Cain and Sherman How to Break Gifford’s Cipher

HOW TO BREAK GIFFORD’S CIPHER

Thomas R. Cain® and Alan T. Sherman!

ADDRESS: Department of Computer Science and Electrical Engineering, University of
Maryland Baltimore County, Baltimore MD 21250 USA. Email: cain@cs.umbc.edu, sher-
man@cs.umbc.edu.

ABSTRACT: We present and implement a ciphertext-only algorithm to break Gifford’s ci-
pher, a stream cipher designed in 1984 by David Gifford of MIT and used to encrypt New
York Times and Associated Press wire reports. Applying linear algebra over finite fields,
we exploit a time-space tradeoff to determine key segments derived from a decomposition
of the feedback function. This work, the first proposed attack on Gifford’s cipher, illus-
trates a powerful attack on stream ciphers and shows that Gifford’s cipher is ill-suited
for encrypting broadcast data in the MIT-based Boston Community Information System

(BCIS).

Gifford’s cipher is a filier generator—a linear feedback shift register with nonlinear out-
put. Our cryptanalytic problem is to determine the secret 64-bit initial £1l, which is
changed for each news article. Representing the feedback function as a binary matrix F,
we decompose the vector space of register states into a direct sum of four F-invariant sub-
spaces determined from the primary rational canonical form of F. The attack computes
segments of the key corresponding to these invariant subspaces, which have dimensions
24, 3, 6, and 29, respectively. Because the dimension-24 subspace corresponds to a nilpo-
tent transformation, Gifford’s cipher effectively uses only 40 bits of key. With a novel
hashing technique, we search these 40 bits in only 2%7 steps. From the decomposition of
F, we also compute the exact probability distribution of the leader and cycle lengths of
all state sequences generated by Gifferd’s cipher.

Our attack runs in 2%7 steps and 2'® bytes of memory, which is a significant shortcut over
the 2% steps required for a straightforward exhaustive search of all initial fills. Given
ciphertext only from one encrypted article, our prototype implementation running on a
loosely-coupled network of eight Sparcstations finds the article key within approximately
four hours on average. Exploiting a key-management flaw of the BCIS, we also compute
at no additional cost the corresponding master key, used for one month to encrypt all
article keys in the same news section.

*Support for this research was provided in part by the University of Maryland Graduate School, Baltimore,
through a 1991-92 Graduate Merit Fellowship.

tPart of this work was carried out while Sherman was a member of the Institute for Advanced Computer
Studies, University of Maryland College Park. This paper was accepied before Professor Sherman became an
editor of Cryptolegia.

237

July 1897 Volume XX1 MNumber 3

KEYWORDS: Algorithms over finite fields, Boston Community Information System (BCIS},
correlation attack, cryptanalysis, cryptography, cryptology, filter generators, Gifford’s
cipher, linear algebra over GF(2), linear feedback shift registers {LFSRs), matrix decom-
positions, primary rational canonical form, similar matrices, similarity transformations,
stream ciphers.

i INTRODUCTION

In 1982-84, David K. Gifford [18, 18, 20] and his research group at MIT de-
signed and implemented a prototype system for transmitting up-to-the-minute
New York Times and Associated Press wire reports to test subscribers in the
Boston metropolitan area. Known as the Boston Community Information Sys-
tem (BCIS), Gifford’s system broadeast information streams on a subcarrier of
MIT’s FM radio station WMBR.! Each subscriber received and processed the
streams using an IBM personal computer equipped with special-purpose receiver
hardware. To protect against unauthorized access to the streams, and to be
able to deny service to nonpaying customers, Gifford encrypted each stream.
For this application, he devised and used a new stream cipher, which we shall
call Gifford’s cipher. The BCIS operated on an experimental basis from April
1984 through January 1988, providing a model for future community informa-
tion systems. In this paper we analyze the security of Gifford’s cipher, which
had remained unbroken for almost a decade.

Gifford’s cipher is a filter generator. This commonly-used type of cipher com-
prises a shift register, a linear feedback function, and a nonlinear output function.
At each iteration, the feedback function is applied to the contents of the shift reg-
ister to compute a feedback byte, which is shifted into the register. The output
function is applied to four bytes of the shift register to produce a keystream byte.
To encrypt a stream of plaintext bytes, each plaintext byte is exclusive-ORed
(XORed) with a corresponding keystream byte to yield a ciphertext byte. The
secret key is the 64-bit initial fill of the register. We present a new algorithm for
computing the initial fill from ciphertext alone.

Several factors motivate us to study Gifford’s cipher. First, since Gifford
proposed his cipher for use in broadcast communications, it is important to know
if this cipher might compromise valuable data. Second, we would like to further
the understanding of filter generators so that system engineers can make prudent
decisions regarding their implementation and appropriate use. Filter generators
are interesting in part because they provide fast bulk encryption and because
they can be easily implemented with limited resources. Third, Gifford’s cipher

1BCIS information was represented as an FM signal, superimposed over the primary WMBR signal. Recelver
hardware separated the signals.

238

Cain and Sherman Bow to Break Gifford’s Cipher

provides a practical context in which to explore the general theme of exploiting
algebraic decompositions in cryptanalysis.

Our goal is to evaluate the overall effectiveness of Gifford’s cipher in protecting
broadeast data in the BCIS, and more generally, to study the security of filter
generators. To carry out this goal, we analyze the feedback and output functions;
we develop cryptanalytic attacks against filter generators; and we implement a
ciphertext-only attack against Gifford’s cipher. In addition, we develop a new
algorithm for computing a similarity transform between any binary matrix and
its primary rational canonical form, as needed by our attack. This paper focuses
on our detailed analysis of Gifford’s cipher and on our implementation of one
method for breaking it. :

Exploiting a decomposition of the feedback matrix F, we point out several
ways to break Gifford’s cipher. Our main result is the design and implementation
of one of these methods, which computes the initial fill given ciphertext alone
from one encrypted news article. This method applies a time-space tradeoff and
runs in 227 steps using 2'% bytes of memory; it does not require any statistical
weaknesses of the output function. By contrast, our related statistical attack
(Section 7.4) on filter generators uses less space but assumes a slight statisti-
cal weakness in the output function; this alternate attack generalizes Siegen-
thaler’s [45] correlation attack and runs in 2% steps, or more generally 2¢ steps,
where d is the dimension of the largest subspace in any decomposition of the
space of register states into a direct sum of F-invariant subspaces. Combining
these two ideas achieves even faster attacks.

This paper explains in complete detail how to break a real cipher. The inge-
nuity and novelty of this work lies in its effective application of algorithmic and
mathematical concepts—especially linear algebra over the finite field GF(2)—in
a practical cryptanalytic context.

1.1 Previous Work

Although much is known about shift registers, we are aware of only a handful of
references to filter generators: Rueppel [43, pp. 83-93] outlines an application of
Siegenthaler’s {45] correlation attack to filter generators. Siegenthaler’s attack
is useful, but Rueppel’s application of it appears not to be useful against Gif-
ford’s cipher. Rueppel [42, Ch. 5] also presents a framework in which to reason
about filter generators using the algebraic normal form of the nonlinear output
fanction. In their introductory survey on stream ciphers, Zeng, Yang, Wel, and
Rao [49] briefly review how linear consistency and linear syndrome attacks can
be applied to filter generators; Forré [13] and Chepyzhov [8] also suggest attacks.
Some observations on filter generators are given by Siegenthaler {46}, and by

239

CAVPLOLOGIA July 1997 Volume XXI Number 3

Dawson [11] who states a few basic properties. In addition, Key [29] sketches
by example a method for analyzing the periodic properties of the keystream of
certain filter generators.

For the classical theory of shift register cryptosystems, there are expositions by
Beker and Piper {1, Ch. 5], Gill{21], Golomb [24}, Rhee [40, Ch. 4], Ronse [41], and
Rueppel [42]. A variety of attacks on stream ciphers have been published, includ-
ing statistical attacks by Dawson and Clark [12], Golié and Mihaljevié [22], Goll-
mann and Chambers [23], Klapper [30], Meier and Stafelbach [37], and Siegen-
thaler [45]. Many classical results are proven in Peterson and Weldon [39] and
Berlekamp [2]. For a general survey of cryptanalytic techniques, see Brickell and
Odlyzko [3].

For abstract linear algebra, we used standard texts by Hoffman and Kunze [26],
Hungerford [27], Cullen [10], and Jacob [28]. In addition, Watkins[48] surveys
matrix theory, and Giesbrecht [17] presents some algorithms for matrix normal
forms.

These references, however, do not adequately address the algorithmic aspects
of efficiently applying linear algebra (including matrix decompositions) to crypt-
analysis. Moreover, we found no previous work that describes in complete prac-
tical detail how to break any stream cipher.

1.2 QOutline

The rest of this paper is organized as follows. Section 2 summarizes the main
ideas of our attack. Section 3 introduces the Boston Community Information
System, explains the role of encryption within this system, and reviews its key-
management scheme. Section 4 describes Gifford’s cipher in detail. Section &
explains our decomposition of the feedback function. In particular, this section
gives the primary rational canonical decomposition of the feedback function, a
similarity transform between the feedback matrix and its decomposition, and
our algorithms for carrying out these computations. Section 6 analyzes the cy-
cle properties of the feedback function, giving an exact probability distribution
on the leader and cycle lengths of all state sequences generated by Gifford’s
cipher.? Section 7 describes our ciphertext-only attack on Gifford’s cipher, in-
cluding experimental results of a prototype implementation of this attack. Sec-
tion 8 analyzes two variations of Gifford’s cipher. For example, in one variation,
we show that an extremely small period would have resulted had a seemingly
unimportant implementation detail of the feedback function been implemented

?Any eventually periodic sequence consists of a leader and a eycle. The leader is the initial nonperiodic
part; the cycle is the periodic part.

240

Cain and Sherman How to Break Gifford’s Cipher

differently. In addition, this section states several open problems. Section 9
sumimarizes our conclusions. Also, three appendices provide additional detailed
information about our work.

2 OVERVIEW OF OUR ATTACK

Our attack on Gifford’s cipher exploits an algebraic decomposition of the linear
feedback function to reduce the effective number of secret key bits from 64 bits to
40 bits. To determine these unknown 40 bits from ciphertext alone, a variety of
methods are possible; we implement a time-space tradeoff that runs in 2?7 steps
and uses 2! bytes of memory. This section gives an overview of Gifford’s cipher
and our attack of it.

2.1 The Cipher

Gifford’s cipher encrypts each news article under a separately chosen 64-bit ar-
ticle key sg, known only to the sender and receiver. Each article is a sequence of
8-bit bytes Py, Py, ..., Py.1; typically, N = 10,000. As shown in Figure 1, Gif-
ford’s cipher encrypts each article byte-by-byte, XORing each byte of plaintext
with a corresponding keystream byte.

The keystream bytes are computed by applying a nonlinear output function A
to the contents of a 64-bit shift register, which is implemented as a sequence
of eight bytes. Specifically, for each 0 < ¢ < IV, the ith byte of ciphertext is
C, = P,®K,, where s, = f(sg) is the t th state of the shift register; K, = h{s;) is
the ¢t th keystream byte; and @ denotes XOR. Here, f : Z§* — Z§? is the feedback
function which is linear over the two-element Galois field GF(2), and h : Z§* — Z§
is the output function which is nonlinear over GF(2). The function h extracts
eight bits from the product of two 16-bit integers derived from the state register.
Gifford {19, p. 465] explained that “The security of the system depends on the
period of the shift register, and on the ability of the nonlinear function to hide
the contents of the register.”

2.2 Dur Attack

Given ciphertext from one article, our attack computes the article key sp by
computing segments of the key corresponding to a decomposition of the feedback
function.

In a one-time precomputation, we decomposed f as follows. First, from the
detailed description of the cipher, we wrote down the 64 X 64 binary matrix F
of the feedback function f. Second, with the help of math packages Matlab and

241

CRYPIOLOGA July 1997 Volume XXI Number 3

Macsyma, we computed the primary rational canonical decomposition It of F,
which is a 64 x 64 block-diagonal binary matriz. The matrix R has four blocks,
and these blocks have dimensions 24, 5, 6, and 29, respectively. Third, using our
own 5%-step algorithm (which runs faster than the 64%-step algorithm suggested
by Gill [21]); we computed an invertible binary similarity matrix P satisfying
F = P-1RP. Our attack uses P! io move from the decomposed world to the
original world, as needed to check candidate key segments.

Plaintext @ Ciphertext

— Discard

A f

Figure 1. Gifford’s stream cipher comprises an 8-byte shift register, a linear feedback
function f : Z8* — Z§, and a nonlinear output function h. At each iteration, f
computes a new register state 2s follows: A feedback byte is computed and shifted into
the register from the left. Byte By is discarded, and bytes By through By are shifted one
byte to the right. The output function i computes an 8-bit keybyte from register bytes
By, By, B4, and By. The secret key is the initial fill of the register. Gifford’s cipher
generates a keybyte stream, which is XORed with the plaintext stream to produce 2
ciphertext stream. In this figure, <+ denotes XOR.

As shown in Figure 2, the matrix R decomposes the 64-bit shift register into
four subregisters Rg, R, Re, Rg, of lengths 24, 5, 6, and 29 bits, respectively.
The similarity transformation P maps each register state into a correspond-
ing sequence of four subregister states; thus, the key so can be attacked in
the four segments Psg = (dp,d;,ds,d3). Once any segment is known at any
time, it is known for all future time: for each 0 < £ < N, it is true that
Ps, = Pfi(sg) = (Rido, Ridy, Rbdy, Rids), where Ry, Ry, Ry, Ry are the four
blocks of R. Furthermore, because Ry is nilpotent, for all ¢ > 24, Ridy = 0.

242

Cain and Sherman How io Break Gifford’s Cipher

54

“\\“-h

2 p Keybyte

29

4 5
Er»[._
|
fo fi fa

Figure 2. A decomposition of Gifford’s cipher. Qur attack exploits the primary ratio-
nal canonical decomposition R of the feedback matrix F'. This decomposition of ¥
induces a decomposition of the space of register states into a direct sum of four invari-
ant subspaces of dimensions 24, 5, 6, and 28, respectively. A similarity transformation
P satisfying F' = P™'RP maps each register fill s from the original world into four
subfills Ps = (dg, dy, ds, dg} in the decomposed world, corresponding to the invariant
subspaces. In the decomposed world, the feedback transformation fg is a direct sum of
invariant transformations fg = fo @ f1 @ fo & fa. Our attack searches each subfill to
determine the secret key. One version checks candidate subfills using 2 time-space rade-
off: another checks each subfill separately using statistical correlations with the ciphertext

stream. Fach attack runs in at most 220 steps, which is 2 significant shortcut over the
264

s

steps required for 2 straightforward exhaustive search of all 254 initial fills.

243

LRYPLDLL

July 1997 Volume X¥1 Number 3

Thus, for all practical purposes, Gifford’s cipher uses only 5+ 6 + 29 = 40 bits
of key.

Given ciphertext from one news article, we determine the key sy by searching
over the initial fills of subregisters Ry, Rq; and Ry. Our attack exploits two
tricks to carry out this search in only 2%7 steps. First, we recover the high-order
bit of each keystream byte because Gifford represented each plaintext byte in
extended 8-bit ASCII, with the leading bit 0. We check each candidate key
against these bits. Second, instead of searching over all 2% initial states of R,
we search over only 2°°/N states of Ry by checking every Nth state of Ra:
using a hashing technique, we check each candidate fill in expected constant
time against all possible N positions of the ciphertext. With N = 213 = 8,192,
the total expected time for this search is 254622912 — 227 gong

Running on eight loosely-coupled Sparcstations, our implementation finds the
secret key in approximately four hours on average. For example, when run on
the ciphertext given in Appendix B, our implementation found the secret key
within four hours and thirty minutes.

Finally, by computing the exponents of the irreducible factors of the charac-
teristic polynomial for F', we prove that the period of state sequences generated
from nonzero initial fills ranges from 21 to 349, 502,963,061 =~ 3.5 x 10"! states.

3 DATA SECURITY IN THE BOSTON COMMUNITY
INFORMATION SYSTEM

In the Boston Community Information System (BCIS), broadeast data were pro-
tected for two reasons: to provide the information service only to paying cus-
tomers, and to restrict dissemination of data as required by its owners (e.g. some
material was copyrighted). As described by Gifford {19}, the BCIS protected its
broadcast data through stream encryption and a key-management scheme.

3.1 Requirements and Design Decisions

Data security in the BCIS was designed with four requirements in mind: cryp-
tographic strength, flexibility, limited receiver hardware, and computational ef-
ficiency. Gifford [19, p. 466] explained, “We needed a bulk encryption algorithm
that was reasonably secure yet that was efficient enough to be implemented in
software on contemporary personal computers.” As for the level of security re-
quired, Gifford needed a system that would provide adequate protection for news
articles—though Gifford did not identify any specific threats. To allow each cus-
tomer the flexibility of subscribing to any subset of information streams, each

244

Cain and Sherman _ How to Break Gifford’s Cipher

stream was encrypied separately. Gifford [19, p. 465] summarily explained that,
due to limited receiver hardware, he could not “utilize better-known encryption
techniques such as DES or RSA” and therefore implemented his own algorithm
in software. With each subscriber’s IBM PC performing encryption and all other
data processing, Gifford took as a design requirement for encryption not to con-
sume more than approximately 12% of the available CPU.? In addition, he needed
encryption rates in the 2 kbits/sec range.

3.2 Key Management

The BCIS used two levels of cryptographic keys—article keys and master keys.
Each information stream was controlled by a separate 64-bit master key. Peri-
odically, each subscriber received only those master keys controlling the streams
she had selected and paid for. A table of master keys was supposed to have been
sent to each subscriber monthly via U.S. mail; in practice, however, master keys
were rarely changed, if ever.

Each news article was encrypted with Gifford’s cipher using a randomly chosen
64-bit article key, separately chosen for each article. This cipher is described in
Section 4. Each article key was encrypted under the appropriate master key and
broadcast (in its encrypted form) along with the encrypted article.

A problem with this scheme 1s that there is no way to prevent customers from
disclosing their monthly master keys or to limit loss caused by such disclosures.
As Sherman had suggested to Gifford circa 1983, a more secure arrangement
would be to equip each receiver hardware with a tamper-proof cryptographic
unit, which would perform all decryption and key-management functions, and
which would hold a private key unique to the unit. Using public-key ceryptology,
frequently-updated master keys could be transmitted separately to each unit (say,
every thirty minutes), encrypted under the unit’s public key. Without physical
security, however, it is impossible to prevent a subscriber from disclosing her
master keys. Gifford chose not 1o follow Sherman’s suggestion on the grounds
that it would be too difficult to implement.

3.3 Article Key Encryption

Each article key was encrypted by XOR with the master key. Therefore, com-
promise of any article key also compromised the corresponding master key, which
remnained valid for one month. Certainly Gifford knew better: he simply used
the XOR method as a temporary method with the intention of eventually using

3David K. Gifford, private cotrespondence (circa 1984},

245

L3IYPIOL

July 1997 Veolume XX] Number 3

DES or some other cipher. Yet, even after the reimplementation in late 1984 and
early 1985, the XOR method remained a glaring weakness of the BCIS.

4 GIFFORD’S CIPHER

Gifford’s cipher is a stream cipher with 64-bit key, used in the BCIS to encrypi
news articles. Our first two steps in analyzing the cipher were to determine its
exact operation and to choose a suitable mathematical model in which to reason
about its properties. Since Gifford’s [19, pp. 464-465] published description of
his cipher is incomplete, we started with source code from the BCIS. Thus, we
started with a low-level operational view of the cipher, which view sheds little
insight on the cipher’s properties. In this section we define and mathematically
model Gifford’s cipher, separately considering its source code, feedback function,
output function, and use in article encryption.

4.1 BCIS Source Code

In the BCIS, Gifford’s cipher was implemented by one page of source code writ-
ten in the C programming language. Circa 1985, with Gifford’s permission,
Sherman obtained this source code from then graduate student Stephen Berlin,
who worked on the BCIS. A facsimile of this code appears in Appendix A. The
code was helpful to us in defining the feedback and output functions, which are
incompletely described in Gifford’s [19] journal article.

A peculiar feature of the source code is the last conditional statement, which
is accompanied by the mysterious comment: “This [statement] is here purely
to conform to the other C compiler and sign extension of right shifted vari-
ables.” This conditional statement forces a certain right byte-shift operation
in the computation of the output function to propagate the leftmost (sign) bit.
As explained in Section 4.4, we call this type of shifting “sticky” shifting—as
opposed to “zero-fill” shifting.* Investigation determined the following: As a
feature of one BCIS compiler, the BCIS implementation of Gifford’s cipher uses
zero-fill left-shift but sticky right-shift. Because not all of the BCIS compilers
use sticky right-shift, the conditional statement was added to force uniformity
among all BCIS compilers. Earlier source code, however, did not include this
statement.

Thus, initially, Gifford left to the compiler the decision whether to use sticky
right-shift versus zero-fill right-shift, even though Gifford’s [19, p. 465] description

*Sticky-shifting is sometimes called “arithmetic right-shifting” because it corresponds to dividing a two's
.complement integer by two,

246

Cain and Sherman How to Break Gifford’s Cipher

of the “bank view” of his cipher (see Section 4.6) suggests that Gifford may
have at one time intended to use zero-fill right-shift. Remarkably, as we prove
in Section 8.1, the compiler’s action on this seemingly unimportant decision
drastically affects the period of the feedback function. Fortuitously, Gifford’s
arbitrary use of sticky right-shift averted pathologically short periods of at most
9,198 states.

4.2 Article Encryption and the Stream Cipher G

Each news article is a siream of plaintezt bytes { P} 5! of some length N. For
each key, Gifford’s cipher generates a keybyte stream {Kg}ﬁff‘, which is XORed
with the plaintext stream to yield a ciphertest siream {C}p! = {P, @ K, }35.
Throughout, every byte is a sequence of eight bits. The secret key is the initial
fill of a 64-bit shift register.

We shall use the following notation throughout. Let Zy = {0,1}, and let
P = K = C = Z§ denote, respectively, the sets of all possible plaintext bytes,
keybytes, and ciphertext bytes. Similarly, let & = Z8 denote the set of all
possible states of the shift register. Although each article is approximately 10,000
bytes long, it is convenient to view plaintext and keybyte streams as infinite.
To this end, let P*, K7, C*, and & be, respectively, the set of all possible
infinife sequences (streams) of plaintext bytes, keybytes, ciphertext bytes, and
shift register states. .

To reason about Gifford’s cipher, it is helpful to distinguish between the
stream cipher § and the underlying filter generator G*. Gifford’s filter gen-
erator is a mapping G* : § — K7, that for each initial fill 55 € S, generates a
sequence of keybytes G*(sg) = {K;}32g. Gifford’s stream cipher is the mapping
G:8 x P — C” defined by

G(s0.0) = p® G™(s0) = { P ® K}, (1)
whenever sp € § is any initial fill and p = {P,}52, € P is any plaintext stream.

4.3 The Filter Generator &*

Given any initial fill 35 € &, Gifford's filter generator G* computes a stream of
keybytes {K,}2, by applying 2 nonlinear output function h : & — K to the
contents of the shift register. At each iteration, a new state of the shift register
is computed by a linear feedback function f : & — &. Specifically, for any initial
fill sp € S and any ¢ € N, the keystream byte K, generated at time £ is

Ky = G(so,t) = h(s;) = (ho f'){50), (2)

247

LHYPLOLOGA July 1997 Volume X¥I INumber 3

where 8; = f'(sq) is the state of the register at time t. Formally, G is a function
G:8xN-—-K.

It is convenient to define the related mapping G% : & — &7, that for each ini-
tial ill sp, generates the eventually periodic sequence of register states Gg(so) =
{5,}24. Gifford’s filter generator is the mapping G* = hoG%. Thus, each initial
all corresponds to a state sequence. An important feature of filter generators
is that each relatively short key can determine an exponentially longer state se-
guence. In Section §, we exactly determine the probability distribution of the
leader and cycle lengths of these state sequences.

As shown in Figure 1, the shift register consists of eight 8-bit bytes By, By, ..., .
By. At each iteration, a new byte is computed and shifted into the register from
the left (becoming the new By), and the rightmost byte, By, is discarded. Each
of the old bytes By through By is shifted one byte to the right. The feedback
function f depends only on bytes By, By, and B;. As determined from the
source code, the output function h depends only on bytes By, By, By, and By.
Gifford [19, p. 465] explained that “for implementation efficiency, {the] register
[is] shifted one byte at a time, rather than one bit at a time.” Note, however, that
the new byte is not simply By @ B; @ By; as explained in Section 4.4, because f
shifts bytes By and By bit-wise before computing an XOR, the feedback function
is linear over GF(2) but not over GF(28).

Regarding his choice for f to depend solely on bytes By, By, and By, Gif-
ford {19, p. 465] explained that “the tap positions were chosen to yield the longest
period that could be obtained” if the new byte were computed as By ® B & By.
As we prove in Section 8.2, however, Gifford’s choice of taps does not achieve
this objective. Although Gifford does not explain his choice of input bytes to h,
his choice was probably motivated in part by the following observation: Initially,
bytes By and B, are inputs to h. After five iterations, they become bytes B; and
B,. By having h depend on By rather than on Bs, Gifford avoids the weakness of
repeating exact inputs to h. Avoiding this repetition is especially important in
light of the algebraic property—explained in Section 4.5—that Gifford’s output
function is invariant when bytes By and By are exchanged with bytes By and By,
respectively.

4.4 The Linear Feedback Function f

Gifford describes the feedback function f : & — & operationally in terms of its
action on the eight bytes of the shift register. As shown in Figure 3, for any
register state s, = (Bg, By,..., Br), the function f computes the next state of
the register as

248

Cain and Sherman How to Break Gifford’s Cipher

f{si;:{fﬂew(BBv‘gE?B?}aBGeBi:""356)? {3

where the new feedback byte is computed by the function faew : Z5° — Z8.

RS

o 3 4 5 6 T

6 1
%
| 8 bits
k1
f ' >>* f t <<1
new 1 | E /
|| 8bits ~
(+
8 bits

Figure 3. The linear feedback function frew : Z%4 — Zg computes a feedback byte as
the XOR of register bytes By, B1, and By, with byte By shifted one bit to the right,
and with byte Hy shifted one bit to the left. Here, >>»7 denotes sticky right-shift, and
&, denotes zero-fill left-shift. As a result of the bit-shifting of bytes By and By, the
function [peq is linear over GF(Q} but not over GF(QS).

The feedback byte is the XOR of bytes By, B, and By, with byte B, sticky-
shifted one bit to the right, and with byte By zero-fill-shifted one bit to the left.
Thus,

Frew(Bo, Br, Br) = By @ (7 (B1)) @ (K1 {Br))s (4)
where % and <« denote, respectively, the sticky right-shift and zero-fill left-shift
operations. Specifically, for any byte B = (zg, 71, .. W E7)

>>T%: (B) = (£@?$g,$3,$2, .. .,xs) and < (B) = (.’E;,Sﬂg,. . 1255333?,0). (5)

The bit-shifting of bytes B; and By complicates the feedback function mn two
respects: First, this bit-shifting causes the function fh., to be nonlinear over
bytes—i.e. over GF (28). It is easy to verify computationally that foew and hence
f are nonlinear over GF(2%). For example, representing each byte as two hexadec-
imal numerals, let w = (0014, 4115, 0016}. Then, as a result of bit-shifting byte B;
to the Iight, fﬂew(W) = 2@]5 but fﬂew<2*W) = fﬁew(0G16, 8215,8016} = Cl}g. Thﬁs,

249

CAYPTOLOGIA ' July 1997 Volume X¥I TNumber 3

Frew(2 * W) # 2 % frew{w) modulo 28, even if the right-shift were implemented
with zero-Bll. Second, the bit-shifting causes f to be (slightly) noninvertible.
Specifically, f loses one bit—the high-order (leftmost) bit of byte By.

keybyte

T

8 bits |

32 bits E

/i\
/

3 16 bits J\
(0 n
W,

& bhits

0 1 2 3 4 5 6 7

Figure 4. The nonlinear output fu action h extracts an 8-bit byte from the product of two
16-bit integers derived from register bytes By, Ba, By, and Br. One of these 16-bit
integers is the concatenation of bytes By and Ba; the other is the concatenation of
bytes By and B;. From the product of these integers, h extracts the third byte from
the left. in this figure, || denotes concatenation of two 8-bit bytes, and * denotes integer

multiplication,

4.5 The Nonlinear Qutput Function A

As shown in Figure 4, the nonlinear output function 2 : § — K extracts an
8-bit byte from the product of two 16-bit integers derived from shift register
bytes By, Bz, By, and By. Although & is formally defined on &, it is convenient
to express h in terms of its restriction Bo: Zis — Z§. For any register state
s = {(By, By,...,Br), define

k(s) = h(Bo, By, Bs, B;) = Extract_Byte ({Bo|| Bz) * (Bal| B}, (6)

where || denotes concatenation; = denotes integer multiplication; and the function
Extract_Byte : Z3? — Z§ extracts the third byte from the left of any 32-bit

250

Cain and Sherman How to Break Gifford’s Cipher

number. Thus, for any X € Z32, Extract_Byte (X)) = {3>s (X))} mod 256, where
>3 denotes right shift by eight bits. For example, representing each byte by two
hexadecimal numerais, if Bg = ji@]g, Bg fass 6215, 84 = 1315, and By = @335, then
h{By, Ba, By, By) = Extract.Byte (10026 * 110315) Extract-Byte (01105206:s)
= 52;5. Using similar arguments to that given for the nonlinearity of f over
GF(28), it is easy to verify that 7 and thus h are nonlinear, both over GF(2) and
over GF(28).

Suspecting possible weaknesses of his b function, Gifford [19, p. 465] admon-
ished without elaboration: “This method may be too structured fo resist crypt-
analytic attack.” Indeed, as we explain in [5, Appendix E], there are algebraic
and statistical properties of h to be exploited. For example, by the commuta-
tive property of mteger multiplication, for all A;B,C, D € Z§, it is true that

h(A,B,C,D) = R(C,D,A B). Also,f A=B=0,B=D=0,or C=D=0,
then h(A,B,C,D) = 0. Without explanation, Gifford [19, p. 465] also conjec-
tured, “A system based on noninvertible table lookups may be more secure.”

Gifford’s inspiration for h came from a well-known idea of John von Neu-
mann. According to Knuth [31, pp. 3-4], in 1946, von Neumann suggested
generating a pseudorandom sequence of numbers rg,ry,... by the recurrence
r; = middle(r? ,), for ¢ > 0, where middle(r;_;) denotes the middle digits of
ri—1. Knuth {31 p. 3] notes that “von Neumann’s ... method ... proved to
be a comparatively poor source of random numbers ... [because] the sequence
tends to get into a ... short cycle.” It does not necessaz‘ﬂv follow, however, that
Gifford’s interpretat}on of this method suffers from the same problem.

4.6 Discussion—Modeling f and A

To reason about Gifford’s cipher, and to apply mathematical tools to our crypt-
analytic problem, it is necessary to adopt a suitable mathematical model of the
component functions f and h. In this section we describe how we model these
functions and we point out some alternative models.

Modeling f

We view the feedback function f as a linear transformation over Zs. Thus, we
view Zo as the two-element Galois field GF(2), with operations addition and
multiplication modulo 2. In this perspective, we view the set of register states
S = 78 as a vector space over Zy: the vectors are bit sequences of length 64, and
vector addition is bitwise XOR. The endomorphism f is linear over Zy because
it is the composition of linear operations (i.e. bit projections and XOR).

251

CIPLOLOGAE July 1997 Volume XXI Number 3

Although modeling f as a linear transformation over Z, provides a simple
and well-understood framework, other models are also possible. For example,
given the operational definition of f acting on bytes, it is natural to consider
the blocking Z§* = (Z5)%. Moreover, it is tempting to view Zasg as the Galois
field GF(2%) and to view § = Z5:c as a vector space over Zosg. We call this
view the “byte view.” Indeed, the byte view may lead to new insights and to
speedups based on using a larger base fleld. Although this view reduces the
number of variables needed to define the filter generator, this view requires a
more complicated understanding of f because J is nonlinear over Zosg.

Gifford’s feedback function differs from traditional feedback functions in that
it feeds back a byte rather than a bit, Therefore, the standard theory of shift
registers cannot be directly applied over Z,. To deal with this situation, we view
f as a function from S to S.

Another view is what we call the “bank view.” Without elaboration, Gif-
ford {19, p. 465] remarked that “the ... shift register ... can be pictured as a
bank of eight 8-bit shift registers ..., where the new bit in each of the eight
registers is an XOR combination of 1 bit from the previous register, 1 bit from
the register itself, 1 bit from the next register (with identical tap arrangements
for each register).” The forward and backward chaining of the registers through
the XOR operation results from bit-shifting bytes B; and By within f. For the
first register, due to the sticky right-shifting of byte B;, the bit input for the
previous register would be the second bit of the first register; it would not be
the constant 0 as Gifford said. Similarly, due to the zero-fill left-shifting of byte
By, for the last register, the bit input for the next register would be the constant
zero. Thus, for 0 £ 7 < 7, the jth register would consist of the jth bit from each
of the eight bytes of the original register.

To a cryptanalyst, one attraction of the bank view is that, were it not for
the forward and backward chaining of the registers, each register would have a
maximum period of 127 states, as proved in Section 8.2. Also, with this view
it might be possible to attack each bank separately. If the effects of forward
and backward chaining could be handled—for example, by modeling the effect
as noise—this view might be productive. The chaining, however, seems to have
& significant influence.

Although other views might also be productive, for simplicity, we chose to
model f as a linear transformation over Z;. Having adopted this linear model,
our next step was to write down the matrix representation F of f, which we do
in Section 5.1.

252

Cain and Sherman How to Break Gifford’s Cipher

Modeiing A

In the current implementation of our attack, we view A simply as a *black-box”
function that maps register states to keybytes; that is, we assume we know how
to compute h, but we assume nothing else about h. In our related statistical
attack, we additionally assume a mild statistical weakness of h.

In our preliminary analysis of iz, we also modeled this function as one or more
Diophantine equations. For example, by interpreting Equation 6 algebraically
over GF(2%), it follows that

h(A,B,C,D) = (BC + AD + [BD/256)) mod 256, (7)

whenever A, B,C,D € Zysg, where + denotes integer addition and where the
implicit product operation is integer multiplication. From this model we proved,
that by solving certain linear Diophantine equations derived from Equation 7, it
is possible to invert A given its output and three of its inputs {for exact statements
of this property, see [5, Appendix E]). This inversion property can be exploited
to optimize some attacks.

Similarly, working over GF(2), it is possible to model h as a system of eight
Boolean equations that define the eight bits of output. Each of these equations
can be defined in terms of up to 32 unknown bits of the shift register. More
interestingly, exploiting our decomposition of f, each of these equations can be
defined in terms of up to 40 unknown bits of subregisters R; through R3. Al-
though the Boolean equations defining h are rather messy due to the carries in
the integer multiplication, they are not intractable. We conjecture it would be
promising to study them further. To deal with the carries, it may be useful to ap-
ply the mathematical machinery of Lomonaco [33], who developed an algorithm
for integer factoring based on solving Boolean equations.

5 DECOMPOSITION OF THE FEEDBACK FUNCTION

Our attack exploits a decomposition of the feedback function f to search seg-
ments of the key. To begin, we view the state space § = Z5% as a vector space
over GF'(2), and we view [as a linear transformation of S. We represent the
feedback function f as a binary matrix F' and work with its primary rational
canonical form R. The binary matrix R is a block diagonal matrix, similar to
F. This decomposition of F induces a decomposition of the state space into a
direct sum of F-invariant subspaces.

In this section, we compute the canonical form R and an invertible binary
similarity matrix P such that F = P"!RP. To compute these matrices, we first

253

CSYPFLoLoGa July 1997 Volume XXI Number 3

derive the feedback matrix F, the minimal and characteristic polynomials for F,
and the factors of these polynomials. In Section 6, from the exponents of these
factors, we determine the exact probability distribution of the leader and cycle
lengths of all state sequences generated by Gifford’s cipher.

5.1 The Feedback Matrix F

To apply the tools of linear algebra to our cryptanalytic tasks, it is useful to
represent the feedback function f as a matrix. Because f is linear over GF(2),
there exists a representation of f as a 64 x 64 binary matrix. We derive this
matrix F from Equations 3 and 4. .

To derive F, we write down Boolean equations that express bits of the shift
register at time ¢ + 1 with bits of the register at time £, For any t € N, let
s¢ = (b5, b, ... blg) and si41 = (b5, 647 .. bEE) be states of the register at
times ¢ and ¢ + 1, respectively. From Equation 4 and from the byte-shifting, the
following 64 identities hold:

B = bh 4+ b+ by, (8)
bj-—H — b; + b;’-I-T 4 b}+58 for y=1,... , G, (9)
Bt = B4 b, + 0= b} +bl,, and (10)
B = by for j=8,...,68, (11)

where + denotes addition modulo 2.

Equations 8-10 compute the new feedback byte. Observe that the sticky
right-shift of byte By accounts for the b, term in Equation 8. Similarly, the
gero-fill left-shift of byte By explains the constant 0 in Equation 10. Finally,
Equation 11 describes the bytewise shifting of bytes By through B;. Each of
these 64 identities defines a row in the matrix F.

As discussed in Section 4.4, the left bit-shift of byte B; loses one bit of
information—bls. Consequently, 8§; does not appear on the right side of Equa-
tions 8-11, and column 56 of matrix F is a column of zeros (we index columns
from 0 to 63). Therefore, F' is not invertible. We computationally verified that
the rank of F is exactly 63. In particular, we computed the row-echelon form of
F and observed that it has exactly one row of zeros. In addition, we computed
s basis for the kernel of F and thereby verified that dim(ker(F})) = 1.

Tn Section 5.4, we show that the noninvertibility of F' is restricted to the
leader of the state stream, which has at most 24 states. Specifically, in R, the
ouly noninvertible block is the dimension 24 block that computes the leader, This

- fact has the following cryptanalytic significance: to determine the first state in

254

Cain and Sherman ' How to Break Gifford’s Cipher

the cyclic portion of the state stream uniquely, it suffices to find any state of the
register in the cyclic portion of the state stream.
The matrix F' has the block structure

!/Fg B0 F

F= i
i 156,56 g (12)

which arises from the byie operations within f. Corresponding to fapped bytes
By, By, and B, the three 8 x 8 blocks Fy, Fi, F7 calculate the feedback byte. The
56 x 56 identity matrix I5g56 in the lower-left corner of F' describes the shifting
of bytes By through Bg. Because byte B; is discarded, there is a 56 x 8 matrix
of zeros in the last eight columns of F.

We now explain blocks Fyy, Fi, and F;. Block Fj is an 8 x 8 identity matrix,
expressing the fact that byte By is not bit-shifted within f. By contrast, blocks F}
and F; are, respectively, the upper- and lower-diagonal matrices

1 000000 0\ /0100000 0\

10000000 00100000

01000000 0 0010000

6 0100000 000601000 ,
=19 0010000 25160000100/ (¥

006001000 0 0CO0OGOG 10

0 0000100 0 000O0O0C O 1

6 00CO0O0GOCG 10 \ 0 D0 00000

expressing the right bit-shifting of byte By and the left bit-shifting of byte By.
Because byte B; is sticky-shifted, the upper-left bit of block F; is one.

5.2 The Characteristic and Minimal Polynomials of F
and Their Factors '

To compute K, and to characterize the pericdic properties of f, it is helpful
to know the characteristic and minimal polynomials of F and their irreducible
factors. Intuitively, the characteristic polynomial for F' encodes all of the infor-
mation of F in a convenient algebraic form. In this section, we present these
polynomials and explain how we computed them with the help of the math
packages Matlab and Macsyma [35].

258

CAIYPIOLOGA | July 1997 Volume XXI Number 3

First, we review some basic concepts from linear algebra.’ Let Zy|z] denote
the ring of polynomials over Zg, and let f(2) € Zo|z]. The polynomial flz)is
irreducible over To if f{x) cannot be written as the product of two polynomi-
als in Zg[x] of lower degree. The characterisiic polynomial of F is the degree
64 polynomial pp(z) = det(F —), where I is.the 64 x 64 identity matrix. The
minimal polynomial of F, denoted by mp{x), is the polynomial of smallest degree
over Zy such that ms(F) = 0. By the Cayley-Hamilton theorem, pp(F) = 0.
Because the minimal polynomial is the unique generator of the principal ideal of
polynomials over %y that annihilate F' (see [26, p. 181]), it follows that mp{z)
divides pr(z). Moreover, the minimal and characteristic polynomials contain
the same irreducible factors (see [26, p. 193]); it is possible, however, that these
irreducible factors may occur with higher multiplicities in pr(z).

For Gifford’s cipher, it turns out that mp(z) = pr(z), which fact simplifies
some of the theory. In particular, as explained in Section 5.3, mp(z) = pr(z)
implies that the invariant subspaces in our decomposition are F-cyclic.

We computed the characteristic polynomial pp(x) of F by computing the
determinant det(F —z7) using the numerical math package Matlab. Since Matlab
is not equipped to perform arithmetic over Zp, we performed the calculation
over R and accepted the modulo 2 values of the coefficients from the resulting
polynomial.® This computation produced the following polynomial for F:

Frlz) = O 62 61, 60, 159, 58y STy (86, (50, 582, 000, pdBy pddy pd0, 20

(14)

Using Macsyma, we factored pr(z) into a product of irreducible polynomials
Brlz) = p§'(z) p1(z) pa(7) pa(x), where

polz) = z, (15)

pi(z) =22+ ¥4+ 1, (18)

polz) = 2%+ 2° +2* + 2% + 1, and (17)

pg{x) — 529+$28+$26+$22“§'$20+$19+518+$§6‘§"I14+.’813-§-:L‘m-i—xg«-én:ﬁ? (18)
to+at ot L

Since runtime-errors {e.g. roundoff errors) might have affected Matlab’s com-
putation of pp(z), we verified these calculations in four steps: First, we verified
that each of the polynomials po(z) through ps{z) is irreducible over Zy and that

YFor a review of linear algebra, see Hoffman and Kunze [26], Huagerford (2], and Jacob 28]

8We also tried using the symbolic math packages Mathemotice and Moecsyme., We found Mathematice
poorly suited for doing arithmetic over Zg, and Maecsyme ran too slowly. At the time, we did not have easy
access to Maple {71

256

Cain and Sherman ‘ How to Break Gifford’s Cipher

their product is fp{z). Marsh [36] lists polynomials p;(z} and py(z) in his table
of irreducible polynomials, and in Section 8, we prove the irreducibility of ps{z)
within our proof of Proposition 2.

Second, using our own C language programs, we computationally verified
that 5x(F) = 0; hence, pr(z) is a multiple of mp{z). Third, we computationally
verified that z, p; (), po(z), and ps{x) are factors of the minimal polynomial.

Fourth, using cur own programs, we computationally verified that the mini-
mum integer 1 < ¢ < 24 such that ph{F) pi(F) po F)ps(F) = G is i = 24. Since
the minimal and characteristic polynomials contain the same irreducible factors,
and since pg(x) is the only irreducible factor of jp(z) that occurs with multi-
plicity greater than one, it follows that fp(z) = pr(z) = mp{z) is the unigue
characteristic polynomial for F.

Our decomposition of F depends on the elementary divisors of F', which by
definition are the prime-power polynomial factors of mp(xz). Specifically, these
elementary divisors are the polynomials m;(z) = pf(z), for 0 < ¢ < 3, where
to =24 and t; = t, = i3 = 1. Thus, mp(x) = me(z) mi{z) ma{z) ms(z) = pplz).
We computed these elementary divisors with Matlab and Macsyma; alternatively,
we could have implemented an algorithm based on Gaussian elimination (for
example, see [21, 26, 27]).

5.3 An Invariant Decomposition of the State Space

We decompose the state space into a direct sum of four F-invariant subspaces
S = Vu®dV, ®Vo® V3. Doing so enables us to search for the initial fill by searching
segments of the initial fill corresponding to these four invariant subspaces. Each
invariant subspace is determined by one of the elementary divisors m;{z) {0 < i £
3) of F computed in Section 5.2. In this section we describe this decomposition
of §.

We base our decomposition of S on the well-known Invariant Subspace Decom-
position Theorem (ISDT), as described by Jacob [28, p. 390], and on the more
refined Cyclic Subspace Decomposition Theorem (CSDT) presented by Hunger-
ford [27, p. 356]. In Gifford’s cipher, however, the decompositions resulting from
ISDT and CSDT coincide because mp{z) = pr(z). Nevertheless, we apply both
theorems because each theorem provides some additional information, which we
use in Sections 5.5 and 6. Theorem 1 applies the ISDT and CSDT to Gifford’s
cipher.

Before applying these decomposition theorems, we review some relevant con-
cepts from linear algebra. Let V be any n-dimensional vector space over Zo,
and let 7 : V —» V be any linear transformation on V. We say that V is the
direct sum of subspaces V; and Va ifand only f ViNVo = 0, and forallv € V,

287

CIVPLOLOGIA : July 1697 Volume XEI Number 3

there exist v; € Vi and va € Vo such that v = v; + v2. In this case, we write
V =V, & V,. The notation T}V, refers to the restriction of T of ¥;. A subspace
Vy C V is T-invariant if and only if T(v) € V, for all v € V4. The kernel of T'is
the set ker(T) = {v e V : T(v) = 0}.

To compute the primary rational canonical form R of F, and to compute the
associated similarity transformation P, it is'helpful to introduce the notion of a
cyelic vector, as used in CSDT. We say that v € V' is a T-cyclic vector for Vit
and only if the set {v,7{(v),...,T" H{v)} forms a basis of V.” Furthermore, we
say that V is a T-cyclic vector space if and only if V' has a cyclic vector. Every
T-cyclic vector space is T-invariant, but not every T-invariant space is T-cyclic.

Applying ISDT and CSDT to Gifford’s cipher yields the following decompo-
sition of S into four cyclic subspaces of dimensions 24, 5, 6, and 29, respectively,
corresponding to the four elementary divisors of F\

Theorem 1. Let F be the matrix of Gifford’s feedback function, and let
mp(x) = mo(x) mi(z)ma(z)ms(z) be the minimal polynomial for F, as de-
fined in Section 5.2. It is true that & = V, & Vi & Vo & V3, where for each
0<1<3:

1. V; is F-cyclic {and hence F-invariant),
2. m;(z) is the minimal polynomial of F|V;, and

3. Vi = ker(m;(F)).

Proof. Direct application of ISDT and CSDT. Since mpg(z) = pp(z), the dle-
compositions resulting from ISDT and CSDT coincide. We use CSDT ouly to
establish Property 1. U

In the rest of this section we apply Theorem 1 in two ways: In Section 5.4
we give a decomposition of F corresponding to our decompeosition of §, and in
Section 5.5 we exploit Property 1 of Theorem 1 to compute a similarity trans-
formation P.

5.4 The Primary Rational Canonical Form K of F

The primary rational canonical form (RCF) for F, denoted RCF(F), is a block-
diagonal matrix corresponding to the F-cyclic decomposition of the state space
S=V,@0V, ® Vo @ Vs given in Section 5.3. We now present this matrix and
explain how we computed it.

74 basis for any n-dimensional vector space V is a set of n linearly independent, spanning vectors. Every
vector in ¥ can be written uniquely as a linear combination of the basis vectors.

258

Cain and Sherman : How to Break Gifford’s Cipher

For each 0 € 7 < &, let my(z) = pi({z) = 27 + 5:?;’51 a;;7° be the minimal
polynomial of F|V, as defined in Section 5.2, where n; is the degree of m,{z),
and ay; is the jth (binary) coefficient of my(z). Thus, ng = 24, n; = 5, ny = 6,
and ng = 29.

By definition, the RCF for F is the 64 x 64 block-diagonal matrix

Ry
R
R= 'R, f (19)
R
where for each 0 < i < 3, block R; is the companion mairiz [26, p. 230]
96 ...0 0
10 ... 0 Oy
R=|01 ...0 ap . (20)
00 1 ai(n.'-—l)

The matrix R is a canonical representation of the equivalence class of all matrices
similar to F'; it is unique up to the order of the blocks.

Each companion matrix R; is a lower-diagonal matrix, whose last column
consists of the coefficients in the associated minimal polynomial m;(z). For
example,

0000 1
10001

Ry={01001], (21)
0010 3
00010

corresponding to the minimal polynomial my(z) = 25 4+ 28 + 22 + 2 + 1 for
FVi. Similarly, the other blocks of R can be computed by inspection from the
elementary divisors mg(z),...,ms{z) of F.

The blocks of R have dimensions 24, 5, 6, 29, and ranks 23, 5, 6, 29, re-
spectively. Block Ry of dimension 24 is the only singular block. The singularity
arises from the last column, which is zero because the corresponding elementary
divisor is mg{z) = %

Block Ry plays a special role because it represents a nilpotent transformation
with R2* = 0. To see that Ry is nilpotent, observe that the only ones in Ry are
along the lower diagonal, which happens whenever the corresponding elementary
divisoris a power of . Note that Hjis the only nilpotent block of R; in fact, when

259

CIVPLOLOCS July 1997 Volume X¥I Number 3

pr(z) = mp(r), there can be at most one nilpotent block. Since the nilpotent
block determines the leader length of any state sequence, the maximum leader
length of any state sequence generated by Gifford’s cipher is 24 states. For an
independent proof of this fact, see Ronse {41, p. 54].

As explained in Section 7, our attack searches segments of the key correspond-
ing to the four blocks of A.

5.5 A Similarity Transformation P from F to R

A similarity metriz from F 1o R is any invertible binary matrix P such that

F=p'rRP. (22)

Our attack uses such a matrix to move between the original and decomposed
state spaces. For example, to check any candidate key in the decomposed world,
we apply P~! to transform the key into the original world, where we check if it
decrypts the ciphertext. Appendix B of [5] presents our similarity matrix P and
its inverse P~!. In this section, we discuss the role of this matrix and explain
how we computed it.

As illustrated in Figure 2, the matrix P transforms any fill s € & into a
vector of “subfills” Ps = (dy, d;, dy, d3) corresponding to the F-invariant decom-
position & = V& V1 & Vo @ Vi derived in Section 5.3. Because our matrix P!
does not preserve the block structure of R, individual subfills cannot be trans-
formed separately by means of P™!; instead, all subfills must be known before
the transformation can be applied.

It is significant that matrix P~% is dense. As a result, slight errors in any
subfill multiply when the subfill is transformed by P~!. Unfortunately, we have
no reason to believe that any sparse or block-structured P exists.

Since F and R are similar matrices {27, p. 360], a similarity matrix from F
to R exists. Although RCF(F') is unique up to the order of its four blocks, there
are many similarity matrices P: specifically, there are 2% - 31.63. (2% — 1)
such matrices. Our task was to compute one of these P’s.

Although it would be possible to compute a similarity matrix from F to R
as a byproduct of the computation of RCF{F), the math packages we used to
compute RCF(F') did not do so. Therefore, we devised our own algorithm for
computing a similarity matrix.

We define the Similarity Transformation Problem (STP) as follows.

260

Cain and Sherman ' How to Break Gifferd’s Cipher

Similarity Transformation Problem {STP)
Input: A positive integer n, and any similar n X n binary matrices A
and B.
Quiput: Any invertible binary matrix P such that PA = BFP, where
all arithmetic is performed over GF(2).

We are particularly interested in the special case of this problem in which the
matrix B is given in primary rational canonical form. We refer to this special
case of the problem as STPR. Although STP is syntactically similar to the Graph
Isomorphism Problem (GI) [16], STP is less constrained than GI because Gl
additionally requires P to be a permutation matrix,?

There is a straightforward polynomial-time algorithm for solving STP: Let
n = 64 and consider each of the n? entries of P as an unknown variable. Compute
the values of these unknowns by solving the n? linear equations defined by the
equation PF — RP = 0, and check if the resulting P matrix is invertible. Using
Gaussian elimination, this straightforward algorithm would take (n?)? = nS steps,
which would be inconveniently slow since 645 = 2% though it ought to be
possible to speed up this calculation by exploiting the sparse nature of F. To
our surprise, we found no insightful previous work on the problem of computing
similarity matrices efficiently. For example, Gill [21, pp. 17-19] gives only the
slow straightforward ©(n®) algorithm.

To compute our P matrix, we devised a faster method that exploits our cyclic
decomposition of §&. This method requires finding a F-cyclic vector for each .of
the F-cyclic subspaces.® Our method runs in time O(33_5 i), where ; is the
time to find a F-cyclic vector for cyclic subspace V.

For our decomposition of F, finding F-cyclic vectors was easy. Because sub-
space Vp corresponds to a nilpotent transformation, exactly half of all vectors in
Vy are F-cyclic; it suffices to find a vector v € ¥} such that F2(v) # 0. For the
other subspaces, every nonzero vector is F-cyclic. This statement follows from
the fact that, in Gifford’s cipher, each of the elementary divisors mi(z), ma{z),
() is irreducible. For each cyclic subspace Vi = ker(m;(F)) (0 << 3), we
found a F-cyclic vector in the standard basis set that we computed by Gaussian
elimination.

We computed our P~ matrix as follows. For each 0 <7 < 3, let v; € V; be
any F-cyclic vector; let n; = dim(V;); and let g5 = Fi(wi) for 0 < j <ny—1. We
defined P~! to consist of the columns g;;, for0 <i < 3and 0 < 7 < m,. Although
we still performed Gaussian elimination (to compute our basis set }, we did so over

8 A permulotion matriz is & binary mairix that has exactly one one in every row and column.
P ¥ ¥ ¥

®For & definition of cyclic vector, see Section 5.3.

CRYPLOLOCIE ' July 1997 Volume XXI Number 3

smaller systems of equations consisting of at most n—n; = 645 = 50 equations,
which took less than 2 seconds of computation time on our Sparcstation. The
correciness of our method for computing P follows from Propesition 1. In this
proposition, @ plays the role of P1; thus @77 is a similarity matrix from F

to R.

Proposition 1. Let S = V8V, 8 V2@V; be the cyclic decomposition of the state
space of Gifford’s cipher given in Theorem 1, and let R be the primary rational
canonical form of the feedback matrix F. For each 0 <1 £ 3, let n; = dim(V});
let v; € V; be any F-cyclic vector; and let ¢ be the binary matrix whose columns
are the vectors g = Fi(v;) for 0 < j < n; — 1. The matrix { represents a
similarity transformation from R to F.

Proof. We must show that @ is invertible and that FQ = QR. The invertibility
of @ follows immediately from the fact that v; is an F-cyclic vector for each cyclic
subspace V;, for 0 < ¢ € 3. To prove FQ = QR, we show that the corresponding
equations holds for each block of R. To this end, let 0 <7 < 3.

The ith block of QR consists of the columns ¢;1, ¢, .., qi(n‘._l),zg‘;gl @i Gijs
where ; is the jth coefficient in the minimal polynomial m,(z) for F|V; given
in Section 5.2. The corresponding columns of F@Q are Fqip, Fai, ..., Fgign,~1)-
The equality of each pair of corresponding columns follows the fact that v; is an
F-cyclic vector and that m;{(F)ge = 0. &

As a check of correctness, we verified that # = P™!RP. Finally, we note
that this identity further confirms the correctness of our characteristic polyno-
mial pp(z): the matrix R is unique up to the order of its blocks; polynomial pr(x)
determines R; and the identity F' = P~'RP proves that F and R are similar.

6 THE PROBABILITY DISTRIBUTION OF LEADER AND
CYCLE LENGTHS

For each initial fill 55 € S, Gifford’s filter generator computes an eventually
periodic sequence of keybytes G"(sy) = {X;}2,. Each sequence consists of a
leader and a cycle, where the leader is the initial (transient) nonperiodic part,
and the cycle is the periodic part. Although long periods do not guarantee high
security, short perieds create serious weaknesses. For example, if the period
of the keystream is smaller than the length of the plaintext stream, then some
keybytes will be reused to encrypt two or more plaintext bytes. Therefore, it is
important to know the probability distribution of the leader and cycle lengths
of the keystream. Similarly, it is important to understand the related periodic
properties of the underlying sequence of register states G3(so) = {5:}2,-

262

Cain and Sherman Bow to Break Gifford’s Cipher

From the exponents of the elementary divisors of F', we compute the exact
probability distribution of the leader and cycle lengths of the state stream. For
example we prove, that excluding the degenerate so = 0, leader lengths range
from 0 to 24 states, and cycle lengths range from 21 to 349,502,963,061 =~
3.5 x 107" states.

The leader and cycle lengths of the state stream are upper bounds on the
leader and cycle lengths of the keystream. It is possible, however, that the
keystream repeats before the state stream repeats—though if this happens, the
length of the keystream cycle must properly divide the length of the correspond-
ing state stream cycle. Since we do not know how to compute the exact distri-
bution of leader and cycle lengths in the keystream, we experimentally looked
for any initial fill whose keystream repeats before the state stream repeats. A
one-day computer search found none.

6.1 Leaders, Cycles, and Maximum Periods

For any initial fill sp € S, let As(sg) and ms(sp) denote, respectively, the leader
length and cycle length of the eventually periodic sequence Gg(so) = {5:}3Z-
Thus, 77(sp) = min{p € N : sy, = s for all sufficiently large t € N} ¥
As(so) = 0, then we say that the sequence G%5(so) s strictly periodic,

Also, let A% and 7} denote, respectively, the maximum leader and cycle lengths
over all initial fills. Thus,

T; = max{ms(s) : s € St and X; = max{l;(s) s €S} (23)

Note that 7;{0) = 1 and 77 < 2% - 1.

In addition, let P; = {n/(s) : s € S} denote the set of all possible periods; and
for any p € N, let S(p) = {s € & : 74(s) = p} be the set of states with period p.
In the rest of this section we compute Py, Sy, A}, 7}, and an exact probability
distribution on P for uniformly chosen initial fills. Apparently, Gifford did not
know any of these guantities.

8.2 Periodic Properties of F

For any sy € 8, ny(sp) can be computed in terms of the exponents of the ele-
mentary divisors of F that generate the subspace to which s belongs. In this
section we explain how to perform this calculation.

Let f{z) € Zalz]. The exponent of f, denoted explf), is the least positive
integer r such that f{x) | 27 — 1. If there is no such integer r, we say that the
- exponent is 0.

263

CIVFLOLOGIA July 1997 Volume XXI Number 3

Theorem 2 states a relationship between exponents and periods. This relation-
ship arises from applying the definition of period to the state stream {F{s¢)}524:
for any sg € S and for any t > A%, it is true that Frileodtts, — Ftso and thus

(Frilse) — [\Figy = 0.

Theorem 2. Let & = V& V) & Vo @ V3 be the direct sum decomposition of
the state space of Gifford’s cipher given in Theotrem 1. For < ¢ < 3, let
my(z) = p¥{z) be the elementary divisors of F given in Section 5.2, and let
e; = exp(m;). Also, for each 1 < i < 3, define f; = min{2 : j € N and % > #;},
and let 8 = max{f;, 02,03} Let v = (v, v1,v2,13) € S. Foreach 1 << 3, it
is true that:

1. If Uy -}é 0, then Wf(’b‘,') = ,3,'6,' = &y.

7s(v) = Flem{e; :v; # 0 and 1 <4 < 3}, where
F'=max{f;:v;#0and 1 <i <3} =1

r

(o]

.y = flem(en, eq, e3) = lem{e, eq, €3).
CFY(v) = F¥v) e Vi@ Vo @ Vs, and
5. Ay = = 24

1

Proof. First, observethat {y =24, i ==ty =l,and =G =Fo =03 = 1.
The theorem follows from Theorem 1 and from Berlekamp (2, pp. 150-151]. For
example, for any 1 <7 < 3, we prove Property 1 as follows: By Berlekamp {2, p.
151], exp(m;) = fie;; and by Theorem 1, m;(F){(v;) = 0 since V; = ker(m;(F)).
Combining these facts yields {F7¢ — I)(v;) = 0. O

Thus, each initial fill in V] @ V5 & V; generates a strictly periodic sequence, and
each initial fill in V; generates a leader converging to the zero fill. Although other
books {e.g. Ronse [41] and Gill [21]) have similar underlying theorems, we have
not seen any previous application of this result to a real cipher.

8.3 Exponents of the Elementary Divisors of F

To interpret Theorem 2 numerically, we need to compute the exponents of the
elementary divisors of F, given in Section 5.2. To carry out these calculations,
it is helpful first to review some basic concepts from finite field theory, including
the notions of cyclotomic and primitive polynomials. Throughout we work over
the base field GF(2).10

0 For & review of finite field theory, see Berlekamp [2] and Peterson and Weldon [39].

264

Cain and Sherman How to Break Gifford’s Cipher

Let n be any positive integer. The nth roofs of unily are the roots of the
polynomial 2™ — 1. These roots form a multiplicative cyclic group. I (is an
nth root of unity that generates this group, then (is said to be a primifive nih
root of unity. The nth cyclotomic polynomial C,(z) is the monic polynomial
Cp(z) = [Tray{z — &), where (3, (s, ..., ¢ are the distinct primitive n'® roots of
unity.

Cyclotomic polynomials are useful in computing exponents. Let f(z) € Zzlz]
be any irreducible polynomial. Since all roots of f{z) over Z; have the same
order in any extension field of Zs, it is true that exp(f) is the order of its roots
in that extension fleld. Therefore, if f{z) divides Ci(z) for some cyclotomic
polynomial Ci(z), it follows that exp(f) = k.

Any irreducible polynomial f(z) of degree n is said to be a primitive poly-
nomial if and only if exp(f) = 2" — 1. Any n-stage shift register achieves the
maximum period of 2 — 1 states if and only if its characteristic polynomial is
primitive [1, Ch. 5].

Proposition 2 computes the exponents of the elementary divisors of F'. First,
we review the following two well-known lemmas, which we apply to compute
exponents.

Lemma 1. Let n be any positive integer. If § = {f(z) : f(z) is an irreducible
polynomial over Zy of degree dividing n}, then %" + = = [;c5 f{z).

Proof. See Berlekamp [2, p. 103]. O

Lemma 3. Let n € Z7 and let Cy{z) be the dth cyclotomic polynomial over Zs.
2 }n,then 2" +1 = [y, Calz).

Proof. See Berlekamp [2, p. 81}, O

Proposition 2. For each 0 < ¢ < 3, let ¢; = exp(m;) be the exponent of the
elementary divisor m;{x) of F defined in Section 5.2. It is true that gy = 0,
e; = 31, ey = 21, and ey = 2%° — 1. Consequently, m;{z) and mz{x) are primitive
polynomials, but me{z) and mo{x) are not primitive.

Proof. We compute the exponent of each elementary divisor separately.

mg(z) is the polynomial z%4. Since z does not divide z* — 1 for any positive
integer n, it follows that eg = 0 and mg{z) is not primitive.

my{z) is a degree 5 irreducible polynomial. We find the unique cyclotomic
polynomial Ci(z} such that m, divides Cp{x) to establish that e = k. By
Lemma 1, m; divides 2% + x = (2% + 1); and by Lemma 2, 2% + 1 =
Ci(z) Csi{z). Because Ci{z) = z + 1, it follows that m;(z) divides Cy;(2).
Therefore, e; = 31 and m;(z) is primitive.

265

TAYPIOLOCGIA July 1997 Volume XXI Number 3

ma(z) is a degree § irreducible polynomial; therefore, e2 < 26— 1 = 63. By
Lemma 2, %% 4+ 1 = Ci{z) C3(z) Cy(z) Colz) Car{z) Cea(z). It is easy to verify
that my(z) divides Cn{z), but m(z) does not divide Cya(z), Co(z), or Cr(z}.
Hence, ey = 21 and my(z) is not primitive.

ms(z) is a degree d = 2%° — 1 polynomial; therefore, e3|d. We will prove that
es = d by showing that ma(z) is primitive. Let a be any root of ms(z). To
prove that mg(xz) is primitive, it suffices to verify that o” # 1 for all v < d such
that rjd. Since 2% — 1 = 233 - 1103 - 2089 is the prime factorization of d, only
six r must be checked. To carry out this verification, we implemented and ran
an algorithm in Appendix C of Peterson [39]. Thus, ma(z) is irreducible and
primitive and e3 = 2% —~ 1. O

As a partial check of our calculations, note that Marsh [36] also lists the exponents
of my(z) and my(z) as 31 and 21, respectively. We could not find any table that
lists mg{z).

6.4 An Exact Characterization of Leaders and Cycles

We apply Theorem 2 and Proposition 2 to characterize exactly the set of even-
tually periodic state sequences that can be generated by Gifford’s cipher. As
part of this characterization, we compute the maximum period 7}, and the exact
probability distribution of leader and cycle lengths taken over all possible initial
fills.

As computed in Corollary 1, the maximum period of any state sequence is
determined by invariant subspaces Vi, Vs, and V3. Since elementary divisor ma(x)
is not primitive, its contribution to 7} is not as large as possible for a dimension 6
subspace of §. Moreover, 24 bits of the key are wasted in determining a short
leader of length at most A} = 24; these 24 bits contribute nothing to the period.

Corollary 1. 77 = 348, 502, 963, 061.

Proof. By Theorem 2 and Proposition 2, 7} = lem(31,21,2% ~ 1) = 31.21(2%° -
1) = 349,502,963, 061, since the exponents 31, 21, 2%° ~ 1 are relatively prime.
N ,

Table 1 characterizes completely the state sequences that can be generated by
Gifford’s cipher. Each initial fill sy determines four subfills Psy = (dp, di, da, ds)
in our invariant decomposition of &. These subfills belong to the invariant sub-
spaces Vj, V1, Va, V3 of dimensions 24, 5, 6, 29, respectively. There are eight pos-
sible periods P; = {0,21,31,2%—1,21-31,21-2%-1,31.2%9-1,21-31-2% -1},
corresponding to the eight possible ways in which up to three of the subfills di,
ds, and ds can be zero. Im addition, cycles achieving these periods can occur

266

Cain and Sherman How to Break Gifford’s Cipher

with or without a leader, depending on whether subfill dy is zero. Thus, there
are 16 equivalence classes of initial fills. For example, a 31-state cycle is created
whenever d; # 0 and dy = dy = 0. Similarly, a maximum-length cycle occurs
whenever didods # 0. For any subspace U, let U™ denote the set of nonzero
elements of U Thus, 5;(7}) = V@ Vi @ 15" @ V5.

Subspace U Subspace size Period Leader length Problsy € U]
with initial 81 s € U 14 xslag) Xp{se) = |U}/2%

{0} 1 1 h] 1/2%

vt 2% 1 1 < A% w120

vt 83 21 o w2 1/2%8

Vi eVt (2% - 1163 21 <Ay m 1/2%

A 31 *31) m 1/2°°
Vitevt (2% - 1)31 31 Y’ = 1/2%

Vite vt 63 31 2131 0 m 1/2%
Vitevitevs 83.31(2% - 1) 21-31 < A7 1727

A 2% .1 2% .1 0 w2 1/2%

Ve vt (2% — 1)(2% ~ 1) 270 -1 < A3 w 1/2' = 0.0005
Vit e vyt 63(2%° — 1) 21(2* -1) © = 1/2%
VVievievt 83(2% —1)2*°* - 1) 21(2¥ - 1) <A} = 1/2° = 0.0308
AR A 31(2¥ - 1) 31(2* ~1) © ~ 1/2%
Vievie vt 31(2% - 1)(2* - 1) 31(2¥ - 1) <X} 7 1/2° = 0.0156
Vievite vy 31-63(2*° - 1) 7} 0 ry 1/2%
Vievtrevitevt 31-63(2% — 1)(2* - 1) x} < A7 =2 (.9536

Table 1. Probability distribution of leader and cycle lengths in the sequence of register
states generated by Gifford’s cipher with randomly chosen initial fill. The linear feedback
matrix F yields a decomposition of the space of register states S into a direct sum of
four Flinvariant subspaces & = V; @ V) © Vo @ V5 of dimensions 24, 5, 6, and 29,
respectively. Each 64-bit initial fill corresponds to a vector of four subfills of lengths 24, 5,
6, and 29, respectively. Subspace Vj completely determines the leader and does not affect
the period; the other invariant subspaces determine the period. There are 16 subspaces U/
of & corresponding to the 16 possible ways in which up to four of the subfills can be zero.
For any such U/, all initial fifls so € U/ generate state sequences with the same cycle
length £ 8); in addition, if A;(5) = O forany s € U, then Ag(s) = Oforalls € U.
For each of these 16 subspaces U/, we fist its cardinality, the associated leader and cycle
lengths, and the probability that 2 randomly chosen initial fill lands in U/, This probability
is [U]/|8] = [U|/2%. For any subspace U, let U dencte the nonzers elements
of U7. The shortest non-degenerate cycles have length 21; these cycles are produced from
initial fills in subspace V;, whose cheracteristic polynomial ma(z) is not primitive. With
probability [ViT @ V5H & V5T /2% + [V ¢ Vit & Vit @ ViH /2% = 0.9536, =
randomly chosen initial fill will generate a cycle with maximum period 77 = 21-31-
2% 1 = 3.5 X 10", The maximum leader length is Ay =24,

267

July 1997 Veolume XXI Number 3

As computed in Table 1, the probability of generating any one of these 16
possible equivalence classes of sequence lengths can be computed from the di-
mension of the subspace that generates the given sequence length. Specifically,
for any subspace U, the probability that a randomly chosen initial fill lands in
U is [U] /|S]. For example, the probability of generating a length 31 eycle (with
nonzero leader) is V5" @ ViT|/IS] = (2% — 1)(2% — 1)/204 v 2-(64-29) 935

‘The shortest cycle, however, comprises 21 and not 31 states. Appendix C
lists such a cycle. For éimension 6 subspace V4, elementary divisor mg(z) is not
primitive and generates one of three submaximal-length cycles of length 21. By
contrast, because elementary divisors m;{z) and ma{z) are primitive, they always
generate maximal-length cycles of lengths 2° — 1 = 31 and 2% — 1, respectively.

With very high probability (> 0.9998) the cycle will contain at least 220 — 1 =
5.4-10° states, and the maximum period 7} & 3.5- 10! occurs with probability
approximately 0.9536. Yet with non-negligible probability of 2= ~ 0.0005 =
0.05%, the cycle length is only 2% — 1 < 10°. This fact partially contradicts
Gifford’s [19, p. 465] experimental finding that “the period has consistently been
found to exceed 109711

7T ATTACKS

The decomposition of the state space into a direct sum of invariant subspaces
makes possible a variety of cryptanalytic attacks on filter generators that search
segments of the key corresponding to this decomposition. In this section, we
outline four such ciphertext-only attacks applied to Gifford’s cipher:

1. a simple 2%-step attack based on exhaustive search,

2. our novel time-space tradeoff attack, which uses 277 steps and 218 bytes of
memory,

3. a 2%-step correlation attack that adapts a correlation procedure of Siegen-
thaler [45], and

4. an application of Hellman's [25] time-space tradeoff, which requires a short
chosen-plaintext and a 2%%-step precomputation.

These attacks have differing advantages and requirements. Attack (3) requires
a slight statistical weakness in the output function; the other attacks require no

1 Gifford [19, p. 465] did not specify whether his experiments looked for cycles in the keystream or in the
_state siream.

268

Czin and Sherman _ How to Break Gifford’s Cipher

such weakness. Attacks (2) and (3) require ciphertext from one news article
{a few thousand bytes); attack (1} requires only seven bytes of ciphertext from
ASCII-encoded English; and attack (4) requires only approximately one dozen
such bytes of ciphertext. We implement our time-space tradeoff to demonstrate
one effective method for breaking Gifford’s cipher.

Combining attacks {2} and (3) yields an even faster attack: for example, the
cryptanalyst could first search subregisters 2y and Ry with attack (3}, and then
search subregister K3 with attack (2). This combined attack would require only
approximately 2'® steps on average. For our implementation, we estimate this
attack would run in less than one minute using eight Sparcstations.

The rest of this section is organized in six parts: Section 7.1 gives an overview
of the four attacks. Sections 7.2 through 7.5 explain each of the attacks, and
Section 7.6 describes our implementation of our time-space tradeoff.

7.1 Overview of Attacks

This section explains three ideas that we apply to break Gifford’s cipher. First,
we summarize how our attacks exploit the decomposition of the feedback func-
tion. Second, we reveal how, in BCIS practice, Gifford’s cipher leaked bits of the
keystream. Third, we estimate the unicity distance for Gifford’s cipher.

7.2.1 Exploiting the Decomposition of F

Each of our attacks exploits the decomposition § = Vo @ V; @ Vo @ V5 of the state
space into the four F-invariant subspaces defined in Section 5. As illustrated
in Figure 2, the central idea is to decompose the shift register into four smaller
subregisters 7y, R, R, Rg and to attack them. Each subregister corresponds
to one of the F-invariant subspaces of dimensions 24, 5, 6, and 29, respectively.
Determining the bits of any subregister vields a big payoff: once the state of
a subregister is known, its state at all future times can be easily calculated.
Specifically, for 0 <7 < 3, if d; is the initial state of subregister R, then Rid; is
the state of R; at time ¢ € N, where R; is the ith block of the matrix R given in
Section 5.4. Moreover, since K;, Ry, and R; are nonsingular, knowing the state
of Ry for any 1 <4 < 3 determines all previous states of R,.

Because the feedback function Ry is nilpotent, the 24-bit subregister Ry de-
termines the leader and remains 0 after 24 iterations. Therefore, Ry affects at
most the first 24 bytes of any ciphertext. Since a typical news article is approx-
imately 10,000 bytes long, Ry has essentially no effect on article encryption. In
particular, the cryptanalyst can first determine the subfills for R; through R,

269

CIYPLOLOGES ‘ July 1897 Volume XXI Number 3

beginning with the the 25th ciphertext byte. Then, the cryptanalyst can deter-
mine the initial subfill of Ry. Thus, although Gifford’s cipher nominally uses a
64-bit key, the effective key length is only 40 bits. Most of these 40 bits are used
1o determine the initial state of Ra. For simplicity, for the rest of this section,
we assume that the initial subfill of g is zero.

The similarity matrix P derived in Section 5.5 maps states of the main reg-
ister to states of the subregisters. Thus, for any initial fill 55 € &, If Psp =
(dg, dy, do, d3) are the initial subfills corresponding to sg, then PF'sy = RY(dy, ds,
ds, dg) = (Ridy, Ridy, Rhdy, Rids) are the subfills at time t € N.

Our attacks check candidate subfills in different ways. The exhaustive search
attack maps an entire vector of candidate subfills back to the main register;
our time-space tradeoff optimizes this idea by hashing into a table derived from
the ciphertext. Qur adaptation of Siegenthaler’s correlation attack separately
checks each subfill by correlating its state sequence with the ciphertext stream;
our application of Hellman’s time-space tradeoff checks candidate subfills using
precomputed tables based on a sequence of chosen-plaintext.

7.1.2 Leaked Keystream Bits

In the BCIS, each news article was represented as a sequence of 8-bit extended-
ASCII characters: each 7-bit ASCII character was placed in an 8-bit byte, with
the high-order (leftmost) bit held as the constant zero. With this format, spe-
cial 8-bit graphical characters (with high-order bit one) could also be transmit-
ted. As a consequence, however, for standard news articles the high-order bit
of each plaintext character was left as the constant zero. Therefore, except for
rare graphical characters, every byte of ciphertext leaked at least one bit of the
keystream. With high probability, the second-order bit was also leaked because
most plaintext bytes represented lower-case alphabetic characters. Consequently,
a ciphertext-only attack against Gifford’s cipher reduces to a known-plaintext at-
tack. At the cost of an additional computation, this serious weakness could have
be avoided by compressing the data before encryption. Although our time-space
tradeoff depends on this weakness, our other attacks do not.

7.1.3 Unicity Distance of Gifford’s Cipher

When evaluating any cipher, it is important to know its unicity distance—
the amount of ciphertext required in a ciphertext-only attack for the expected
number of spurious decipherments to be approximately zero [44]. To estimate
the unicity distance, assume the cipher is used to encrypt standard English,
which has a redundancy of approximately 3.2 bits/character. Modeling Gif-

270

Cain and Sherman _ How 1o Break Gifflord’s Cipher

ford’s cipher as a random cipher with 40-bit key, the unicily distance is ap-
proximately 40/3.2 = 12.5 characters. When used to encrypt ASCIl-encoded
English, the unicity distance is even smaller: If the information rate remains at
1.5 bits/character but the plaintext is represented in 8-bit bytes, then the unicity
distance is approximately 40/{& — 1.5) & 6.2 bytes. In either case, ciphertext
from one newspaper article (= 10,000 bytes) is more than sufficient to recover the
initial fill uniquely. Furthermore, our application of Hellman's time-space trade-
off requires only an amount of ciphertext close to these information-theoretic
bounds.

7.2 Exhaustive Search

The simplest way to break Gifford’s cipher is to search exhaustively over all 24
possible fills of subregisters Ry, Ry, and R3. Assuming Rg is zero, for each
sequence of candidate subfills d = (0,d;, ds, d3) of these subregisters, check d
as follows: Map the vector back to the original world by computing P~!d, and
use the resulting candidate fill to generate a candidate keystream. With known
plaintext, compare the candidate keystream against the known keystream. With
ciphertext only, compute the XOR. of the candidate keystream with the cipher-
text stream, and check if the resulting candidate plaintext stream appears to be
valid plaintext language. For example, Ganesan and Sherman {14, 15] explain
several statistical methods for recognizing valid plaintext. .

Although this method may be too slow for some cryptanalysts, in Section 7.3,
we show how to reduce its time drastically by using a time-space tradeoff. Nev-
ertheless, 240 steps is a significant shortcut over naively searching all 2% initial
fills in the main shift register.

7.3 Our Time-Space Tradeoff

To speed up the exhaustive search described in Section 7.2, we use a time-space
tradeoff. Qur algorithm is based on the following idea. Given any ciphertext of
length N = 27, it is not necessary to search all 2%° subfills of subregister Rs.
Instead, it is sufficient to search every Nth subfill of Rz if one checks this subfill
against each of the N positions in the ciphertext. Moreover, by storing the high-
order bits of ciphertext in a hash table, it is possible to perform this checking
in expected constant time and thereby speed up the search by a factor of N on
average. Figure 5 gives pseudocode for our attack.

Since the minimal polynomial my(z) for invariant subspace V3 is primitive
(see Proposition 2), subregister R3 always generates a maximal cycle of 2% — 1
states for any nonzerc initial subfill. Different initial subfills follow this cycle

271

CIUPTOLOTIA July 1997 Volume X X! Number 3

from different starting points. Our attack searches every Nth subfill in this cycle.
Because successive bytes of the ciphertext were produced in part using successive
states of Rga, by searching every Nth state of the cycle, the cryptanalyst is
guaranteed to find at least one state that was used to encrypt some ciphertext
byte. '

In Line & of our pseudocode, while computing every Nth subfill of Rg, we
save a constant factor in time by precomputing a table T3 of these 2B IN =
929-7 yalues. Rather than precomputing RY and computing ds «— R7'd; at each
iteration, we perform a fast table lookup. The cost in space for Ty is 2*® bytes,
as opposed to 2° bytes for storing RJ .

Since subregisters R; and Ry also affect the keystream, for each subfill of 3
tried, we also search over all 2°2° = 211 possible subfills of these two registers
(Line 6). Therefore, the expected running time of ‘the attack is 229-7211 = 240-"
steps. Our precomputation of table T3 takes only 229-n steps. As we demonstrate,
for suitable parameter choices, the time required to process hashing collisions and
false alarms has a low-order effect in comparison to these bounds. If the initial
subfills for Ry and R are already known (say, by using a correlation attack),
then our algorithm would run 2! times faster.

As a first-level check, for each byte position of the ciphertext, we compute
its “signature” o, consisting of [consecutive high-order bits of the ciphertext
beginning at the specified position. A hash table of size 2! stores all ciphertext
positions corresponding to each signature. To check any candidate vector of
subfills 4, we compute the sequence of high-order bits in the keystream G (P ld)
generated by d and check if this sequence matches any position signature in the
hash table.

The space usage is controlled by parameters i and [, which also affect the
collision and false-alarm rates. The hash table has 2! slots (each of approximately
[2n—'] items), and the precomputed table T3 requires 2297 entries {each of four
bytes). The parameter I’ specifies the number of bytes of ciphertext bytes that
are used in a second-level test of candidate fills.

Candidate subfills are tested with a two-level check. A candidate subifili passes
the first-level test (Lines 8-9) if its signature of length [matches at least one posi-
tion in the ciphertext. The second-level test (Lines 11-12) checks if an extended
signature of { + ! bits also matches any of these detected positions. Assuming
the high-order bits of the keystream are independent and uniformly distributed,
the expected number of subfills passing the first check is 240-! Therefore, the
second-level check is executed 249! times on average. Similarly, the expected
number of subfills passing both checks is 240~1=" Thus, with appropriate choice
of I and ', the false alarm rate is negligible and the checking does not affect the

272

Cain and Sherman How to Break Gifford’s Cipher

dominant term of the running time.

In our implementation, we select n = 13, { = 16, and I = 52, for which our
ciphertext-only attack runs in 240" = 2%7 steps on average and uses 1-2' +4-
229-n 5 2'8 hytes of memory. ‘

Although our implementation exploits the leaked high-order bit of each key-
stream byte, a related associative-memory lookup technique could be imple-
mented without these Jeaked bits. In this alternate technique, each position
signature ¢; of the ciphertext would consist of, say, | = 4 consecutive bytes of
ciphertext beginning at the specified position. An associative memory would
support the following operation: given any sequence s of | consecutive candidate
keystream bytes, the memory would return each ciphertext position j whose
signature o; had the property that o; @ x appeared to be valid plaintext.

7.4 A Correlation Attack

Another possible method is to apply a generalization of Siegenthaler’s [45] cor-
relation attack, which exploits a statistical weakness of the output function to
search over all possible initial subfills for one or more of the subregisters. In
comparison with our time-space tradeoff, this attack more cleanly decouples the
search of subregister B3 from that of subregisters R, and Rs. In addition, it
works under very mild assumptions about the nonuniformity of the plaintext
strear. ' '

We explain this attack applied to subregister R;, for any 1 <¢ < 3. Let n; be
the length of ;. For simplicity, we describe this method for a known-plaintext
attack. The ciphertext-only version works in essentially the same way, replacing
sach keystream byte with the corresponding ciphertext byte and requiring a
stronger statistical assumption.

Let o € Z3° be any candidate subfill for R; to be checked. For each t € N,
let z; = Rizg be the tth state of R; generated by subfill zg. In addition, let
N denote the number of known plaintext bytes; let x = {k;}75' be the known
keystream; and let £ = {x;}f;“éi be the candidate state sequence for R;. We view
z, and k,, respectively, as the values of some random variables X; and K.

The correlation attack requires a statistic ¢ : (Z5°)¥ x £¥ — R by which
each candidate subfill zy € Z3' can be checked. This statistic tests the random
variables X, and X, for independence by examining their sampled values £ and «.
Whereas Siegenthaler [45] considered only the special case |k = 1 = |z,], we
have the more general case 5 < |z,] < 29 and |k] = 8.

To date, we have experimented with two statistics. First, for Ry, we tried a
statistic based on the Hamming distance H{k,, k;} between each keystream byte

273

CIVPFLOLOCE July 1987 Volume XXI Number 3

k, and an approximate candidate keystream byte k, = h{P~%(0,0,0,z,)). Specif-
ically, we tried the statistic ¥(£, %) = T H(k;, k). Our hope was that, if x4 is
the correct initial subfill of B;, then more than half of the bits of {Z‘ég}ﬁ__ﬁ would
be correct. Unfortunately, the high density of ones in our similarity matrix P
rendered this function unusable. '

Next, bypassing the matrix P, we tested the sequences £ and x for indepen-
dence (of corresponding elements) by computing a x-squared statistic on the fre-
quency counts of keystream bytes corresponding to 8-bit projections of the states
z; of subregister Ry. Specifically, we computed y-squared of the y-squared of
these 256 frequency counts. Preliminary experiments showed that this statistic
also did not work, even when computed separately for each of eight bits of each
keybyte. Although our ¥ and x-squared statistics did not work, other suitable
statistics might exist.

7.5 Hellman’s Time-Space Tradeoff

Another method is to apply Hellman’s [25] time-space tradeoff to reduce the on-
line time to search the space of 240 subfills. This method requires the ciphertext
to include the encryption of some short chosen sequence of plaintext bytes. We
suggest using the seven-character string “.UliThel”, where Ui denotes the blank
character. This string appeared in every news report that we examined. A
significant advantage of this attack is that it requires only a very small amount
of ciphertext {approximately one dozen bytes of ASCII-encoded English).

This algorithm attacks the effective keyspace Z&% of subfills for subregisters
Ry through R3 by precomputing the cycle structure of a one-way function ¢ :
Z3 — Z25. For example, this attack can be implemented using the function
#(d) = (Ky, Ky, Ky, K3, K) defined as follows: whenever d = (0,d;,ds, d3) € Z8°
is a vector of subfills, for each 0 < ¢ < 4, let K; = h(P~!R!'d) be the tth
keystream byte generated from d. This attack requires a precomputation of 24
steps; the on-line computation can be arranged to run in less than 2%° steps.

Figure 5. {Continued) To speed up the code by a constant factor, every Nth state in the
cycle for subregister T3 is precomputed in a table 13. Since the expected length of each
position list is one, the on-line running time is dominated by the outer two loops, which
require 29977 steps. The precomputation takes only 22977 steps. As for space, the hash
table has 2! slots (each of approximately [2"“"} items), and the precomputed table 13

requires 229" entries (each of four bytes).

274

Caln and Sherman How to Break Gifford’s Cipher

Control Parameters: Integers n, |, and {'.
The atiack uses 4-2%°7° bytes of space and approximately ¥ = 2° bytes of ciphertext.
Parameters | and I’ control both the collision and false-positive error rates.
(We use n = 13,1 = 16, and I’ = 52, for which ¥ = 2° = 2% = 8,192.)

Precomputation: A table T3 of length L = [{2%® — 1)/N7 used only to optimize code.
This table contains every Nth state of the length 2%° — 1 cycle of states for subregister Rs.
(We use = L = 2%97™ = 279713 = 2% - 55 536.)

Input: A sequence C of N 4 I consecutive ciphertext bytes.

Cutput: An initial 8 s¢ € § that decrypis C in the sense that
the high-order bits of the keybyte stream G”{s;) match these of £,

Begin

o

Chiza + HighOrderBits{(}
M — BuildHashTable(Cyiy,, 1)

%% Search over initial subfills d for registers Ry, B2, Rs.
L 1(2% - 1)/N]
for i e~ 0 to L ~1 For each precomputed subfill of R
for each (di,dz) € Z3 x Z§ For each subfill of Ry x R,
d e (O>dlad25d3)

%% Level-1 check of d! compute L.bit signature o and
%% compare against Cpirs.

& «~ HighQrderBits(G*(P™d),)

PositionList « Hio}

16 for each j € PositionList

%% Level-2 check of 4 at position j:
%% compare ({ + I')-bit signature against (i,

[+

=]) O s

L= el

11 o'« HighOrderBits(G* (P~ d), I + I'}}
12 if Match{s', C3i1s, 3,1, 1)

13 sp +— FindInitial Fill{C d,1,)
14 return{se}

End

Figure 5. Pseudocode for our ciphertext-only attack on Gifford’s cipher, The attack works
on the high-order bit of each ciphertext byte, which bit equals the high-order bit from the
corresponding keystream byte. These bits are arranged in 2 hash table 7{ of size 2. For
each bit string & of length [, hash table entry H[c] is 2 linked-list of aif byte positions j in
the ciphertext C that match ¢ in the following sense: ¢ equals the sequence of high-order
bits of the { consecutive bytes of C beginning 2t position 7. Given any integer [and any
vector of subfills d = {0, d;, d, d3), the candidate vector d is checked by computing
the high-order bits of the first { bytes of the candidate keystream G™*(P~1d), where P
is a similarity matrix from F to H. If ¢ matches some position in the ciphertext, then
2 similar second-level test is performed using additional candidate keystream bytes. The
function FindinitiaiFill computes the initial fill sy corresponding to the subfill vector d.

275

CIYPLOLOGIA July 1097 Volume XXI Number 3

7.6 Experimental Results

We implemented our time-space tradeoff attack on a loosely-coupled network of
eight Sparcstations. On average, it takes approximately four hours to recover an
initial fill from ciphertext alone. Including our library of linear algebra opera-
tions over GF(2), our cryptanalytic engine comprises approximately 2,500 lines
of C code.

8 DISCUSSION

- In this section we analyze two variations of Gifford’s cipher which use a modified
feedback function. In addition, we present some open problems motivated by
cur work. '

8.1 Sticky versus Non-Sticky Bit-Shifting

We compute the maximum period of a variation of Gifford’s cipher for which,
in the computation of the feedback function, the sticky right-shift of byte B,
is replaced with a zero-fill right shift. This calculation is instructive because,
originally, Gifford left to the compiler the decision whether to use a zero-fll
right-shift versus a sticky right-shift.

If the sticky shift of byte B, were replaced by a zero-fill shift, the feedback
matrix would differ from F' in exactly one bit: bit by g would be zero rather than
one (see Equation 13 of Section 5.1). Let F' denote this modified matrix. Using
methods described in Section 5.2, we computed the characteristic polynomial of
F' to be

pp(z) = % 4 7% 4 g5 4 252 4 p50 4 p98 | g1 A0 o (24)
= @ + o+ 1)@ + 2+ 1) + 2%+ 1)(2° + 2% + 27 4+ 25 (25)
+az* + 2% + DR

The maximum period of the state sequences generated by this variation of
Gifford’s cipher is the exponent of pp, which we shall now compute. The
only non-primitive irreducible factor in pp{z) is z° + 2% + 1, whose exponent
is 9. As for the other polynomials, exp(z® + 2+ 1) = 3, exp(z® + 2+ 1) = 7
and exp(z® + 2% + 27 + 2% + 2* + 2% + 1) = 511. By Theorem 2, exp(pp) =
2-1em(3,7,9,511) = 9,198. Remarkably, changing one bit in the feedback ma-
trix reduces the maximum period of Gifford’s cipher from 349,502,963,061 states
to only 9,198 states. Intuitively, it makes sense that this variation has a smaller

276

Cain and Sherman ‘ How to Break Gifford’s Cipher

maximum period because the removal of bit byg from matrix F simplifies the
matrix: with this modification, block F} of F corresponds to a nilpotent trans-
formation {see Equation 13).

This analysis explains a phenomenon observed by Gifford. When Gifford
compiled his eriginal source code on a new compiler, he noticed that the resulting
machine code produced short cycles. He deduced that the short cycles were
caused by the fact that the new compiler used a zero-fill right-shift rather than
a sticky right-shift. Although Gifford was unable to explain how the zero-fill
shifting caused the problem, he resolved the problem by modifying the source
code to force sticky right-shifting (see Appendix Al

8.2 Byte-Shifting Only

‘We now compute the maximum period of a second variation of Gifford’s cipher in
which neither byte B; nor byte B; is shifted in the computation of the feedback
function. There are two reasons for studying this greatly simplified variation of
Gifford’s cipher. First, this variation might be useful in attacking the cipher if
the shifting of bytes B, and B; could be analyzed as an embellishment of this
variation. Second, regarding his choice for f to depend solely on bytes By, B,
and By, Gifford [19, p. 465] explained that “the tap positions were chosen to
yield the longest period that could be obtained” if the new byte were computed
as By @ By @ By;. We prove that Gifford’s choice of taps does not achieve this
objective, -

Without any bit-shifting, the feedback function would be linear over GF (28},
and its characteristic polynomial {acting on bytes) would be

gl =2 +r'+a+1=(z+ D)@'+ + ' 4224222+ 1), (26)

Since exp(z’ +2°+2*+ 2%+ 2%+ 2+1) = 127, the longest state sequence produced
by this simplified feedback function would be only 127 states (not 255 states).

8.3 Open Problems

We now state several open questions raised by our work. These questions include
questions about Gifford’s cipher and more general questions about some of the
algorithmic tasks required by our attack.

1. Find statistics that work well in the correlation attack described in Sec-
tion 7.4. More generally, what are efficient methods for finding effective
statistics for this attack?

CIVPTOLOGA July 1997 Volume XXI Number 3

2. Are there faster attacks on Gifford’s cipher than those mentioned in Sec-
tion 77 For example, is it possible to exploit the sparsity of F'?7 How can
the algebraic properties discussed in [5, Appendix E] be used to advantage?
Can linear approximations to h be exploited? Is it helpful to analyze f as
a nonlinear function over GF(28)7 And is it useful to work with the eight
Booclean equations that describe the output of A7

3. For each initial fill, what is the period of the keystream generated by Gif-
ford’s cipher, as opposed to the period of the state sequence?

4. What is the complexity of computing the rational canonical form of a binary
matrix? ‘

5. What is the complexity of the similarity transform problem, as defined in
Section 5.57

6. What other types of algebraic decompositions are useful in cryptanalysis?

9 CONCLUSION

We have concretely demonstrated one effective method for breaking Gifford’s
cipher: given ciphertext from one news article, within approximately four hours
on average, our implementation recovers the secret article key and corresponding
master key used for one month. Thus, Gifford’s cipher is not suitable for its
intended use in broadcast encryption. Moreover, our work introduces a new
powerful attack on filter generators and provides an instructive detailed example
of how to apply linear algebra over GF(2) in cryptanalysis.

Although we demonstrate how to break Gifford’s cipher, the cipher did pro-
vide some degree of protection in the BCIS. It requires a significant amount of
expertise, determination, and effort to design and implement a successful break
of Gifford’s cipher. For most people, this effort would not be worth value of
being able to read news articles; moreover, reading news articles in this fashion
would be illegal. Once someone has demonstrated how to break the cipher, how-
ever, it becomes much easier for others to implement their own breaks, or to run
software from the initial break. To Gifford’s credit, no one implemented a break
of his cipher during the period 1984-1988 of its experimental use. Nevertheless,
it is important for system engineers to realize that Gifford’s cipher provides no
security against a determined adversary, and hence the cipher should not be used
to protect valuable data.

Filter generator stream ciphers are an interesting class of ciphers, They are
fast; they are easy tc implement in hardware and software; and they can be

278

Cain and Sherman How to Break Gifford’s Cipher

easily designed to have long periods. As we show, however, neither moderately
long keys, long periods, nor nonlinear output functions guarantee high security.
Furthermore, details of the construction of filter generators critically affect their
security. In Section 8.1, we dramatically illustrate this last point by proving that
zero-fill shifting (versus sticky shifting) of byte B reduces the period of Gifford’s
cipher from over 3.4 X 10! states to only 9,198 states, even though this choice
affects only one bit in the feedback matrix.

Qur implemented attack exploits a number of weaknesses of Gifford’s cipher
and its use in the BCIS, including a state register that decomposes into subregis-
ters of manageable size, a long nilpotent component, and the encryption of 8-bit
ASCII English. We also suggest more general attacks that do not depend on 2
nilpotent component or on &-bit ASCII plaintext (see Section 7).

To design strong ciphers, it is necessary to have a deep understanding of
the consequences of all design decisions. In particular, when designing filter
generators, it is dangerous to choose the register length, tap positions, feedback
function, and output function in a careless fashion or to leave even one bit of
these decisions to the arbitrary action of a compiler. Gifford’s choice of taps
effectively wastes 24 out of 64 bits of the key and allows the remaining 40 bits
to be attacked in three segments of size 5, 6, and 29 bits, respectively.

At a minimum, it would be desirable to use a longer register and to use more
carefully chosen tap positions than did Gifford. In addition, it would be helpful
to add more complexity to the encryption process. For example, to this end,
some cryptographers incorporate nonlinear feedback functions into their designs.
But these simple modifications do not guarantee security.

Weaknesses in the management of cryptographic keys in the BCIS demon-
strate the need for a comprehensive plan for data security that extends beyond
the cipher; they also demonstrate the human difficulty of meticulously carrying
out such plans in real systems.

Our work illustrates the familiar historical theme: what appears to be an
intractable cryptanalytic problem can be computationally feasible when attacked
with appropriate mathematical machinery. More concretely, our work illustrates
that algebraic decompositions are powerful tools in cryptanalysis.

ACKNOWLEDGMENTS

We thank Chuck Fiduecia, Samuel Lomonaco Jr., Dave Saunders, and A. Brooke
Stephens for discussions on the similarity transform problem, and we thank
Robert W. Baldwin, Xuejia Lai, Rainer A. Rueppel, and Richard Stein for ed-
itorial comments. All computer work was carried out on workstations at the
University of Maryland Baltimore County.

279

CIVPIOLOCIA ' July 1997 Volume XXI

APPENDIX A:
SOURCE CODE FOR GIFFORD’S CIPHER

s% Copyright 1585 Massachussatts Institute of Technolagy X/
/9 Note: this module makes kludgey use ot wunions — Lt will
Aot work under Lattice C wnless compiled —a ¥/

#incliuge *libdefs.h”
#inclubde <stdio.hr
ginclude "util.h”
#include “rov.h”
ginclude “key.hY

#oefine DEBUG FalsSE
#define NTARL o
sdatine NTAPZ i
sdefineg NTAPS 7

Number 3

/% decrypt a string of length n starting at position s with keys mik X0R ak #/

global null decrypt(s, n,; mks ak)

char #s5; /% start of string tao be decrypted 3/
long n3 /% length of string toc be decrypted 3/
char Smky /% master key X/
char Rdak: /3 articie key 3/
{
int i /% loop counter to initislize key %/
char GSREGL8]; st B-tiyte shift register 3/
int keycounti /% pointer into shift register in lieu of rotation 3/
char temp; /% holds Aew byte while shifting shift register &/
union twobytes {
char bytes[2];
int baths

3 argl, argZ;

/% initielize kay &/
for(im0y i<8j i+ ¥} BREGLiI] = akfil =~ mxlidg
weycount = Qf

whiie! nem > 03 £
/% generate a new byte 3/
temp = SREGE {keycount +NTAPL) & 071

~ {EREGL {keytount+NTAP2} & 073 >> 1

~ ((GREBI {xeycount+NTAPSI& 072} << 13 & Q377
/i This is here purely to conform to the other © compliler &/
/% and sign sxtensipn of right shifisgd variables 2/
3§ {{SRE@L {keycount+NTAFZ} % 073 % OnBQ)

ramp “w OxBO3
/% shift the shift reglister and put in the new byts 3/
keygount = (——keycount) & 07j
SREGIkeycountl = temp)

/8 XOR the new byte with the current rhar of text and advance;
this is where we need ip insert the nonl inear function. 37

argi.bytesiDl = SREGL {keyoount+0) & 9715
argl.byteslil = SREBL tkeyoount®2) & 0713
arg2.bytesi0] = SREBL (heyoount+8y & 073
argZ.bytesli] » SAESL thpyepunt+7? & 0733
temp = (argl.both 2 arg2.botht >> 8;

" Eiges} = templ

Figure 6. C language source code for Gifford's cipher obtained from Stephen Berlin, while

he worked on the Boston Community Information System.

289

Cain and Sherman | How to Break Gifford’s Cipher

APPENDIX B: AN EXAMPLE OF PLAINTEXT WITH
MATCHING CIPHERTEXT

Line Plaintext Ciphertext

T OnlyuSleuthsuCanuFiz 3ebedfdl d5c8eD06 dhB43ide {001e307 c8843117
7 duThisuMusewn[{ByuKe ccSYTETY e633cals 13504dal Of5cdBe2 82ab0d2d
3 anuRingle{Washimgtonu 048508ed 90622154 £22¢5cT8 ©387ac38 365ealdd

4 PostuStaffudriter(I 65d404b43 5afebl80 e87a06fb 5i0ebdca cedfDB4T7

5 mnutheushadowyuworldu efcfedel 796fa2ab 2814078 135867k eeadcbS0
6 oful.S.uintelligence f5bcBdib e4320066 40ca®a83 20cab36T7 941a633c
7 uagencies,utheuNatio 632942fd dda07610 3fi7¢741 221d9adb 7353950f
8 naluSecurity[igencyu 92aecdS9d 49916508 4492781 b22e1008 58491e52
9 hasualwaysubeenutheu dSbT97cd 3b0264de 50dbhOeb fledc044 544d2b31

10 mnostuclandestineuciu 91{3d9a05 558f77d5 aab0b0d? £2f30clb 45123a32
11 &ll.[)Someu20,000upe 1cel 0687 18afi{ed 5634c64 879057a9 8cT45032
12 opleuworkuatutheumir 7f354abe 23041df1 Te7fTe32? 8d003ca8 {59ed944
13 ror-windoweduicomplex 2¢e428be 14634765 5721b0dc =ea986f1 c63b1df6
14 patuFortuMeadeuscuth 2008745a 9dend250 8486771 46547b08 cfa226af
15 [ofuBaltimore-Washin d046a7df 4123049 aZ2a3fd0b 7b%eT4a2 DleB46aT
16 gtonuInternationalui bbe224ed 707b%ef1 aellcaZe aB01265e ¢Thebeld
17 irport,ubutuuntilul® 3436cT5Db 307ca3dbb 6a80e20e 3f0calb8 6fbbiBlc
18 SGuthereuwasn’ileven d811e6bO 406b46cd 60e9ibeb bB444f5d Q06B1620
18 ususignuinufrontucfu S5bef3ef d44cObed (dBOB087Y 5b1755e2 dGab624l
20 +theubuildings.uuThell abaZ(048 a1ci0bB1 a7cd4893 bBabSaaf 4144578
51 185%0uexecuiivevorder 81keacdh RMNTE549 bBci2ddd deleeBde e4f5f19
29 ythat[kreatedutheuag aacBeebZ 54600961 3347035 4ad6ad437 aceBb102
23 encyuvasuitselfuclas 773Gcedc e81bdb78 B8feb213b 54f8b8c8 bB3ebTi8d
94 sified.uuForuyearsui 22b2celb 0d8b3e6f {ab5b315 c2d0775 b82cacdb
28 tuwssuavfederallerim 9cb2c623 «dB08444 BOLVOTI2 ccl68alb a86cH382

Table 2. An example of plaintext with matching ciphertext produced by our implementa-
tion of Gifford’s cipher. The plainiext is a portion of 2 Washington Fost news article
by Ken Ringle, published on January 24, 1004. This article is typical of news reports
brozdcast by the BCIS. Every plaintext byte is encrypted, including bytes representing
special characters. We denote the blank character by u, and we denote the newline char-
acter by [The ciphertext is arranged in 4-byte biocks, where each byte is represented by
two hexadecimal numerals. When run on the complete 10,072 bytes of ciphertext from
this article, our ciphertext-only attack determined the initial fili 48dab075 67588BbcY 15
within four hours and thirty minutes. Note that Line 20 contains the common string
“ yuTheu”, which appeared in every news arlicle we examined,

281

€IVPLOLOGIA July 1097 Volume XXI Number 3

APPENDIX C: A LENGTH 21 CYCLE

lieration Shift Register State Subregister States ' Kevbyte Comment
F1 83 d{} d; d2 da K"
0 30668506 77e72802 0DOCOE 00 35 0ODOGOGC 56 Start leader.
1 2b3c6685 9677e7T28 0DOO0T 00 3% GO0OO0OC 8B
2 £52b3cB6 B3867TeY 000003 00 33 00000000 B85
3 be652b3c 66350677 O00O01 00 32 0000000C 8Y
4 62bef32b 3cB68396 000000 00 1§ GOO0OOOGO 53 Enter cycle.
5 8162beB5 2b3c6685% 000000 00 27 0000000C al
6 =2a0162Zbe 652b3cB& 0000OG OO 38 00000000 84
7 aecaaBl62 beS52b3c 000000 60 ic 00000000 87
8 D3aeaaB®l 62beB52b 000000 OG0 0Oe 00000000 bl
9 8203aeaa 0162beSd 000000 00 07 00000000 1ic

10 408203ae 2a%162be 000000 00 28 000000G0 2e
11 4498203 =aeaa$162 000000 00 14 00000000 15
12 14f44882 (03aeaaB1 000000 00 0Oa 00000000 58
13 ¢cl4f449 B8203aeaa 000000 60 05 00000000 02
14 92ccldfd 498203ae 000000 OO 20 (00006000 {d
15 2802ccl4 4498203 00000G 60 3f 00000000 ea
16 €72892cc 14f44082 000000 GO 34 00000000 OC
17 {7eT2892 ccl4f449 000000 ©0 1a 00000000 BSa
18 96f7e728 92cci4f4 000000 OC G4 00000000 92
10 8596f7e7 2892ccl4 000000 G0 24 00000000 Of
20 668596f7 =72892cc O00GOO0 00 34 00O00OOOD 19
21 3668596 7272892 000000 00 35 00000000 46
22 2b3c6685 06fTe728 000000 O©C 31 00000000 8b
23 652b3c66 8506i7eT 000000 OG0 33 00000000 85
24 beB532b3c 6685967 000000 0G0 32 00000000 94
25 62beB652b 3c668596 00000C Q0 I8 (000000D 53 Repeat cycle.
26 0162be65 2b3c6685 000000 060G 27 00000000 al
27 2a0162be 652b3c66 000000 00 38 00000000 8d

Table 3. An example of a shortest period of Gifford's cipher for nonzero initial fil. The
initial fill 5 = 3¢668596 77¢72892 from subspace Vgt @ Vi generates 2 sequence
of register states with a four-state leader and a 21-state cycle. The leader is determined
by subregister TRy, and the cycle is determined by subregister o, For each iteration
0 < t < 27, we list the shift register contents §; = f'{3g), the keybyte K} = h{s,),
and the four subfills Ps; = (dp, ds, do, d3) of subregisters Ry, Ry, Ro, Ry, These
subregisters correspond to a decomposition & = Vg @ Vi @ V4 @ V3 of the state space
into a divect sum of four F-invariant subspaces of dimensions 24, 5, 6, 29, respectively.
Throughout, each register state is represented as a sequence of bytes, where each byle
is represented with two hexadecimzi numerals. For example, the initial state of 6-bit
subregister 7y is 3515 = 0011 01019 = 1101019. Each state of the main shift
register is described by two strings of eight hexadecimal numerals, where each string
represents four bytes of the register.

282

{Cain and Sherman How to Break Gifford’s Cipher

REFERENCES

1. Beker, Henry, and Fred Piper. 1982. Cipher Systems: The Protection of
Communications. New York: John Wiley.

2. Berlekamp, Elwyn R. 1984. Algebraic Coding Theory. Laguna Hills, CA:
Aegean Park Press.

3. Brickell, Ernest F., and Andrew M. Odlyzko. 1892. Cryptanalysis: A
survey of recent results. In [47]. Chapter 10. 501-540.

4. Cain, Thomas R. 1993. How to break Gifford’s Cipher. CMSC-693 Project,
Computer Science Department, University of Maryland Baltimore County. 57
pages. ‘

5. Cain, Thomas, and Alan T. Sherman. 1994. How to break Gifford’s Ci-
pher. Technical Report TR CS-94-7, Computer Science Department, University
of Maryland Baltimore County. 49 pages.

6. Cain, Thomas, and Alan T. Sherman. 1994. How to break Gifford’s Ci-
pher (extended abstract}. In Second Annual ACM Conference on Computer and
Communications Security. New York: ACM Press, 198-209.

7. Char, Bruce W., K. Geddes, G. Gonnet, B. Leong, M. Monagan, and
S, Watt. 1992, First Leaves: A Tutorial Introduction to Maple V. New York:
Springer- Verlag.

8. Chepyzhov, Vladimir, and Ben Smeets. 1991. On a fast correlation attack
on certain stream ciphers. In Advances in Cryptology: Eurocrypt '91. New York:
Springer- Verlag. 176-185.

9., Cormen, Thomas H., Charles E. Leiserson, and Ronald L. Rivest. 1890.
Introduction to Algorithms. Cambridge MA, and New York: MIT Press and
McGraw-Hill

10. Cullen, Charles G. 1872. Mairices and Linear Transformations. Second
edition. Reading MA: Addison-Wesley.

11. Dawson, Ed. 1990. Linear feedback shift registers and stream ciphers. In
[34]. Chapter 8, 106-119.

12. Dawson, Ed, and Andrew Clark. 1994. Divide and conquer attacks on
certain classes of stream ciphers. Cryptologia. 18(1): 25-40.

13. Forré, Rejané. 1989. A fast correlation attack on nonlinearly feedforward
filtered shift-register sequences. In Advances in Crypiology: Furocrypt '89. New
York: Springer-Verlag. 586-595.

14. Ganesan, Ravi, and Alan T. Sherman. 1993. Statistical techniques for
language recognition: An introduction and guide for eryptanalysts. Crypfologia.
17(4): 321-366.

283

CAYPIOLOGA July 1697 Volume XXI Number 3

15. Ganesan, Ravi, and Alan T. Sherman. 1994, Statistical techniques for lan-
guage recognition: An empirical study using real and simulated English. Cryp-
tologia. 18(4): 289-331.

16. Gary, Michael R., and David S. Johnson. 1979. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. San Francisco: W. H, Freeman.

17. Giesbrecht, Mark. 1992. Fast algorithms for matrix normal forms. In
Proceedings of the 33rd Annual Symposium on Foundations of Computer Science.
New York: ACM Press. 121-130.

18. Gifford, David K., Dawn Heitmann, David A. Segal, Robert G. Cote,
Kendra Tanacea, and David E. Burmaster. 1987. Boston Community Informa-
tion System 1986 experimental test results. Technical Report MIT/LCS/TR-397,
MIT Laboratory for Computer Science.

19. Gifford, David K., John M. Lucassen, and Stephen T. Berlin. 1985. The
application of digital broadcast communication to large scale information sys-
tems. IEEE Journal on Selected Areas in Communications. SAC-3(3): 457-467.

20. Gifford, David K., and David Andrew Segal. 1989. Boston Commu-
nity Information System 1987-1988 experimental test results. Technical Report
MIT/LCS/TR-422, MIT Laboratory for Computer Science.

21. Gill, Arthur. 1966. Linear Sequential Circuits: Analysis, Synthesis, and
Applications. New York: McGraw-Hill

22. Golié, Jovan Dj., and Miodrag J. Mihaljevi¢. 1991, A generalized cor-
relation attack on a class of stream ciphers based on the Levenshtein distance.
Journal of Crypiology. 3(3): 201-212. ‘

23. Gollmann, Dieter, and William G. Chambers. 1989. Clock-controlled shift
registers: A review. IEEE Journal on Selected Areas in Communications. 7(4):
525-533.

24. Golomb, Solomon. 1982. Shift Register Seguences. Laguna Hills, CA:
Aegean Park Press.

25. Hellman, Martin E. 1980. A cryptanalytic time-memory trade-off. [EEFE
Transactions on Information Theory. 1T-26(4): 401-406.

26. Hoffman, Kenneth, and Ray Kunze. 1971, Linear Algebra. Second edition.
Englewood Cliffs: Prentice-Hall

27. Hungerford, Thomas W. 1974. Algebra. New York: Springer-Verlag.

28. Jacob, Bill. 1990. Linear Algebra. New York: W. H. Freeman and
Company.

29. Key, Edwin L. 1976. An analysis of the structure and complexity of non-
linear binary sequence generators. [EEE Transactions on Information Theory.
IT-22(6): 732-736.

284

Cain and Sherman How to Break Gifford’s Cipher

30. Klapper, Andrew. 1894. The vulnerability of geometric sequences based
on fields of odd characteristic. Journal of Crypiology. 7(1): 33-51.

31. Knuth, Donald E. 1981. Seminumerical Algorithms in The Ari of Com-
puter Progrgmming. Vol. 2, second edition. Reading MA: Addison-Wesley.

32. Koblitz, Neal. 1987. A Course in Number Theory and Crypiography. New
York: Springer-Verlag.

33. Lomonaco, Samuel J. Jr. 1989. Factoring large integers by solving Boolean
equations. Unpublished manuscript, Computer Science Department, University
of Maryland Baltimore County.

34. Loxton, J. H., ed. 1990. Number Theory and Cryptography. London
Mathematical Socxety Lecture Note Series, No. 154. Cambrldge Great Britain:
Cambridge University Press.

35. 1983. Macsyma Reference Manual. Versxon ten. Mathlab Group, MIT
Laboratory for Computer Science.

36. Marsh, R. W. 1957. Table of Irreducible Polynomials Over GF(2) Through
Degree 19. Washington DC: National Security Agency.

37. Meier, Willi, and Othmar Stafelbach. 1989. Fast correlation attacks on
certain stream ciphers. Journal of Cryptology. 1(3): 159-176.

38. Nivan, Ivan, and Herbert S. Zuckerman. 1980. An Iniroduction io the
Theory of Numbers. New York: John Wiley.

39. Peterson, W, Wesley, and E. J. Weldon. 1972. Error-Correcting Codes.
Cambridge MA: MIT Press.

40. Rhee, Man Young. 19894, Crypiography and Secure Communications.
Singapore: McGraw-Hill.

41. Ronse, Christian. 1984. Feedback Shift Registers. Lecture Notes in Com-
puter Science 169, G. Goos and J. Hartmanis, eds. Berlin: Springer-Verlag.

42. Rueppel, Rainer A. 1986. Analysis and Design of Stream Ciphers. New
York: Springer-Verlag.

43. Rueppel, Rainer A. 1992. Stream ciphers. In [47]. Chapter 2. 65-134.

44, Shannon, Claude E. 1949. Communication theory of secrecy systems. Bell
System Technical Journal, 28: 656-715.

45. Siegenthaler, T. 1985. Decrypting a class of stream ciphers using cipher-
text only. JEEE Transactions on Computers. C-34(1): 81-85.

46, Siegenthaler, T. 1985. Cryptanalyst’s representation of nonlinearly filtered
ML-sequences. Advances in Cryptology— Eurocrypt °85, Springer-Verlag., 103-
116.

47. Simmons, Gustavus J., editor. 1992. Contemporary Cryptology: The
Science of Information Integrity. Piscataway NJ: IEEE Press.

285

July 1997 YVolume XXI Number 3

48. Watkins, David 5. 1991. Fundamentals of Mairiz Computations. New
York: Wiley and Sons.

49. Zeng, Kencheng, Chung-Huang Yang, Dah-Yea Wei, and T. R. N. Rao.
1991. Pseudorandom bit generators in stream-cipher cryptography. Compuier.
24(2): 8-17.

BIOGRAPHICAL SKETCHES

Thomas R. Cain is a PhD student in the Department of Computer Science and
Electrical Engineering at the University of Maryland Baltimore County (UMBC).
Cain received his MS in computer science in 1993 from UMBC, and both his MA
in mathematics in 1985, and his BS in mathematics in 1983 from The Penn-
sylvania State University. Cain is co-president of TRM Advanced Computing,
Inc., a Maryland-based company specializing in corporate training and software
development in Internet-based technologies and Internet security.

Alan T. Sherman is Associate Professor of Computer Science at the Uni-
versity of Maryland Baltimore County (UMBC), where he is a researcher and
educator in cryptology. Sherman received his PhD in computer science from the
Massachusetts Institute of Technology (MIT) in 1987, his SM in electrical engi-
neering and computer science from MIT in 1981, and his ScB in mathematics,
magna cum laude, from Brown University in 1978. Sherman is a member of Phi
Beta Kappa and Sigma Xi and holds a joint appointment with the University of
Maryland Institute for Advanced Computer Studies (UMIACS).

286

