is implicitly trusted to 

store information securely. The attestation from the TPM provides evidence of the state 

of the platform, from which other entities can decide whether to trust the platform. 

Cloud virtual environment trust is the amount of trust placed in the virtual 

environments created in the cloud. Virtual environment trust is measureable, but there are 

complications in a cloud environment where the information owner’s requirements are 

different than the platform owner’s. LoBot measure trust within a PVI; however, LoBots 

use virtual TPMs as the basis for trust in the PVI, limiting the flexibility of the PVI and 

the virtual environment. We show how TVEMs can be used in PVI in place of VTPMs. 

5.3 Background and Related Work in Trusted Computing 

The Trusted Computing Group (TCG) is an international computer industry standards 

organization that specifies and encourages trusting computing techniques [52]. The TCG 

is responsible for maintaining and updating the TPM specification. The TPM 

 77 



 

specification is currently at version TPM1.2. The TCG is currently working on the next 

version of the TPM specification, referred to at TPM.Next. TPM.Next will incorporate 

new hash algorithms and other features that will require TPM manufacturers to change 

the design of their TPM implementations. 

The TPM specification was developed with the following high-level requirements 

[19]: 

T1 Securely report the environment that booted. 

T2 Securely store the data. 

T3 Securely identify the use and system. 

T4 Support standard security systems and protocols. 

T5 Support multiple uses on the same system while preserving security among them. 

T6 Be produced inexpensively. 

These requirements led to a robust and secure design; however, design tradeoffs were 

made to lower costs through reduced functionality. Each TPM has limited resources but 

sells for less than one dollar in production quantities. Many of the TPM’s limited 

resources cannot be shared with virtual environments; therefore, the TPM must be 

virtualized to support multiple virtual environments. 

5.3.1 TPM Virtualization 

There are many issues that must be solved to virtualize a TPM. The limited resources 

of the TPM must be either shared or replicated for each virtualized TPM. Specifically, 

resources that cannot be shared on the TPM are the EK, Platform Configuration Registers 

(PCRs), and non-volatile storage. These resources must be replicated by every VTPM 

implementation. 

 78 



 

A common approach to virtualizing the TPM has been to emulate the TPM in 

software and provide an instance for each virtual environment. The VTPM can be bound 

to a physical TPM for additional security. Berger, et al., [16] took this approach for their 

vTPM implementation along with an additional approach of using an IBM 4758 

Cryptographic Coprocessor to implement the vTPMs. Scarlata [48] followed with a 

framework for TPM virtualization, which described a VTPM framework for emulating 

TPMs in software. 

England [53] took a different approach to TPM virtualization with paravirtualized 

TPM sharing. Paravirtualization is a technique used by the Xen hypervisor [7] to present 

a software interface to the VM that is similar to the underlying hardware and requires the 

OS to be modified. This method uses the hypervisor to mediate access to a single 

hardware TPM. The hypervisor shadows the PCRs for each virtual environment thus 

overcoming the PCR limitation. This design reduces the ability for migration since the 

virtualization is done in the hypervisor and uses physical TPM resources that are not 

transferrable to other platforms. 

Another unique approach is property-based TPM virtualization by Sadeghi [54]. This 

technique uses a different methodology to measure the platform’s state and generate 

keys. Properties are measured for reporting the state of the platform, which are less 

susceptible to changes in software configuration updates and patches, and makes 

migration easier; however, this approach is incompatible with the existing TPM and 

renders existing software interfaces unusable. 

The Berlios TPM emulator [55] is a form of TPM virtualization, providing a software 

emulation of a hardware TPM. The TPM emulator can provide TPM services to virtual 
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environments, but does not have any binding to the hardware, limiting its ability for 

operational use. Consequently, the Berlios TPM emulator is useful for development 

purposes only. 

5.3.2 Trusted Execution Technology  

Trusted eXecution Technology (TXT) is a feature of Intel’s microprocessors and 

chipsets commonly referred to as Intel vPro [14]. TXT provides a late launch capability 

for the secure creation and launch of virtual execution environments called Measured 

Launch Environments (MLEs). MLEs can be launched anytime after a platform is booted. 

Hardware protections are provided by TXT against software based attacks on MLEs 

during launch and while the MLE is executing. 

Late launch is initiated through the SENTER function, which provisions the MLE on 

the host platform. The process measures and verifies the MLE with a secure hash 

algorithm built into TXT and correctly configures the processor and chipset prior to 

passing control of the processor to the MLE. This capability ensures that the MLE is the 

proper configuration the user wishes to use and that the MLE has been provisioned on the 

platform as intended. 

5.4 Design Considerations 

We explain our design considerations for the TVEM in this section. We considered 

multiple approaches to implementing a trust module for virtual environments and realized 

the best way to ensure that each virtual environment has a trust module is for the module 

to be implemented in software. 
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By implementing the TVEM in software, we do not have cost, physical, or resource 

restrictions. The TVEM design is bound by memory and computation restrictions, which 

are much less restrictive than physical restrictions. On a typical host platform, we can 

provide multiple fully functional, uncompromised TVEMs for many virtual machines at 

the same time. 

There are several advantages to implementing a trust module in software versus 

hardware. A software platform can be changed to accommodate vulnerabilities that are 

discovered after release (e.g., SHA1 collision attacks [56]). A software module can also 

support different algorithms for different applications and locations, which is important in 

cloud environments. Export controls on cryptographic algorithms may dictate that a 

certain algorithm may not be used in certain countries. With the worldwide presence of 

the cloud, algorithm flexibility is essential. A cloud environment in a restricted country 

will need an algorithm allowed to be exported, while a stronger algorithm may be used on 

a system in another country where more security is permitted. An advantage to a modular 

software design of the TVEM is flexibility to use algorithms that are compatible with the 

current TPM specification or use new algorithms for future applications and enhanced 

security. This flexibility allows the TVEM to be used in applications where features of 

TPM.Next are required, but the hardware does not support TPM.Next. 

5.4.1 Threat Model 

The TVEM must protect data and operations from attack. Since the TVEM will be 

implemented in software, there are multiple attack vectors. Potentially any code running 

on the host platform could attack the TVEM. We assume VT-d and TXT hardware 

isolation are in place, which protects the module from attack by entities with access to the 
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platform. The entities that have access to the platform include the following: the service 

provider, who has root access to the platform; other cloud users on the same system or 

within the same cloud environment; and outside attackers that access the system via the 

Internet. 

A poorly implemented TVEM has numerous potential attacks. A malicious program 

may gain access to private data, including keys, inside of the TVEM. The malicious 

program can then modify and substitute data, to include replacing keys, modifying 

hashes, and state information. The code of the TVEM could be modified by replacing 

strong cryptographic algorithms with weaker ones. An attacker could also reduce the 

entropy of the random number generator (RNG) thus reducing the effectiveness of the 

keys. The attacker could also set the state to a previous state of the TVEM, known as a 

rollback attack. Rollback is used to weaken the cartographic output or replay the output 

of the device (see Section 5.6.6). The state could also be modified to a known or 

predetermined state to weaken cryptographic results. 

The TVEM’s main defense against attacks is robust isolation and state verification. 

Features of the trusted platform can be used to protect against many attacks including: 

software modification, malicious code, key exposure and modification, and VM isolation 

and containment attacks, without detection. 

The TVEM cannot defend against hardware attacks since it is a software module. A 

sophisticated attacker with control over hardware would be able to circumvent the 

TVEMs security and gain access to protected information in the TVEM and modify state 

and/or instructions inside the TVEM to alter outcomes of the TVEM’s operations. 
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5.4.2 Requirements 

This section describes requirements that must be met in order to achieve a secure 

virtual environment. While this is not a complete requirement elicitation, these 

requirements are the key functional requirements for a TVEM. 

The TVEM is to act as a TPM replacement, so the goal for developing the TVEM is 

the same as any trusted component – to move cryptographic computations into a locked 

virtual area, which is not under control of entities on the host platform [57]. The locked 

virtual area provides a secure location to process sensitive information and store 

cryptographic keys and other information that are required to be kept private. Therefore, 

the primary requirement for the TVEM is confidentiality of data. The purpose of the 

TVEM is to protect data and to do so the TVEM must be able to protect its keys and 

private data. 

The following list enumerates and details the key functional requirements for the 

TVEM. 

R1 Confidentiality of data. Internal TVEM data must be protected from being 

accessed by the host environment, hypervisor, and all other virtual environments 

on the platform. 

R2 A TVEM should have persistent storage of keys and NVRAM from one session to 

the next and across migrations. This is a capability not provided by a VTPM. 

R3 Flexible cryptographic algorithms are required due to export control restrictions 

and upgradability to newer, more secure algorithms. 

R4 The TVEM must maintain the chain of trust and support transitive trust from the 

CRTM of the host platform, through the TPM’s RTR and RTS, to the TVEM, and 
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on to the virtual environment. The transitive trust must provide the CRTM and 

RTR for the associated virtual environment. 

R5 Robust random number generation is needed, especially since virtual 

environments are being used which are known to have low entropy [21]. 

R6 The TVEM must not be cloneable. If the TVEM is cloned, all trust in the 

environment is lost; therefore, protections must be put in place to prevent a 

TVEM from being copied to another platform. 

R7 Rollback and state modification attack detection is required to ensure integrity of 

the cryptographic output. Detecting and reporting unauthorized modification to 

the state of the TVEM will detect these types of attacks. 

R8 Migration is required to transfer the computing environment to a new platform 

when necessary. 

Securely implementing these requirements will provide a trustworthy TVEM software 

appliance to serve as a root of trust for the virtual environment. 

5.4.3 Deployment Model 

The deployment model for the TVEM is to build and maintain TVEMs on the TF in a 

secure location that is under the information owner’s full physical control. The TF should 

be isolated and physically separated from the service provider’s facility to ensure that it 

cannot be compromised. 

Fully self contained TVEMs images are configured and built in the TF. The TVEM 

image is provisioned on the service provider’s platform through the secure provisioning 

protocol described in Chapter 2 that ensures the TVEM is loaded on the correct host 

without modification. 
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The service provider needs to accommodate the deployment of TVEMs by providing 

a TVEM Manager that is accessible by the customer for interfacing with the host TPM. 

The TPM access can be provided by delegating the customer certain privileged 

operations to configure the TVEM and interface with the TPM. 

5.5 TVEM System Architecture 

The TVEM is a software trust module for providing trust services to a VM or virtual 

environment in an IaaS cloud computing environment. The TVEM is the protection 

module and root of trust for a virtual environment that is in a remote location and the 

virtual environment has the ability to migrate to other platforms; therefore, it is not 

possible to implement a TVEM in hardware. Thus, a software implementation is the only 

solution for the TVEM. 

Because the TVEM is a cryptographic module and data confidentiality is of utmost 

importance; we chose for the TVEM to be a self-contained virtual appliance that is 

implemented in a helper VM or stub domain. 

Figure 5.2 shows the configuration of a Host Platform (HP) with multiple virtual 

environments that require a TVEM. The virtual environment may be an entire virtualized 

OS that supports many applications or a special purpose virtual environment that 

performs a single application. The TVEM lies between the hypervisor and its associated 

VM. The hypervisor must be aware of TVEMs and provide support via a TVEM 

manager. The TVEM manager provides mediation for TPM services from each TVEM 

and other processes that require TPM services. The host platform must provide the 

TVEM manager and allow access for TVEMs. 
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Figure 5.2 – The host platform has a single TPM, hypervisor, and TVEM manager 
supporting multiple virtual environments each in its own VM with a tightly 
coupled TVEM in a stub domain.
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The host platform’s TPM is used as the RTS to secure the TVEM’s private 

information on the HP. A transitive trust chain is built from the TPM through the 

hypervisor and TVEM manager to the TVEM ensuring trust in the TVEM is rooted in the 

hardware trust of the platform. 

To ensure that data within the TVEM remains private, several security mechanisms 

need to be in place on the host platform. An isolating hypervisor such as sHype [32] can 

be used along with Intel VT-d and TXT to provide additional protection through 

hardware isolation. 

5.5.1 Virtual Trust Network 

The VTN is the control plane that manages trust within a PVI. The VTN is a private 

virtual network on an encrypted link for communication between the TF, host platform, 

TVEM managers, and the TVEMs. The VTN is used for configuring and managing 

TVEMs in a PVI. VTN traffic is restricted to communications between TVEMs owned 

by the PVI, host TVEM managers, and the TF. 

Figure 5.3 show the structure of the VTN. The TF is the controller for the VTN. The 

TF manufactures TVEM images based on requirements for the VTN, generates a TEK 

and inserts it into the TVEM images, and provisions the TVEM on a host platform. The 

TF is responsible for VTN management and monitors all TVEMs in the PVI. A single TF 

can manage multiple VTNs each with multiple TVEMs; therefore, key management is a 

critical function of the TF. 
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TVEM Manager 

 
Figure 5.3 – TVEM system showing TVEMs on two host platforms with TPMs and 
TVEM Managers, the Virtual Trust Network, and TVEM Factory on a TF Platform 
with a TPM. 

The TVEM manager is the hub for the VTN on the host platform. The TVEM 

manager is responsible for routing VTN communications between the TF and TVEMs 

and for arbitrating all access between TVEMs on the platform and the host TPM. The TF 

communicates with host platforms through the TVEM Managers. 

Each host must have a TVEM manager that provides an interface to the host TPM. 

The TVEM manager must be placed in the hypervisor on the host platform so that it may 

have access to the host TPM and provide provisioning functions required to support 

TVEMs. Host TPM access is required for reading the platform PCRs and SRK so that 

TVEMs may be bound to the host TPM. 

Importantly, the TVEM manager is part of the host platform, it is owned by the 

service provider and is not part of the information owner’s domain (see Figure 5.2); 
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therefore, the TVEM manager must be a trusted component and part of the measured 

configuration on the host platform. 

A TVEM manager on a host platform may support multiple VTNs from the same 

information owner or VTNs from other information owners simultaneously. The TVEM 

manager must be able to isolate communication from multiple VTNs and allow access 

only to TVEMs associated with the proper VTN. 

5.5.2 Trusted Environment Key 

The Trusted Environment Key (TEK) is critical in providing security and trust for the 

TVEM. It prevents cloning of the TVEM and protects the contents of the TVEM from the 

platform owner and other processes on the platform. The TEK is a unique key generated 

for a TVEM. The TEK is the TVEM’s endorsement key and serves the same purpose as a 

TPM’s EK. The TEK is generated from the VTN root certificate in the TVEM Factory 

(TF). 

Figure 5.4 shows a diagram of the TEK generation. The TF generates a VTN 

certificate, which is the parent for the all TVEM TEKs in a VTN. The VTN certificate is 

defined as: 

்ܸܶܰி =  ிሼܸܶܰሽ்ܭܴܵ

The TF’s TPM generates a unique VTN certificate for each VTN protecting it with the 

TPM’s SRK. The VTN key is a Migratable Storage Key (MSK) that can be transferred to 

other TPMs. The TEK is then generated as a child of the VTN key and is thus a MSK as 

well. Both keys are transferred to the Host Platform’s (HP) through the key migration 

process. The TEK is defined as: 
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Figure 5.4 – A VTN certificate is generated and wrapped by the TVEM Factory 
(TF) Platform SRK. The TF TPM then generates the TEK as a child of the VTN 
key, places the TEK in the TVEM, and migrates the TEK to the Host Platform 
(HP). 

The TF migrates the TEK and VTN key to the HP binding the TEK and VTN to the HP’s 

SRK. The TEK is stored in the TVEM, which is a protected partition on the HP, thus it 

can be unencrypted only by the TVEM using the HP’s TPM. The TEK will be protected 

in the TVEM and exposed on the HP only when requested by the TVEM for necessary 

operations. 

The TEK is effectively “dual rooted” in both the host platform SRK and VTN root. 

This means that the TVEM cannot be cloned by copying its contents to another machine 

because the TEK is locked by the host’s TPM. The TF maintains the VTN key and TEK 
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root certificates and can revoke the VTN key or TEK at any time effectively removing 

privileges from TVEMs on rogue hosts. 

TVEM migration is achieved by performing a TEK key migration from the current 

host platform to the new target platform. The TVEM migration is not direct to the target 

platform; it must go through the TF and verify that the target environment has the same 

level or greater trustworthiness than does the current host. Once the trustworthiness is 

determined, the TEK can be migrated to the new host by rewrapping the TEK with the 

new host’s SRK. The TVEM and associated virtual machine can then be migrated to the 

new host without losing any information sealed by the TVEM. 

Key Hierarchy and Management 

The highest level key in a VTN is the master VTN key. All TEKs in the VTN are 

rooted and secured with the master VTN key. A master VTN key and certificate is 

generated for each VTN that the factory is responsible for managing. The VTN key is 

protected and stored with the TF platform’s physical TPM SRK. The VTN root certificate 

along with the host platform SRK are used to generate all TEKs in the VTN. 

The TF becomes the root authority for all VTNs under it auspices. TVEMs can be 

verified by checking their TEK certificates with the TF VTN authority. Since the TF is 

the root authority, it must maintain a key list of valid and revoked keys for each VTN. 

Once the VTN is deactivated, the VTN key is destroyed and all keys for that VTN must 

be revoked. A record of the revoked TEK should be kept to ensure that it will never be 

used again. 
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5.5.3 The TVEM Lifecycle 

The TVEM may go through six separate life cycle stages: creation, provision, 

operation, migration, destruction, and termination. A single TVEM is created and 

terminated once, but may be provisioned, operational, and destroyed multiple times. A 

TVEM may or may not go through the migration stage as migration is operationally 

dependent. 

TVEMs are created as images on the TF that are built from the modular components 

with a configuration specific to the target host platform. Generally, all TVEMs for a 

single VTN will have the same configuration. The TF needs to generate a new and unique 

TEK for the TVEM and insert the TEK into the image. 

After the TVEM image is built on the TF, it is provisioned on a host platform. 

Provisioning the TVEM on the host platform is not a trivial matter as there are several 

considerations that need to be understood. First, the target host platform must be 

inspected to determine whether the target is trustworthy for the application intended. The 

inspection includes determining whether the system is configured correctly, such as if the 

proper hypervisor is loaded with the TVEM manager. Once the configuration is 

determined, the TVEM must be provisioned securely on the platform. The TF provisions 

the TVEM on the target host machine using the LSP protocol, adapted to support the 

TVEM. After the TVEM is created and launched on the host platform, the virtual 

environment must then be provisioned on the platform and bound to the TVEM. 

The stage where the TVEM will spend most of its lifetime is the operation stage. 

While in the operating stage, the TVEM provides security services for the virtual 

environment and performs routine communication with the TF. The biggest concern in 
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the operating phase is ensuring that the TVEM is not attacked and detecting the attack if 

it occurs. 

There are situations where the virtual environment may need to be migrated to a new 

platform. In the event of a virtual environment migration, the TVEM must be migrated as 

well. The TVEM uses the LSM protocol for transferring the state and TEKs between two 

platforms. The TVEM must remain within the same VTN during a migration. Direct 

migration to another VTN is not supported, as the TEK would have to be changed to 

another master VTN key, which will invalidate all data encrypted with the TEK. 

Just as important as secure provisioning is secure TVEM destruction. Local copies of 

TVEMs must be destroyed securely upon termination of the virtual environment or 

migration to protect the keys and data stored in the non-volatile memory. If a TVEM’s 

memory is reused on the platform, the memory could be inspected to determine the TEK, 

SRK, and other sensitive information, which can be used to gain access to the virtual 

environment’s information. It is especially important to ensure the keys are not 

compromised. If the virtual environment is reused or migrated and still operational, then 

the information protected by the TVEM’s keys is still valid. Upon termination of the 

TVEM, all memory used by the TVEM must be securely wiped to ensure that no keys or 

sensitive information remains on the platform. 

The TF terminates the TVEM instance only after it is no longer needed. If a virtual 

environment is suspended, and the image stored, then the associated TVEM instance 

must be kept by the TF to ensure that the encrypted information is able to be accessed. 

While the TVEM is suspended, the non-volatile memory of the TVEM must be 

maintained by the TF. Once the instance is no longer needed by the virtual environment, 
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its associated non-volatile memory is purged and its TEK is revoked by the TF ensuring 

that the TVEM and the information it protects can no longer be used. 

5.6 TVEM Design 

The TVEM design is a set of functions grouped into five categories: legacy TPM 

Functions, TVEM specific functions, storage functions, virtual environment interface, 

and user interface. Figure 5.5 shows a block diagram of the high-level TVEM functions. 

In addition to the functional features of the TVEM, security features are also required to 

ensure that the TVEM is not compromised. 

5.6.1 Legacy TPM Functions 

The TVEM implements the following TPM functions per the TPM specification [15]: 

PCRs (as shadow registers), AIK, SRK, public key engine, secure hash, monotonic 

counter, and RNG. 

The PCRs from the TPM are shadowed so that the virtual environment has the ability 

to read the configuration of the host platform. The virtual environment cannot modify the 

PCRs because it does not own the TPM. This is an important distinction for cloud 

computing environments. PCRs are written and modified by the hypervisor and host 

operating system when virtual environments are launched. The configuration of the 

virtual environment is maintained separately in the Virtual Environment Configuration 

Registers (VECRs). 
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Figure 5.5 – The TVEM functional block diagram shows legacy TPM functions 
supported, the new TVEM functions, non-volatile storage, and host and platform 
interfaces. 
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The RNG is an important construct for the virtual environment. Since virtual 

environments have limited ability to generate entropy, an external source for entropy is 

required. However, the TVEM itself is a virtual environment; therefore, it must use also 

use an external source for entropy. The RNG for the TVEM needs to use the RNG on the 

host platform TPM to obtain the entropy required to generate encryption keys and 

nonces. The TPM’s hardware based RNG generates sufficient entropy which the TVEM 

can use for the virtual environment. The latest Linux kernels (2.6.29 and above) support 

the TPM RNG, which can interface to a TVEM RNG in a VM. 

The TPM hash function is implemented in the TVEM as a software module. Since the 

SHA-1 hash functions will be phased out in 2010 [58], another hash algorithm such as 

SHA-256 can be easily substituted. 

The Attestation Identity Key (AIK) and proof is used to provide evidence that an entity 

is a valid TPM. The AIK is generated in conjunction with a trusted third party privacy 

authority in a manner that verifying the AIK established that the TPM is valid without 

revealing which specific TPM is validated. The AIK process can easily be converted to 

provide proof of a valid TVEM by simply adding the VTN factory’s root certificate to the 

privacy authority’s list. 

There are also several TPM functions which may not be required at all. These include 

physical presence, physical maintenance commands (e.g., field upgrade and set 

redirection) and other functions that are not needed for a software implementation. 
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5.6.2 New TVEM Functions 

Several new TVEM functions have been created to enhance the capability of the 

TVEM for virtual environments. These new functions include VECRs, the TEK, the State 

Certification Register (SCR), and a symmetric encryption engine. 

VECRs are equivalent to PCRs, and store configuration information of the virtual 

environment. There are 28 256 bit VECRs to support SHA-1; however, the VECRs can 

be configured up to 512 bits to support SHA-256. The VECRs are used to for the virtual 

environment exactly as the PCR’s for the physical platform. When a virtual environment 

is configured, the VECRs store configuration information about the virtual environment. 

The PCRs from the TPM are used; however, they are shadowed and only used for the 

purpose of determining the configuration of the host platform. The two sets of registers 

provide the ability to obtain configuration information about the platform and maintain a 

fine-grain detail about the configuration of the virtual environment. This enhanced view 

of both environments gives the virtual environment owner the ability to understand the 

security posture the cloud. 

The TEK is the endorsement key for the TVEM. The TEK functions exactly as the 

EK on a TPM, providing the master key for all TVEM functions and rooting all other 

keys. The TEK’s dual trust root is essential to establishing trust in a virtual environment 

on a machine that is not owned by the information owner. Since the key is rooted both in 

the VTN and host platform, the key can be revoked by a change in configuration on 

either side thus invalidating the trust in the virtual environment. 
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A new register called the state certification register is used to verify that the state of 

the TVEM has not been modified or rolled back to a previous state. Section 5.6.6 

describes the SCR and rollback protection in detail. 

Another new feature of the TVEM compared to the VTPM is the addition of a 

symmetric data encryption engine. Cost is not a limiting factor and symmetric engines are 

very efficient in software; therefore, we can add an encryption engine and offload 

encryption tasks for small virtual environments. Providing an encryption engine allows 

smaller, hardened environments instead of bloated operating systems. Additionally, 

export controls are not a major concern with a TVEM. If a TVEM is to be exported 

outside of its originating country, the encryption engine can be easily removed or 

swapped with an engine without export controls. Finally, the encryption engine can 

provide enhanced security by ensuring that correct and verified implementations are used. 

5.6.3 Non-volatile Storage 

To support operation of the TVEM across multiple sessions and migration, the 

information placed in the non-volatile storage of the TVEM must be persistent. To make 

the non-volatile memory persistent, the contents of the memory are backed up to the TF 

where they are stored until the TF is terminated. Each TVEM’s non-volatile memory 

image must be maintained until the TVEM is terminated. 

To maintain the image of each TVEM’s non-volatile memory, every time the non-

volatile memory in the TVEM is updated the TF updates its backup image. The update is 

done by sending a message with the contents to the TF over the host platform secure 

storage interface. When the TF receives the message, it updates its backup image for the 

specified TVEM instance accordingly. 
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An additional benefit of keeping the backup image of the non-volatile memory is the 

ability to verify the local TVEM image. The TVEM may send the full contents of non-

volatile memory to the TF at any point to request a verification of the content. The TF 

can compare the sent image with its backup image and verify that both are identical. If 

the content of the TVEM’s memory were tampered, the comparison would be different. 

5.6.4 Virtual Environment Interfaces 

The biggest difference between a VTPM and a TVEM is the virtual environment 

interfaces. TVEM virtual environment interfaces on the VM side of the TVEM are 

designed to accommodate the many types of virtual environments that may need TVEM 

services. Not all environments will have a full TSS or cryptographic API; therefore, an 

API on the TVEM provides the cryptographic services for the virtual environment. 

The TVEM has three unique interfaces to the virtual environment as shown in Figure 

5.5: a Xen back-end driver, a TVEM API, and a standard TPM interface for compatibility 

with TPM 1.2. Each virtual environment that requires a TVEM service has the option to 

choose the interface it will use. A virtual environment may use multiple interfaces if 

desired. For example, the operating system may use the Xen driver in the kernel and an 

application may use the TVEM API. 

TPM Interface 

The TPM interface will work with any program written to support a TPM 1.2. This 

interface provides backward compatibility for the TVEM where applications are 

expecting a TPM or VTPM. The TVEM can appear to be a valid TPM and operate as a 

TPM replacement. 
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Note that when accessing a TVEM as a TPM, the VECRs are accessed instead of the 

PCRs. The VECRs represent the state of the virtual environment, which is the context 

that the guest is operating. 

TVEM API 

The TVEM API provides applications a direct interface to the TVEM through a set of 

function calls. This interface allows operating systems and applications without a full 

TSS or cryptographic library the ability to use the TVEM easily. 

The API provides access to extended TVEM functions including the symmetric 

encryption engine and PCR shadow registers. The interface can also be extended to 

connect with additional cryptographic hardware such as smartcards and biometrics as 

well. 

Xen Back-end Driver 

The Xen back-end driver will interface directly to a Xen kernel front-end driver [59]. 

This capability enables any virtual environment running on a Xen hypervisor the ability 

to interface to TVEM with the simple addition of the front-end driver to the virtual 

environment. The Xen interface is an extension of the API and provides a seamless 

interface for the virtual environment. 

5.6.5 Host Platform Interfaces 

The host platform interfaces are to the host platform side of the TVEM. The TVEM 

interfaces to the host platform differently than a VTPM. The TVEM uses the TPM and 

host platform as a service to provide functions required for secure operation. The TVEM 

uses the host interfaces for host TPM services, communicating with the VTN, and for 

storing non-volatile information. 
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Host TPM Interface 

The TVEM’s host TPM interface communicates with the host TPM via the TVEM 

manager. The TVEM manager is responsible for arbitrating access to the TPM. All 

requests that require TPM access use this interface including the reading the TPM’s 

PCRs, storing and retrieving keys to the TPM, and accessing the RNG. 

VTN Interface 

The VTN interface is used to manage keys and communicate with the TF over the 

encrypted VTN. One of the primary functions of the VTN interface is to implement the 

rollback protection and heartbeat security features (see Section 5.6.6). Section 5.5.1 

discusses the VTN in depth. 

Secure Storage Interface 

The secure storage interface is a VTN interface used by the TVEM to store non-

volatile memory securely. The secure storage interface uses the VTN to send all non-

volatile writes to the TF for backup storage. On provisioning of a TVEM, the secure 

storage interface is used to populate the non-volatile storage areas on the TVEM from the 

backup image. The secure storage interface is also used to verify the contents of the non-

volatile memory with the backup on the TF. 

5.6.6 Security Features 

Protecting the TVEM’s content and state is critical to maintaining trust in the TVEM. 

There are three primary features to protect the private information and enhance the 

security of TVEM: virtual environment isolation, rollback detection, and TVEM 

heartbeat. 
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Isolation 

To ensure that no other process on the platform can read or modify memory of the 

TVEM, the TVEM must be isolated from the other processes on the platform. Three 

mechanisms are available to ensure that a TVEM is isolated from other processes on the 

platform: secure hypervisors, hardware virtualization, and trusted execution technology. 

These mechanisms are layered and work to prevent virtualization containment attacks 

and protect the VM in which the TVEM is operating. 

The secure hypervisor is the first layer of defense which sets the VM boundaries and 

access privileges for all VMs on the system. The second layer is Intel VT-d hardware 

support for VM isolation and containment detection. The hardware features of VT-d 

detect and prevent any unauthorized read or write to not only the memory of the TVEM, 

but also I/O space owned by the VM. The final layer is Intel TXT, which can further 

restrict processors in a multi-processor system from accessing the TVEM preventing a 

rogue processor from hijacking the execution space of the TVEM. With these layered 

security technologies based in software and hardware, software-based attacks against the 

TVEM isolation become very difficult. 

Rollback Detection 

One of the most important security features to maintaining trust of the TVEM is 

rollback and state modification prevention. Rollback is when the state of the TVEM is 

manipulated backwards to a previous state to break encryption or weaken keys. 

Protecting rollback in software only is difficult; however, there are features of the system 

architecture that can be used for rollback and state modification detection, namely the 

VTN. 
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To protect against rollback, the monotonic counter function of the TVEM is used to 

determine state progression. Every time the monotonic counter is increased, the counter 

and all TVEMs are hashed to create an HMAC and sent along with the HMAC to the 

TVEM factory. The TVEM factory maintains the current count for the TVEM and 

verifies its states with the previous messages. If the monotonic counter is incremented 

forward by one, the factory signs the HMAC and sends it back to the TVEM. The TVEM 

stores the signed message from the factory in the SCR. If the state is ever rolled back, the 

counter detection will detect that the count is incorrect and flag an error. Anyone wishing 

to verify the state can simply request a state verification from the TVEM and verify it 

with the factory. 

Heartbeat 

A periodic heartbeat message sent from the TVEM ensures that the TVEM is 

operating as intended. The heartbeat is a simple message sent at a regular interval 

indicating that the TVEM is functioning. The heartbeat should be authenticated and 

include a message that proves that the TVEM is operating. 

The unexpected absence of a heartbeat is cause for alarm as this is an indication of 

several undesirable events. The absence of the heartbeat could indicate benign system 

problems such as a power or communication outage, to more serious issues such as 

attacks against the TVEM. Attacks that can be detected by the heartbeat absence include 

denial of service attacks or malicious suspension, which could indicate more serious 

attacks against the TVEM such as memory inspection and modification attacks. 
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5.7 Discussion 

The TVEM provides many advantages over a VTPM in a cloud computing 

environment. The management of TVEM from the TVEM factory provides the ability to 

control and monitor TVEMs in a VTN and provides enhanced situational awareness to 

the information owner. The TVEM also provides system designers and information 

owners support for everything from simple single purpose applications to full operating 

systems. The virtual environment specific functions enable ease of use, and the modular 

design enables flexibility for deployment. The TVEM’s dual rooted keys provide cloud 

environments security and trust that is separated from the host platform. 

TVEM configurability is another advantage over VTPMs. By allowing information 

owners to customize their protection requirements, they have flexibility to use cloud 

computing services that were previously unavailable. 

5.7.1 Security 

TVEMs provide strong cryptographic support for securing a virtual environment on a 

cloud host platform. The unique dual rooted key structure provides flexibility to maintain 

trust in the virtual environment and allows information owners to control the 

confidentiality of their data on the host platforms. 

A TVEM can be trusted to report host and virtual environment configurations 

securely as long as it is operating on a platform that is trusted by the information owner 

to provide the secure hypervisor, VT-d and TXT mechanisms that ensure isolation and 

protection for the TVEM. Once the TVEM is launched, it will report to the TF with the 

heartbeat and rollback protection mechanisms. These messages are verified by the TF 
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ensuring proper operation of the TVEM. The TVEM is constantly monitored by the TF 

through the messages ensuring that any corruption of the TVEM is detected. 

TVEM improves security in our three example applications by ensuring that the 

environments are executing on a trustworthy platform, ensuring the environments are 

correctly configured, providing trusted storage for keys and other sensitive information, 

and providing a high entropy source for random number generation. 

For the virtual web server, the TVEM provides secure storage of server certificates. 

As the RTS, the TVEM protects the server SSL and EV certificates by encrypting the 

keys with a unique SRK and storing them in persistent non-volatile memory. For stronger 

protection, the TVEM can bind the keys to the configuration of the host platform and/or 

virtual environment. 

The cloud datacenter uses the TVEM to verify configuration information about the 

virtual servers of the datacenter. Through the PCR shadow registers, the configuration of 

the host platform can be determined. The TVEM provides security in the cloud datacenter 

by protecting private information with the SRK. The dual rooted TEK allows the 

information owner to control access to the information protect by the TVEM and revoke 

the TEK if necessary to protect the information. 

The CVD uses the TVEM to verify its configuration on a remote machine through the 

VECR. The shadow PCRs allows the CVD owner to query the configuration of the user’s 

computer and decide on the trustworthiness of the machine. Through the TVEM secure 

storage, the CVD can encrypt and store the network access keys, user identification keys, 

and other information the desktop owner wishes to be protected. 
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It is important to remember that TVEMs are not designed to defend against hardware 

based attack. TVEMs are software devices and any attacker with access to certain ports 

(e.g., IEEE 1394 FireWire), hardware monitoring devices, emulation and debug 

equipment, or memory inspection equipment can circumvent the TVEM’s security. Since 

hardware attacks cannot be detected or defended against, physical security of cloud 

datacenters is of utmost importance. 

Another type of attack that TVEM cannot defend against is a dishonest host or service 

provider. The information owner is at the mercy of the service provider to provide the 

services agreed upon in a service agreement. If the host platform lies and falsely reports 

its attestation values to the TF, the TF has no basis for challenging the integrity of the 

platform. To prevent the dishonest host, social trust must be used as it is likely that once 

it is detected that the hosts is falsely reporting, word of the dishonesty will be spread 

through the community and the service provider’s reputation will diminish. 

5.7.2 TVEM Requirements Examination 

The TVEM design meets the stated functional requirements of Section 5.4.2 as 

discussed below: 

R1 Confidentiality of data is achieved through hypervisor, VT-d and TXT isolation. 

R2 Key and NVRAM data are stored persistently on the TVEM factory via the VTN. 

R3 Flexible cryptographic algorithms are provided via the modular design of the 

TVEM. 

R4 The TVEM maintains the chain of trust from the CRTM of the host platform, 

through the TPM’s RTR and RTS, to the TVEM. The TVEM then becomes the 

RTM and RTS for the virtual environment. 
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R5 The host TPM is used as a RNG providing sufficient entropy to the virtual 

environment.  

R6 TVEM cloning is prevented through the TEK generation process. By using the 

dual rooted TEK, any attempt to clone the TVEM will not be able to duplicate the 

TEK without detection. 

R7 Rollback protection accomplished via the SCR and state verification with the 

TVEM factory. 

R8 Migration of the TVEM to another host platform while maintaining information 

sealed by the TVEM is enabled through the TEK migration 

By meeting the above stated requirements, TVEM provides security and 

trustworthiness for the virtual environment. 

5.7.3 Challenges to Deployment 

One of the issues that must be considered is the openness of the vendor. Without the 

service provider’s support for TVEM protocols, allowing visibility into the host 

configuration settings, and providing information about the host operating environment, 

implementing a TVEM on the provider’s system would be impossible. 

Cloud providers that use proprietary or closed systems will need to find ways to 

support openness and transparency to enable TVEMs to be effective in increasing the 

security of cloud computing. Providing their customers the ability to control the security 

and privacy of information in the cloud is a win-win for both the provider and customer. 
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5.7.4 Cost and Performance 

This section examines the performance and cost of TVEM. There are three main 

performance areas to consider: provisioning, operation, and key management.  

The largest impact during provisioning is transferring the VM image from the factory 

to the host. A TVEM is not a large device and should be an order of magnitude smaller 

that an operating system; but the cost could still be significant if large numbers of 

TVEMs are routinely provisioned, migrated, and destroyed. 

In the operation phase, TVEM context switching and communication have the largest 

impact on performance. Overhead from context switching between the virtual 

environments slows down overall processing as the processor has to switch from one 

virtual environment to another; however, this impact is not as drastic as the 

communication overhead. If a TVEM is being heavily used, communication overhead 

between the TVEM and TF could be very high. While the individual communications are 

not large, a large number of TVEMs could overwhelm a TF and lead to high bandwidth 

costs. Load balancing the TFs could solve this problem. 

Key management is a major cost of using TVEM. Unlike TPM’s, the operator of 

TVEMs must create and maintain certificates for each VTN and TVEM in use. 

Additionally, each key must be permanently kept in order to prevent reuse attacks, so a 

database of all used keys is required to ensure that a key is never duplicated. This 

database could get quite large over time. 

 



 

Chapter 6  

Conclusion 

No more training do you require. 

Already know you, that which you need. 

 Yoda, Star Wars Episode VI: Return of the Jedi 

 

This work represents a new paradigm of information protection and security in cloud 

computing. We examined and defined a new trust model for cloud computing and 

addressed the core security challenge of utility cloud computing with multi-tenancy. We 

have shown that using trusted computing technologies in the cloud computing 

environment can benefit both operators and clients. 

Our solution implements the four tenets of cloud security providing a secure 

framework and increasing the security posture for IaaS computing: 

1. Tenet: Provide a trusted fabric on which to build utility clouds. 

Solution: A trusted foundation is provided with the TCFP, which can be further 

enhanced for cloud computing by adding the TVEM to the TCFP.  

2. Tenet: Provide a secure management facility for utility clouds that also serves as 

a policy decision point and root authority for utility clouds. 

Solution: The PVI and TVEM factories are the management facilities. 
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3. Tenet: Provide a measurement mechanism to validate the security of the fabric 

prior to provisioning of utility clouds. 

Solution: LoBot provides secure measurement of the fabric via the fabric 

premeasurement stage of the LSP protocol. 

4. Tenet: Provide secure methods for provisioning, migration, shutdown and 

destruction of virtual machines in utility clouds. 

Solution: LoBot provides for secure provisioning and migration via the LSP and 

LSM protocol. Secure shutdown and destruction of virtual machines still require 

additional research. 

Outline: This chapter is organized as follows. Section 6.1 overviews the benefit and 

need of PVI. Section 6.2 discusses the need for LoBot and the LSP and LSM protocols. 

Section 6.3 presents the contributions of TVEM and the benefit provided. Section 6.4 

discusses future areas of research in cloud computing security. Section 6.5 provides final 

thoughts on the research. 

6.1 PVI 

PVI is a new model for securing and managing cloud computing services based on a 

synergistic relationship between the vendor and customer of cloud services. This 

relationship provides an increased security posture while allowing both parties to set 

security controls required to protect the infrastructure and data within the cloud and 

virtual datacenter. Private Virtual Infrastructure increases security and privacy in the 

cloud by isolating the virtual datacenter from the greater cloud. 

Cloud computing service providers need to enable a transparent view of their 

infrastructure so their customers can understand the security posture and threats to the 
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system. This capability will give the vendor a competitive advantage as a secure system 

provider over vendors who choose to obscure their infrastructure inner workings to 

protect proprietary technology. Cooperation between vendor and customer will result in 

increased security while lowering the overall cost of ownership for IT infrastructure. 

Security is the responsibility of all parties involved in IaaS cloud computing. Vendors 

are responsible to provide a secure fabric. Information owners are responsible to protect 

their data. PVI provides information owners the flexibility to manage their own data 

while realizing the cost benefits of cloud computing. 

6.2 LoBot 

We have shown how to provision and migrate virtual machines securely in a cloud 

computing environment via the LoBot Secure Provisioning and LoBot Secure Migration 

protocols. The architecture and protocols implement our new security concepts for 

securing virtual datacenters in the presence of threats. Information owners can verify 

configuration and security settings of target platforms by probing the fabric with a LoBot 

to obtain the destination environment’s properties increasing the assurance that their VMs 

will not be compromised. The TPM and VTPM provide the root of trust and security 

needed by the protocol and Intel TXT provides the late launch capability needed to 

securely launch a VM. 

These are the first protocols that we are aware of for provisioning and migrating live 

virtual machines that first tests the target environment to ensure it meets policy and 

configuration requirements before the actual environment is relocated. Additionally, the 

protocols provide assurance that the transfer is not tampered with during the process. The 
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protocols are a preemptive measure to ensure that critical data are not exposed to 

malicious actors without a means for recovery. 

6.3 TVEM 

TVEM is a new and unique concept for rooting trust in the cloud. The TVEM solves 

the problem of rooting trust in IaaS cloud computing where a service provider owns the 

platform on which an information owner’s virtual environment is operating. TVEM 

enhances security by allowing for trust in the virtual environment that is distinct and 

separate from the hosting platform. The TVEM protects information and conveys 

ownership in the cloud through the TEK generation process, which creates a dual rooted 

trust for the virtual environment. This dual rooted trust is necessary to accommodate the 

unique relationships that occur in cloud computing. 

The TVEM gives information owners control of their sensitive and private data in the 

cloud by providing assurance that their environments are correctly configured and data 

are kept confidential. The TVEM provides management control of trust through the 

centralized TVEM factory control facility, key hierarchy, and modular configurable 

architecture. 

This dissertation introduces the high level system architecture and design concepts of 

a necessarily somewhat complex TVEM system. The definitions of the TVEM, TVN, and 

TEK provided here are strong building blocks to continue developing the details of the 

sub-modules and components. To ensure the TVEM meets the needs of the cloud 

computing users, the TVEM system should go through a formal specification 

development cycle with representatives from many stakeholders, including providers, 

customers, trusted computing experts, and cloud computing researchers. With proper 
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vetting and industry support, the TVEM can be a valuable security component for IaaS 

cloud computing, enabling a higher adoption rate and a more secure cloud. 

Although an industry standard VTPM implementation upon which we can further 

build and refine the LSP and LSM protocols will soon be a reality, the additional 

extensions added by TVEM would improve trust in a cloud computing environment and 

provide for easier integration of different types of virtual environments. 

6.4 Further Work 

We have shown how to build trust into the cloud computing infrastructure, but much 

work remains to have a viable solution that can be implemented on the cloud scale. The 

LSP and LSM protocol needs to be integrated into the Xen management infrastructure 

and the PVI factory needs to be fully designed and implemented. Beyond the basic 

features of LoBot, additional functionality such as continuous monitoring and sensor net 

like capabilities for detecting malicious activities would be beneficial to add. 

A number of details still remain to be worked out regarding premeasurement. 

Examining and understanding which properties required for premeasurement and which 

properties are effective in determining the configuration of a platform are necessary. 

Further development of the TVEM to include addition of new algorithms and 

interfaces would help enhance the adoption of TVEM as a standard trusted computing 

component. 

Other areas of research that would be interesting include how to apply the techniques 

and research described in this dissertation to other models of cloud computing including 

the Platform as a Service and Software as a Service models. Another area of exploration 
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is determining if the model is applicable to large scale computation clusters such as 

Hadoop [60] and Google BigTable [61] clouds. 

6.5 Final Thoughts 

Utility cloud computing has the potential to revolutionize the way companies 

purchase and use IT. With this new technology come new risks and threats that need to 

be thoroughly understood and analyzed. The opportunity exists to understand these risks 

and threats now and build in the security to circumvent the risks and threats early in 

development and adoption phase. 

We have provided three solutions that will enable trust to be built into utility cloud 

computing. PVI, LoBot, and TVEM are a very powerful set of technologies that allow 

trusted virtual infrastructures in the cloud. They allow us to establish trust relationships, 

understand the surroundings, and protect information in the cloud in ways that were 

previously unavailable. Their usefulness extends beyond cloud computing to any 

environment where remote virtual machine provisioning and live migrations are required. 

Cloudy, the future is. 
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