CRYPTOLOGIA July 1990 Volume XIV  Number 3

HOW WE SOLVED THE
$100,000 DECIPHER PUZZLE
(16 HOURS TOO LATE)

Robert W. Baldwin'* and Alan T. Sherman?®*

ADDRESS: (1) Tandem Computers, Inc., 19333 Valco Parkway, Cupertino CA 95014 USA
and (2) Computer Science Department, University of Maryland Baltimore County, Bal-
timore MD 21228 USA and Institute for Advanced Computer Studies, University of
Maryland College Park, College Park MD 20742 USA.

ABSTRACT: On Saturday March 30, 1985, we solved a cryptography puzzle that had re-
mained unsolved for over two years. Unfortunately for us, we missed by one day the
deadline for sharing what had become a $117,000 prize. This paper describes the puzzle
and how we solved it.

The $100,000 Decipher Puzzle consists of a simple two-sided jigsaw puzzle that contains
a sequence of 376 codenumbers, ranging from 1 to 1252, which were encrypted by a
rmultiple-substitution cipher similar to the Beale cipher. Clues state that the key was
derived from some keytext in the public domain. We solved the puzzle by building a
Zetalisp program that tested candidate keytexts by trying a variety of ways to extract
candidate keys from each keytext and by checking the resulting candidate plaintexts
for English. Our program exploited a novel “windowing” technique that detected when
part of a candidate key was correct and an effective test for English based on digraph

frequencies.

KEYWORDS: Beale cipher, contests, cryptanalysis, cryptography, cryptology, homophonic
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1 INTRODUCTION

In 1983 Warren Holland, Jr. introduced an intriguing cryptographic contest
known as the $100,000 Decipher Puzzle. The puzzle consists of a simple two-
sided jigsaw puzzle that contains a sequence of 376 codenumbers, each an integer
in the range 1 to 1252 inclusive. See Figure 1. The instructions explain that

*This work was done while the authors were graduate students in the Department of Electrical Engineering
and Computer Science at the Massachusetts Institute of Technology.
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Side 1.

909, 736, 71, 553, 651, 269, 24,

973, 342, 46, 682, 462, 26,

328, 323, 857, 765, 397, 203,

111, 1207, 691, 477, 559, 338, 337,
74, 1041, 705, 598, 453, 209, 856,
674, 8, 154, 246, 634, 505, 1249, 161,
1252, 414, 579, 287, 318, 75, 84, 366,
812, 494, 587, 131, 721, 904, 8, 32,
1001, 814, 812, 224, 339, 20, 65,
1082, 910, 669, 492, 319, 12, 152,
144, 538, 860, 986, 969, 425, 624,
202, 149, 333, 663, 671, 473, 266,
780, 655, 757, 779, 777, 569, 438,
204, 1214, 950, 865, 408, 312, 332,
563, 598, 876, 1002, 112, 70, 110,
368, 826, 238, 1126, 918, 867, 63,
113, 1196, 928, 762, 724, 805, 83, 18,
327, 417, 26, 140, 1032, 195, 798,
676, 1102, 867, 523, 491, 560, 435,
87, 177, 180, 6, 1201, 1, 78, 334, 194,
717, 450, 526, 1011, 963, 964, 639,
204, 1096, 727, 807, 775, 661, 545,
350, 253, 34, 455, 735, 644, 780,
750, 631, 434, 201, 1132, 11686, 780,
819, 729, 293, 18, 107, 913,

710, 839, 519, 342, 393, 208, 4,

876, 1040, 295, 369, 784, 757,
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Side 2:

1238, 744, 6, 106, 751, 591,

107, 907, 740, 477, 601, 342,

268, 797, 1086, 342, 206, 16,

111, 489, 448, 440, 887, 788, 97, 492,
625, 627, 746, 163, 546, 608, 547,
143, 518, 773, 658, 1109, 1067, 1102,
431, 911, 748, 465, 6, 173, 48, 636,
668, 752, 899, 1084, 1016, 412, 796,
93, 29, 1029, 771, 652, 26, 100, 84,
497, 1117, 281, 854, 867, 877, 860,
508, 297, 209, 357, 876, 40, 84, 418,
342, 294, 633, 1141, 972, 231, 605,
652, 1215, 348, 104, 1002, 939, 696,
1137, 933, 935, 934, 432, 643, 1065,
45, 445, 584, 1053, 176, 59, 395,
234, 815, 782, 214, 294, 979, 768,
384, 331, 256, 875, 987, 876, 1034,
81, 243, 321, 1019, 937, 1006, 713,
1238, 1124, 1103, 944, 1171, 68, 360,
229, 1021, 288, 408, 1244, 638, 408,
209, 609, 557, 1113, 1230, 786, 300,
485, 386, 441, 229, 166, 748, 1198,
735, 749, 447, 1092, 52, 64, 715,
1241, 925, 1026, 108, 494, 833, 759,
403, 54, 37, 545, 539, 342,

1161, 1218, 657, 797, 6834,

147, 179, 1171, 749, 844.

Figure 1. Ciphertext, arranged in lines as they appear on the jigsaw puzzie.

the ciphertext was produced by a multiple-substitution cipher whose key was
extracted from some document in the public domain. Holland offered a $100,000
cash prize—insured by a major U.S. insurance company—to be divided equally
among all registered contestants who submit the correct solution by March 1,
1984.1 To register, each contestant had to purchase a copy of the puzzle. The
Decipher Puzzle was marketed in a variety of forms; the most successful was an
upscale version whose jigsaw-puzzle pieces came in an attractive velveteen bag

1The insurance was to cover the risk that someone might solve the puzzle in the first year without enough
puzzles were sold to pay for the prize. Some sources {e.g. [14], {11, p. 71]) reported that Lloyds of London
turned down Holland becsuse Scotland Yard said the puzzle could be easily broken. According to Holland, it is
trize that Scotland Yard evaluated the puzzle at the request of Lloyds of London and concluded that the puzzie
could be solved, The reason why Lloyds of London turned him down, however, was that Lloyds of London
could not determine the risk. Holland's policy with the Admiral Insurance Company of New Jersey cost him

$4,500.
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and which sold in retail stores for $12.

To produce the puzzle, Warren Holland formed a company called Decipher,
Inc., located in Norfolk VA. An entrepreneur and native of Portsmouth VA,
Holland is an engineering graduate of the Virginia Polytechnical Institute who
also holds an MBA in business and finance. Holland’s interest in cryptology grew
out of a Smithsonian Magazine article [3] about the Beale cipher which he read
while working as a partner in a small construction company.

In the multiple-substitution cipher or homophonic cipher (4, pp. 67-73], each
plaintext letter is represented by a set of one or more codenumbers or homo-
phones. For example, the letter ‘A’ might be represented by the set {10,20,23}.
The plaintext is encrypted character by character: to encrypt each character,
any one of the corresponding codenumbers is selected. Thus, the multiple-
substitution cipher generalizes the well-known simple substitution cipher in which
each letter is represented by a single codenumber. Although each plaintext can
be enciphered in possibly many different ways, the codenumber sets are required
to be disjoint so that each codenumber represents exactly one letter.

The major advantage of multiple substitution over simple substitution is that
it smoothes out the statistics in the ciphertext. One drawback, however, is that
it expands the message: because there are more codenumbers than plaintext
letters, more bits are required to identify the codenumbers in the ciphertext
than are required to identify the letters in the plaintext. Because the sender
can select which of the possible codenumbers to use at random, the multiple-
substitution cipher is a randomized cryptosystem(20]. The most famous example
of a multiple-substitution cipher is the Beale cipher, an unbroken portion of
which supposedly describes the location of approximately four tons of gold, silver,
and jewels allegedly buried in 1819 and 1821 in Virginia by Thomas Jefferson
Beale{12, pp. 771-772).

Instructions for the Decipher Puzzle explain that the codenumbers were se-
lected in the following special way. A sequence of letters, which we shall call the
key, was written down with each letter numbered sequentially. The codenumbers
corresponding to each letter are the position numbers of all occurrences of the
letter in the key. For example, as shown in Figure 2, if the key is “FOUR SCORE
AND SEVEN YEARS...”, then the codenumbers corresponding to the letter ‘S’
include 5, 13, and 22. |

The key was derived from some text, which we shall refer to as the keytezt.
The instructions hint that the mapping from keytext to key—which we shall
call the key-extraction strategy—involves some type of unspecified manipulation
of the keytext, such as eliminating every other word or eliminating every other
vowel. The instructions also hint that other variations, such as inserting nulls’
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key ZFOURSCUREAHDSEVENYEARS
codenumbers = 1 2 3 4 & 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
plaintert = S E¥N D RE D
ciphertext = 13 19 17 12 8 14 12

Figure 2. A multiple-substitution cipher of the type used in the $100 000 Decipher
Puzzie. To encrypt any letter, choose any position number in which the [stter

appears in the key.

in the plaintext or ciphertext, or using more than one key, may be present. The
instructions do not explain how to deal with peculiarities of the keytext such as
punctuation, footnotes, figure captions, and special characters. In addition, the
puzzle came with eight ambiguous clues (see Figure 3).

After reading about the contest in the MIT student newspaper [13] in Septern-
ber 1983, Alan Sherman purchased a copy of the puzzle at a local game store and
decided to run a mini-course on the puzzle during the January 1984 Independent
Activities Period at MIT. Five people signed up for the course, including Robert
Baldwin. Each participant signed a pledge stating that if the group solved the
puzzle by the March 1, 1984 deadline, all prize money would be used to establish
an undergraduate scholarship at MIT. During the course Sherman and the others
discussed ways to attack the cipher, refined Sherman’s design of a cryptanalysis
engine to carry out the attack, and thought about possible keytexts. Baldwin
and Sherman implemented an initial version of their cryptanalysis engine and
tried several keytexts without success. Although the mini-course did not solve
the puzzle, it laid the foundation for our later solution.

The instructions do not explain what is required to win. Is it sufficient to find
the plaintext, or is it required to find the entire key? Knowing the plaintext is
equivalent to knowing which letters correspond to the 329 distinct codenumbers
that appear in the ciphertext; it might be possible to learn the plaintext without
finding the entire key. We assumed it was sufficient to discover the plaintext.
In any event, the unique “solution” was resting securely in a safe-deposit box
in a major bank in New York City, to be opened if no one solved the puzzle by
June 30, 1989. '

The rest of this paper is organized in four sections. Section 2 calculates the
unicity distance of the cipher and analyzes the distribution of codenumbers in
order to determine if it is possible to solve the puzzle from the available informa-
tion. Section 3 describes our approach to the puzzle, including our cryptanalysis
engine, our “windowing” technique for checking when part of a candidate key
is correct, and our test for English based on digraph frequencies. Section 4 re-
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The key is in the public domain—you have easy access to if.
3,19,

The first place to start may not be the first.

A cube is a clue if you are geometrically inclined.

300 is closer to ‘A’ than ‘Z°.

One source will do but what will you do with it?

Some numbers are repeated but do not be fooled.

If you knew it began with ‘C’, would it help you?

® N e e W N

Figure 3. The eight original clues.

veals the solution and explains how we applied our approach to solve the puzzle.
Finally, Section 5 reflects on our experiences with the puzzle.

2 WAS THE CONTEST FAIR?

Before attempting to solve the puzzle, we first tried to determine if the puzzle
was “fair.” Was it possible to solve the puzzle from the available information?
We answered this question by calculating the unicity distance of the cipher,
which is the amount of ciphertext required for there to be a unique solution
to the cryptogram without regard to the amount of work required to obtain
the solution. We also analyzed the distribution of codenumbers, hoping to find
statistical regularities that we could exploit. We found that the puzzle can be
solved, but only by exploiting the clues. In addition, although the distribution of
the codenumbers is almost entirely flat, the repeated codenumbers reveal some
information about how the key was extracted from the keytext.

2.1. Unicity Distance Calculations

Modeling the cipher as a “random cipher” the unicity distance [23,10], measured
in number of ciphertext characters, is

Ig K
U= ""'D_$ (1)
where K is the number of keys and D = 3.2 bits/character is the redundancy of
English[24].2 Equation 1 gives the amount of ciphertext required to determine

?Throughout this paper let Ig = log; and In = log,.
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the key. Thus, every cryptanalyst needs at least I/ characters of ciphertext to
determine the entire key; possibly a smaller amount would be sufficient to deter-
mine the plaintext. Because the contest did not fully specify what cipher system
was used, we calculated the number of keys in three different ways. First, we
assumed the key consisted of 1252 letters drawn at random. Second, we assumed
the key consisted of 1252 letters drawn from English. Third, we estimated the
number of possible keys taking the hints into consideration. Another estimate
of the unicity distance can be obtained by modeling the cipher as an arbitrary
multiple-substitution cipher[17, pp. 733-740].

Throughout this paper let L = 1252 be the number of possible codenumbers,
and let L' = 329 be the number of distinct codenumbers that appear in the
ciphertext. In addition, let ¢ = 26 denote the number of letters in the English
alphabet.

If the key is simply any sequence of L characters, then the number of keys is
tL and hence by Equation 1 the unicity distance is

lg(t*) _ Llgt _12521g26
Thus, if the key were any sequence of L characters, then 376 codenumbers would
be insufficient to produce a unique key and the puzzle would be unfair. To
discover the plaintext only, it would suffice to determine the L’ characters of the

the key that were actually used; in this case, the unicity distance is

1g(t¥)  L'lgt  3291g26
! = = ~ =~
Ui = ) D 35 483, (3)
which still exceeds the amount of available ciphertext.
If the key is restricted to being L characters of English, then the number of
bits of information in the key is Lr, where r = (Igt) — D & 1.5 bits/character is
the information rate for English. In this case, the unicity distance is

Lr  (1252)(1.5)
D~ 32
This second estimate of the unicity distance also exceeds the amount of available
ciphertext.

To estimate the number of possible keys taking the hints into consideration,

we reasoned as follows. Since we have “easy access” to the keytext, the keytext is
almost certainly limited to at most 10® works (the Library of Congress contains

U2 = =z HB87T. (4)
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Number of Number of  List of repeated codenumbers
occurrences codenumbers

6 1 342

5 1 876

4 1 294

3 6 6, 26, 84, 209, 749, T80

2 23 8, 18, 107, 111, 229, 312, 366, 408, 477, 492, 494, 545,
598, 632, 735, 757, 797, 812, 860, 867, 1002, 1102, 1171

1 287 o

0 923 —

Figure 4. Distribution of occurrences of codenumbers, with lists of repeated codenumbers.

approximately 52 million books and manuscripts [16]).> Assuming each work
has approximately 10° characters (a 400 page book with 500 words per page
and 5 letters per word has 10° letters), there are approximately 10° possible
starting positions for each work. The key-extraction strategy probably comes
from a set of at most 100 relatively simple strategies. Hence, there are at most
approximately 10% - 10% - 10* = 10'® possible keys. Under this assumption, the
unicity distance is
lg(10'°) 161g10

Us < n N3, ~ 17. (5)
Thus it is possible to solve the puzzle, but only by taking advantage of the clues.*
The puzzle is fair given the clues.

2.2 Analysis of the Distribution of Codenumbers

Unfortunately, as shown in Figure 4, the distribution of codenumbers in the ci-
phertext is almost entirely flat: of the 329 distinct codenumbers in the ciphertext,
297 of them occur exactly once. Only 32 codenumbers are repeated, including
342 which appears 6 times, 876 which appears 5 times, and 294 which appears 4
times.

We wondered what caused this distribution. Why did Holland repeat co-
denumbers? Did he repeat codenumbers because he was forced to? Holland
would have been forced to repeat a codenumber only if the corresponding letter

3 Although this conservative upper bound on the number of keytexts suffices for our purposes, the number
of possible keytexts is probably much less since many of the works in the Library of Congress are obscure, not
in English, or otherwise inappropriate for use as a keytext.

4QOur unicity distance calculations are based on modeling the cipher as a random cipher. As discussed by
Hammer{8], however, it is possible to build a homophonic cipher that can hide two or more meaningful messages,
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appeared more often in the plaintext than in the key. Assuming that Holland re-
peated codenumbers because he was forced to, we wondered what key-extraction
strategies are consistent with the observed distribution.

Any key-extraction strategy that yields letter frequencies different from those
expected in English tends to force repeated codenumbers. For example, we expect
the strategy of taking the first letter of each word to force repeated codenumbers
because some letters such as ‘E’ appear frequently in English but relatively infre-
quently as the first letter of a word. Similarly, we expect repeated codenumbers
for taking the last letter of each word and for deleting every other vowel. The
rest of this section analyzes how well the observed distribution of codenumbers
matches the expected distribution for the following three key-extraction strate-
gies: all letters of word, first letter of word, last letter of word. Our analysis
assumes that Holland attempted to avoid repeating codenumbers.

Throughout this paper, let n = 376 be the length of the plaintext and cipher-
text, and let a,,as,...,a, be the 26 letters of the English alphabet. In addition,
for each 1 < ¢ < t, let p; be the probability with which letter a; appears in
English.

For any key-extraction strategy, the expected number of repeated codenum-
bers for any letter is the expected number of times the letter appears in the
plaintext minus the expected number of times the letter appears in the key, pro-
vided this difference is non-negative. Hence, in particular, if the key were drawn
from English, then for each 1 < ¢ < t the expected number of repeated code-
numbers corresponding to letter a; would be approximately max(0,np; — Lp;),
which equals zero because L = 1252 > 376 = n. Therefore, if the plaintext were
drawn from standard English, it would be unlikely that the key was also drawn
from English.

If the key were drawn from initial letters of English words, then for each
1 < i < t the expected number of repeated codenumbers corresponding to «;
would be approximately max(0,np; — Lp!), where p{ denotes the probability
with which letter a; appears as the first letter of a word in English. Thus, for
this case, we would expect repeated codenumbers only for those letters a; for
which pi/p{ > L/n = 1252/376 ~ 3.3, that is, only for those a; which appear
approximately three times more frequently in any position than as an initial letter
of a word. Using the statistics given by Sinkov [25, pp. 177-178], we determined
that the total expected number of repeated codenumbers is approximately 19,
with 18 repeats caused by the letter ‘E’ and 1 repeat caused by the letter ‘X’.
These numbers are consistent with the observed distribution which contains 32
repeats, suggesting that the key-extraction strategy might be to take the first
letter of each word.
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Similarly, for taking the last letter of each word, we expect a total of 43 re-
peats, with 22 repeats for the letter ‘I’, 8 repeats for the letter ‘U’, 4 repeats
each for the letters ‘“V’ and ‘P’, 3 repeats for the letter ‘C’, and 1 repeat each for
the letters ‘B’ and ‘Q’. Again, these numbers are consistent with the observed
distribution.

Taking our analysis one step further, for each key-extraction strategy it is
possible to predict what letters the repeated codenumbers probably stand for. If
the key were drawn from first letters of words, then would be likely that repeated
codenumbers represent letters with high np; — Lp;-f values. Listed in decreasing
order of npg—Lp{ values, the letters of the alphabet are ‘E’, ‘X7, ‘2", 'Q’, ‘N, *Y",
‘V,, 5K1’ st’ ‘U,, cR:’ ‘L’, (.G7’ (Df’ ‘M’, ‘H’, :F:’ ‘I’, ‘P’, ch, ‘W,, cca, ‘O’, zsa, ‘A’,
“T*. Similarly, if the key were drawn from last letters of words, we would expect
in decreasing probability the repeated codenumbers to be ‘T’, ‘U, ‘V’, ‘P’ *C’,
‘B,, 4Q$, ‘.I’, gza, :X'r’ cw,, ‘M’, ‘A’, {'K’, ‘H’, ‘O’, ‘G,, ‘L,, ‘R,, ‘F,, ‘Y,, UIH, ‘N’,
‘D, ‘S’, ‘E’. Regardless of what key-extraction strategy is used, it is likely that
the repeated codenumbers represent letters that appear relatively frequently in
the plaintext but relatively infrequently in the key. This situation might arise
with an unusual plaintext that contained many unpopular letters.

The essentially flat distribution of codenumbers suggests that statistical at-
tacks based on repeated codenumbers will be of virtually no use. Assuming that
Holland tried to avoid repeating codenumbers, this distribution, however, does
reflect properties of the key-extraction strategy. In particular, the distribution is
consistent with taking first or last letters of English words and inconsistent with

taking an entire English keytext.

2.3 Discussion

We speculate that Holland intentionally designed the puzzle to be controlled
by the clues. Doing so would accomplish the following three objectives. First,
by forcing each contestant to solve the puzzle by guessing the keytext, Holland
can control the difficulty of the puzzle by judiciously choosing the clues. To
maximize public interest in this and future puzzles, the puzzle should be solvable
yet the puzzle must not be too easy nor too hard. A puzzle that is too easy
would be solved too soon, thereby reducing sales; a puzzle that is too hard
might discourage contestants from buying future puzzles. Second, Holland can
ensure that the puzzle will eventually be solved by giving away sufficiently many
additional clues. Third, by forcing contestants to guess the keytext, lay people
and mathematicians are put on a roughly equal footing.
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3 OUR APPROACH

Our plan was to search for the key by intelligently guessing possible keytexts
and by using a computer to test each candidate keytext. To test each candidate
keytext, the computer would try a collection of key-extraction strategies. For
each strategy, the computer would try all possible starting positions in the key-
text. We reasoned that since the only way to solve the puzzle was to determine
the keytext and the key-extraction strategy, our plan made best use of available
information.

To help carry out our plan, we designed and implemented a computer program
to test candidate keytexts. OQur program ran on a Symbolics 3600 Lisp Machine;
including comments it consisted of approximately 1,500 lines of Zetalisp[18].

Figure 5 shows a block diagram of our program. The program accepted two
inputs—a ciphertext and a candidate keytext. For each possible key-extraction
strategy and for each possible starting position in the candidate keytext, the
program extracted a corresponding candidate key and tested it. To test each
candidate key, the program deciphered the ciphertext under the candidate key
and checked the resulting candidate plaintext for English. For each candidate
plaintext that scored sufficiently high for English, our program recorded the
plaintext together with the corresponding key and key-extraction strategy into
a log file. A crucial feature of our program was a “windowing” technique that
enabled us to detect when part of a key was correct.

The rest of this section describes our cryptanalysis engine in more detail,
focusing on how we extracted candidate keys, how we checked each candidate
plaintext, and how we detected when part of a key was correct. We also discuss
our ideas for mounting probable-word attacks.

3.1 Extracting Candidate Keys

To speed up the extraction of candidate keys and to facilitate the specification
of key-extraction strategies, our program exploited two special features. The
first feature was a keytext data structure consisting of a network of arrays with
pointers to beginnings of sentences, words, and vowels, As shown in Figure 5, our
program began testing a candidate keytext by reading the keytext from a text
file into the keytext data structure. Although each keytext text file contained all
punctuation, special characters, and line breaks as they appeared in the original
keytext document, the keytext data structure contained only alphabetic charac-
ters. All of the key-extraction strategies could be defined in terms of scanning
down the keytext data structure. Using this data structure enabled us to extract

keys very quickly.
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Figure 5. Block diagram of cryptanalysis engine. Each candidate keytext is checked
by extracting candidate keys using a variety of key-extraction strategies and all pes-
sible starting positions. Each candidate key is checked by deciphering the ciphertext
and testing the resulting candidate plaintext for English. Filters define the space
of key-extraction stratagies to be tried; windows specify subsequences of the key
to be checked separately.

The second feature of our program was a convenient method for describing a
large space of key-extraction strategies by specifying a small set of “generators”
for the space. Most of the key-extraction strategies we considered were ones like
“take the last letter from each word” or “skip every other word, take every letter
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from each remaining word, then take the first letter after each vowel.” Each of
these strategies can be defined as a combination of three types of generators.
The first generator describes how to filter words from a sequence of words. The
second generator describes how to extract characters from a single word. The
third generator describes how to filter characters from a sequence of characters.
We specified a number of generators of each type; our program tried the set
of all key-extraction strategies formed by taking all sensible combinations these
generators, one from each type. Using this framework it was easy to define all
of the key-extraction strategies that we wanted to test.

In practice we used the following generators. Word filters: all words, skip
every kYR word. Word-to-character filters: all letters of word, kB letter of word
{this includes last letter of word), skip first k letters of word, first and last letter
of word. Character filters: all characters, all characters except doublets, skip
every other vowel, kB letter after vowel. Some of these generators depend on a
parameter k; for each of these generators, our program tried all values of £ within
a range specified by the generator. For example, in this terminology the second
page of the Beale ciphertext is deciphered when the keytext is the Declaration of
Independence and the key-extraction strategy is defined by the generator triple
(all words, 15% letter of word, all characters), which describes the strategy of
taking the first letter of each word.

3.2 Checking a Candidate Plaintext

To check when we encountered a valid plaintext, we devised an efficient test
for English. The test measures how “close” a candidate plaintext is to English
by computing a statistic from the observed digraph frequencies. If the value of
the statistic falls within a specified threshold around the expected value of the
statistic for English, the candidate plaintext is considered valid. This test played
a crucial role in automating our cryptanalysis engine so that it could run quickly
and unattended for the many hours needed to check numerous keytexts.

We considered two different approaches for checking a candidate plaintext—
searching for English words and comparing statistical properties of the plaintext
with those expected for English. Although both approaches are promising, we
focused on the statistical approach because it is more flexible in coping with nulls
and in enabling us to check when part of a candidate key is correct. We used
digraph frequencies rather than single-letter frequencies because they provide a
more powerful test and because it was necessary to be able to distinguish second-
order English from first-order English since many of the incorrect candidate keys
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generated candidate plaintexts with first-order English statistics.’ We did not use
trigraph frequencies because they do not work well with our method for testing
when part of a candidate key is correct and because they are more complicated
and time-consuming to deal with than are digraph frequencies.

The basic idea of our test is to examine a collection of digraphs from the
candidate plaintext and to determine how likely it is for these digraphs to appear
in English. Input to our test is a sequence of m digraphs

D= {(Il,?th), (332; Ya)r- - s (:Em,ym)}'

For example, D might consist of all pairs of adjacent letters in the candidate
plaintext, or D might be a selected subsequence of such pairs. By allowing the
test to operate on selected digraphs, we were able to detect when part of a
candidate key was correct.

One of the simplest statistics that might be tried is the product of the digraph

probabilities

7’ = [] Problziyi] (6)
=1
or its log,-transform
r=Inr' =Y InProb[z:yi, (7)

=1
where Prob[zy] denotes the probability with which the digraph zy appears in
English. The statistic r is the second-order analog of a first-order statistic sug-
gested by Sinkov(25, pp. 76-77]. The advantages of using r over r’ are that r is
faster to compute and r has a less skewed distribution.
We, however, computed our statistic § as follows. First, we computed

s = Y InProb[z:y:|z:], (8)

=1

where Prob[zy|z] denotes the probability that the letter y immediately follows
the letter z in English, given that z has already appeared. Second, to express
our statistic on a convenient scale, we centered and normalized s by computing

5By first-order English and second-order English, we mean a language source that generates letters according
to the expected single-letter and digraph English probabilities, respectively.

§ =
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where p,, &~ —2.51 and o,, ~ 0.98 are, respectively, the mean and standard
deviation of s when applied to English.® In Equation 8, we used the digraph
probabilities for English given by Beker and Piper [1, pp. 398-399); these prob-
abilities were calculated from 132,597 characters of English drawn from various
newspapers and novels.

We based our statistic on s rather than on r for two reasons. First, when
we originally developed the statistic, we considered its input to be a sequence of
contiguous letters (2y, zo,. .., 2, ) rather than a sequence of independent digraphs.
In second-order English,

Problz; z3.. .z;,] = Prob[z; [Prob[z, z3]z1]Problzaz3)2;] - - - Prob[zp . 2, [Zm—1].

Second, when we changed the input to be a sequence of independent digraphs,
the statistic still worked well and we never bothered to modify it. Part of the
reason why our statistic worked well on sequences of independent digraphs is
that we usually applied the test to distinguish second-order English from first-
order English. For a sequence of independent digraphs D, s(D) is related to the
odds in favor of the candidate plaintext being drawn from second-order English
as opposed to being drawn from first-order English given D{7]. Specifically,

Prob[E3[D]  Prob[E;]Prob[D|E}] 10
Prob[E1|D] ~  Prob[E,]Prob[D|E;] (10)
. Prob[E,] Prob[z1y1|z1]Problesys|zs] - - - Prob[zm ym |2 m)
" Prob[E;] Prob[ym] '
and hence
_ Prob{E,| D] Prob{E,]
s=In (W) ~In (m + In Probly,,]. (11)

Here, E, and E, denote the hypotheses that the candidate plaintext was drawn
from first-order and second-order English, respectively.

If the candidate key is correct, then we expect the resulting candidate plain-
text to be drawn from English. But what should we expect if the candidate
key is incorrect? In this case, the expected statistical properties of the resulting
candidate plaintext depend on the keytext and on the key-extraction strategy.
An incorrect candidate plaintext might resemble anything from random text
drawn from a uniform distribution to highly structured text with more distinc-
tive digraph statistics than those for English. For example, if the candidate key
consists of all letters from an English keytext, then an incorrect candidate plain-
text will resemble a random sampling of letters drawn from English and hence

SWe computed the values g, ¢ and o, 5 using the definitions of mean and standard deviation[15].
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Figure 6. Probability density functions for the s-statistic when computed on En-
glish, first-order English, and random plaintext, yielding the density functions f,E,
fn- and f,R, respectively. The corresponding mean and standard deviation values
for s are piy, == —2.51, p, = —3.47, p,, &= —4.97, and 0,, ~ 0.98,
o, &2 1.52, o,, & 2.35, respectively.

is expected to have first-order English statistics. Similarly, the key-extraction
strategy of taking the first letter of each word tends to produce candidate plain-
texts in between first-order and second-order English. In practice, since all of
our key-extraction strategies ultimately extract letters from English keytexts, our
candidate keys—and hence our incorrect candidate plaintexts—tend to resemble
first-order English.

Figure 6 shows the probability density function for the s-statistic when com-
puted-on English, first-order English, and random text drawn from a uniform
distribution. Let u,, and o, denote, respectively, the mean and standard de-
viation of s when applied to first-order English. Since g, is quite far from
Us, in terms of o,, and o, units, the §-statistic provides an effective tool for
distinguishing standard English from first-order English.

Our decision to accept or reject a candidate plaintext was based on how far the
observed value of § fell from the expected value of § when computed on English.
Specifically, we accepted a candidate plaintext if and only if [§] < r, where 7
was a control parameter. By choosing » > 0 appropriately we could select our
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desired false-positive and false-negative error rates. In practice we used r = 4;
that is, we accepted all candidate plaintexts whose $-statistics fell within four
standard deviations of their expected values for English, yielding a very small
false-negative error rate of less than 0.01 percent and an acceptable false-positive
error rate. We chose this relatively large value of 7 to help ensure that we would
not miss the correct solution, even if it contained nulls, contained many unusual
words, or otherwise had an unusual distribution; at 7 = 4, our test might even
detect a plaintext written in a foreign Indo-European language.

There are three details about our test worth discussing. First, there is the
question of how to deal with unknown input characters, which might be present
in a candidate plaintext generated from an incomplete key. We dealt with this
problem by eliminating any digraph from consideration that had one or two
unknown characters. In addition, we counted the number of eliminated digraphs
and rejected the candidate plaintext if it had too high a percentage of eliminated
digraphs. The issue of unknown digraphs was not a problem for us in practice
because it did not arise except for candidate keys generated from near the end

of a candidate keytext.

Second, there is the question of how to deal with impossible digraphs such
as ‘QZ’. One possibility is to reject any candidate plaintext that contains one or
more impossible digraphs. This approach, however, is too inflexible: it cannot
deal with minor errors in the keytext, key, or ciphertext, and it is easily defeated
by interjecting random characters into the plaintext or ciphertext. Therefore, we
allowed impossible digraphs but assigned each of them a near-zero probability
of € > 0 (in practice we used € = 1077). Note that the 3-statistic does not allow
any digraph probability to be exactly zero.

Third, there is the issue of how the number of digraphs affects the sensitivity
of the 3-statistic. We had expected that the larger the input, the better our
test would perform. To our surprise, our test nearly rejected some very large
English texts. After some thought and experimentation, we came up with the
following explanation. As the number of digraphs m increases, the standard
deviation of s/m decreases; consequently, the test becomes increasingly selective
in what it considers to be English. The trouble is that there are many different
types of English—newspaper English, military English, and poetry English, for
example. We computed our test using digraph frequencies from one sample of
English newspapers and novels. As the number of digraphs increases, our test
becomes increasingly sensitive to the different types of English and hence begins
to reject English texts drawn from types of English different from those on which
our digraph frequencies were based. In practice the sensitivity issue was not a
problem because we used a relatively large threshold value 7 and because we
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window

candidate key

-
s

diagraphs

candidate plaintext

Figure 7. Windowing strategy. Any subsequence of a candidate key can be separately
checked by examining the digraphs it determines in the resulting candidate plaintext.

tested the plaintext in small pieces.

Although our statistic § worked remarkably well in practice, both it and the
statistic r have the drawback that they do not measure any variation in the
observed digraph frequencies. Therefore, each of these statistics can be fooled by
a candidate plaintext that consists solely of a repeated typical digraph. To get
around this problem it might be helpful to develop a test for English using the
index of coincidence [1, pp. 39-50] to compare the observed digraph frequencies
with those expected from English.

3.3 Detecting Partial Solutions

One problem with our initial design was that it was too sensitive to errors in the
keytext. For example, a single character error in the candidate keytext might
cause all corresponding characters in the candidate key past that error to be
wrong, which might cause most of the candidate plaintext to be wrong, which in
turn might cause our system to overlook the solution. Similarly, our initial system
might not have detected when it was close to the correct key-extraction strategy.
To overcome these difficulties we introduced the concept of “windowing,” which
enabled us to detect when part of a candidate key is correct.

A window is a subsequence of the key. For example, codenumbers 1-50 con-
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stitute a window. As shown in Figure 7, each window determines various charac-
ters throughout the plaintext. When a window determines two or more adjacent
plaintext characters, the window can be checked separately from the rest of the
key by examining the affected adjacent plaintext characters. For example, co-
denumbers 933-1084 determine the following nine digraphs in the ciphertext:
(933, 935), (935, 934), (963, 964), (986 969), (1011, 963}, (1002, 939), (925,
1026), (1084, 1016), (1082, 910). With the help of a computer, we found several
relatively short windows that each determined several plaintext digraphs. Specif-
ically, we used the following five windows: 16-113, 144294, 243-418, 724877,
933-1084. Each of these windows produces approximately 10 digraphs. For each
candidate key, instead of checking the entire key at once, we separately checked
each of its windows using our English test. This windowing technique proved
to be an extremely effective way of dealing with errors and ambiguities in the
candidate keytexts.

3.4 Probable-Word Attacks

Early in our deliberations we considered the possibility of mounting probable-
word attacks. Unfortunately, these attacks have little to offer over our main
approach. This section briefly describes some of our ideas.

A probable-word attack can be mounted against either the keytext or the
plaintext. Unless the key-extraction strategy preserves all or most of the letters,
however, attacking the keytext is unlikely to be of any use. If the key is drawn
from English, then probable words and phrases in the keytext can be checked
using the windowing technique. Finding a word in the keytext might help in
checking candidate keytexts, but since the number of digraphs affected by a
typical probable phrase is very small, this attack is unlikely to be of much use.

Mounting a probable-word attack against the plaintext is very much like using
the windowing technique in reverse: each word in the plaintext affects certain
key characters, which through the key-extraction strategy affect certain keytext
characters. Since the effect of each plaintext word is so spread out over the
keytext, such attacks are very weak. Nevertheless, probable-word attacks against
the plaintext can be used in checking a candidate keytext or in determining
the key-extraction strategy under the assumption that a particular keytext is
used. But since our main method already provides an effective way of checking a
candidate keytext, probable-word attacks for the purpose of checking a candidate
keytext offer little value. Perhaps the greatest value of a probable-word attack
lies in completing a partial solution.

One idea we explored briefly was to guess the entire plaintext. Suspecting
that the plaintext might be poetry, we searched for a well-known poem or stanza
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of length exactly 376 characters. Among the poems we considered were “An
enigma,” “Sonnet—to science,” and “A valentine” by Edgar Allan Poe[9, pp.
110, 22, 115]. We suspected Poe because of his interest in cryptology, and we
suspected “A valentine” because it encodes the name of its recipient. We never
did find a poemn of exactly 376 characters.

We compiled lists of probable words, including the following: ‘congratula-
tions’, ‘decipher puzzle’, ‘one hundred thousand dollars’, ‘science’, ‘secret’, ‘so-
lution’, ‘winner’, ‘you have won’, and names of famous authors and poets. We
also considered the possibility of trying the first lines of all famous poems.

4 THE SOLUTION

Sherman quickly assembled the two-sided jigsaw puzzle and began analyzing the
distribution of codenumbers. Holland’s decision to put the ciphertext on a puzzle
was clever—even if the contestant cannot discover the plaintext, he can almost
certainly put together the jigsaw puzzle which lets him feel as if he has made
significant progress.

In hindsight many features of the puzzle appear straightforward, but before
we solved the puzzle we wondered about many basic questions. Is each codenum-
ber a homophone representing one letter? Does the deciphering process involve
manipulating individual digits of the codenumbers? Is the plaintext in English?
In what order should the codenumbers be read? Is the layout of the codenum-
bers on the puzzle significant? How many keys were used? Although we briefly
experimented with other possibilities, we took as working assumptions that each
codenumber represented one plaintext letter and that the plaintext had statisti-
cal properties similar to those of English. Throughout our work we left open the
possibility that the codenumbers might be read in a nonstandard order (e.g. re-
verse order or taking every every other codenumber) and that different portions
of the plaintext might be encrypted using different keys.

To help us find the keytext and the key-extraction strategy, we thought about
requirements for these unknowns. Since everyone has “easy access” to the key-
text, we reasoned that it was either in most libraries or included in the materials
that came with the puzzle. Moreover, it was probably something from which
it is easy to extract a reliable sequence of characters—it probably did not have
mosaics of words or multiple dissimilar editions. There must a sufficient amount
of text to support the key-extraction strategy. As for the key-extraction strategy,
we reasoned that is was probably something that could be easily carried out by
hand without the use of a computer—many people would consider it unfair to
require contestants to use a computer.
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From the beginning, we strongly suspected that the key-extraction strategy
was either to take the first letter of each word or to take the last letter of each
word. These strategies were consistent with the observed distribution of co-
denumbers {see Section 2.2) and they had the appropriate level of difficulty.
Moreover, part of the Beale cipher extracted the initial letters of words from the
Declaration of Independence. From clue 6 (see Figure 3) and from the distri-
bution of the codenumbers, we felt quite strongly that the key did not include
every letter of the keytext. Our belief in the importance of the Beale cipher
was strengthened when we discovered that Daniloff’s {3] article about the Beale
cipher, which was referenced in the puzzle instructions, mentioned a Beale cipher
enthusiast named Colonel J. J. Holland.

Although the antecedent of ‘it’ in clue 8 is ambiguous, we thought this clue
probably meant the keytext or its name begins with the letter ‘C’. This led us
to suspect the puzzle instructions, which begin with the word ‘Congratulations’,
and the Constitution. We thought that the numbers ‘3, 19’ in clue 2 probably
serve as an index into the keytext {e.g. page 3, line 19) or represent the letters ‘C’
and ‘S’, which are the third and nineteenth letters of the alphabet. We noted
that ‘congratulations’ begins with ‘C’ and ends with ‘S’, which led us to suspect
the key-extraction strategy of taking both the first and last letters of each word.

After completing an initial implementation of our cryptanalysis engine in early
February 1984, we began checking candidate keytexts. Without success we tried
the Declaration of Independence, the Constitution, the contest instructions, and
Daniloff’s article. We also considered but did not check other famous documents
including the Bible, the Articles of Confederation, the Virginia Bill of Rights,
and the Gettysburg Address. OQur usual mode of operation was to let our engine
run overnight unattended and to check its log file in the morning.

One practical problem we faced was how to enter the keytexts. We did not
have easy access to an optical scanner, and the available optical scanners at that
time required a lot of adjustment to use. We solved this problem by finding
volunteers and by hiring a secretary to type in the keytexts.

At times we were concerned about the security of our system: we feared that,
if we solved the puzzle, someone might steal our solution. We handled this
problem in two ways. First, we introduced a moral barrier. To run our software,
the user had to state that he was an authorized user; a dishonest person could
say yes, and the system would start working. Second, we agreed that if we solved
the puzzle, we would continue to tell everyone (except our girl friends) that we
failed to solve the puzzle until after the deadline.

After our initial attempts at solving the puzzle failed, we put the puzzle aside
and went back to work on our dissertations. When the March 1, 1984 deadline
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passed with no one submitting the correct solution, Holland extended the contest
for another year under the following modified rules. All registered contestants
who submit the correct solution by February 28, 1985 will share the prize. If
no one solves the puzzle by February 28, 1985, then the contest will proceed on
a monthly basis, with the prize to be shared among all registered contestants
who submit the correct solution during the first month in which the puzzle is
solved. Holland announced that the keytext was a “popular novel” written by
one of twenty-one specified authors, including Woody Allen, William F. Buckley
Jr., Norman Mailer, James Michener, and Carl Sagan. In addition, Holland
established a “hotline” to distribute additional clues by telephone on a monthly
basis beginning May 1, 1984. Two authors would be eliminated from the list
each month. To sweeten the prize, Holland promised to increase the prize by
$1,000 plus interest each month. Our plan was to wait until January 1985 to
resume work. We also agreed that if we solved the puzzle, we would give half of
our winnings to charity.

By January 1985 the list of authors had been narrowed to Carl Sagan and one
other author. Because of the 3,19 clue (clue 2), we strongly suspected that Carl
Sagan was the author of the keytext. At this point Holland’s clues puzzled us:
because of the letter ‘C’ clue (clue 8) we strongly suspected that Cosmos [22] was
the keytext, but Cosmos is not a novel because it is not a work of fiction. Did
Holland inadvertently misuse the noun ‘novel’ in the sense of ‘book’? Although
we also tried parts of Sagan’s only popular novel—The Dragons of Eden[21]—
we concentrated our efforts on Cosmos.” Without success we tested chapter 10
(which contains a picture of a cube [22, p. 262]) and chapter 12 (which discusses
the Rosetta stone[22, p. 294]. Also without success we experimented with various
ways of reordering the codenumbers based on a cube. Had we hired someone to
type in Cosmos in its entirety, we would have likely solved the puzzle by the end

of January.

When no one solved the puzzle by February 28, 1985, Holland announced
that the key was a sequence of “first letters” from Cosmos, chapter 6. Since
there are less than 1252 sentences or lines in chapter 6, we were now practically
certain that the key was drawn from first letters of words. In hindsight we
discovered another pointer to chapter 6: for the country Holland the index lists
pages 140-143, which are in chapter 6. Confident that we would quickly solve the
puzzle, we hired a secretary to type in chapter 6 and went back to more pressing
tasks of finishing our dissertations, writing conference papers, and applying for
jobs. Since we didn’t have much money, we offered the secretary a share of any

7TAn anonymous referee pointed out that Clesamos is copyrighted and hence not in the public domain. In
clue 1 did Holland use the phrase “in the public domain” for its colloquial meaning of “publicly available”?
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winnings we might receive.

To our surprise, our engine did not immediately find the solution even though
we tried all possible starting positions in chapter 6 for each of several key-
extraction strategies including taking the first letters of all words. As we sus-
pected and later confirmed, the problem was that there were some IIncr errors
in our keytext. For example, we included the ‘c’ in the abbreviation ‘c.’ for
‘circa’; Holland did not. Similarly, we counted the abbreviation ‘JPL’ as three
words; Holland deleted it. There were also other similar questions such as how
to treat hyphenated words and whether or not to include footnotes and figure
captions. To deal with these errors and ambiguities in the keytext, we developed
the windowing technique (see Section 3.3).

On Friday March 29, we finished implementing our windowing technique and
ran the engine again. This time our English test detected solutions for each
of our windows, beginning with different starting positions for each window.
With a little more work and with the help of the Webster dictionary program
that can find pattern words, Baldwin detected and corrected all of the errors
and ambiguities in the keytext. We obtained the correct key from chapter 6
of Cosmos by extracting the first letters of all words beginning on page 137
with the phrase “first ages of the world ...” treating hyphenated words as single
words and deleting all numerals, abbreviations, footnotes, and figure captions.
As shown in Figure 8 with word breaks and punctuation added, the solution is
a passage from “A poet’s advice to students” by E. E. Cummings{6,p. 335].

Interestingly, according to our English test over 99.8 percent of all English
texts score closer to English than did the correct plaintext, which has unusual
digraph frequencies. For example, the trigraph ‘you’ appears nine times; the
digraph ‘no’ appears five times; and the digraph ‘th’ appears only twice. For-
tunately, we had set the threshold in our English test sufficiently large to catch

even Cummings’ English.

Almost anybody can learn to think or believe or know, but not a single human
being can be taught to feel. Why? Because whenever you think or you believe or
you know, you're a lot of other people: but the moment you feel, you’re nobody-

but-yourself.
To be nobody-but-yourself—in a world which is doing its best, night and day,

to make you everybody else—means to fight the hardest battle which any human

being can fight; and never stop fighting.
From “A poet’s advice” by E. E. Cummings.

Figure 8. Solution — a passage from “A poet's advice to students” by E. E. Cummings.
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We then checked the instructions to review how to submit a solution. Oops!
The solutions were due in Virginia on the last business day of the month—not
on the last calendar day as we had assumed.

Having missed the deadline, we thought we might as well try to get some
recognition for our efforts. On Monday morning we telephoned the MIT News
Office and The Boston Globe. At first the media doubted our story—Monday
was April 1. A few days later The Boston Globe [5] and The Tech [14] carried
the news.

By this time all of the clues except clue 5 made sense to us. We had interpreted
clue 5 to mean that codenumber 300 is closer to ‘A’ than ‘Z’ in the alphabet,
but codenumber 300 represents ‘Q’, which is closer to ‘Z’ than ‘A’

As expected (see Section 2.2), most of the repeated codenumbers represent let-
ters that appear relatively frequently in the plaintext but relatively infrequently
in the key. For example, the letter ‘Y’ appears 18 times in the plaintext but only 5
times in the key, and the codenumber set for ‘Y’ consists of the repeated code-
numbers 26, 342, 780, 867, 876. Not all codenumber repetitions, however, were
forced. For example, although the letter ‘E’ appears 46 times in the plaintext
and 51 times in the key, the codenumber set for ‘E’ contains the unnecessarily
repeated codenumbers 8, 18, 294, 312, 545, 757.

It turned out that 36 people submitted the correct solution in March 1985,
including a farmer, two coal miners, a college math teacher, a biochemist, a
psychologist, a medical student, and a 15-year-old girl[2]. Each winner received
a T-shirt and a check for $3,251.71. Although many of the winners used a
computer, apparently all of them depended crucially on the massive February
1985 clue. The story of the $100,000 Decipher Puzzle has been reported in
numerous newspapers and in a popular book by Paul Hoffman[l1, pp. 70-78].

On July 6, 1989, Sherman spoke with Holland by telephone. Holland ex-
plained that he designed the clues to have multiple levels of interpretation and
to challenge people to think more deeply; for most clues the “obvious” interpre-
tation is incorrect. For example, clue 5 means that codenumber 300 is closer
to ‘A’ than ‘Z’ not in alphabetical order but in the sense that codenumber 300
represents a vowel rather than consonant. Clue 4, which mentions a cube, refers
to chapter 6 since a cube has 6 sides. Holland said that he had used the word
‘novel’ in the spirit of the clues to mean both ‘book’ and “new and unusual.”
The picture of a cube in Cosmos, chapter 10 and the references to the country
Holland in chapter 6 were simply coincidences. There is no relationship between
Warren Holland and Colonel J. J. Holland.

Although Holland would not reveal how many people purchased his puzzle,
he did say that he received over 1,000 solutions and that there were approxi-
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mately 250,000 calls to the hotline. Holland also said that he was surprised the
puzzle was not solved within the first year. With the success of the Decipher
Puzzle, Holland went on to produce similar Decipher II and Decipher IIT puzzles.
Currently Holland has no plans for a Decipher IV; instead, he is focusing on a
variety of new game and gift products, including a dinner party mystery game
called “How to host a murder.”

5 CONCLUSION

To solve the puzzle, it was necessary to guess the keytext and the key-extraction
strategy. Our approach was to place ourselves in an optimal position to exploit
the clues by building a computer program that automatically checks candidate
keytexts. The program performed the tedious calculation of trying all possible
starting positions for a variety of candidate key-extraction strategies. Two fea-
tures of our cryptanalysis engine played a crucial role: our windowing technique
enabled us to deal with errors and ambiguities in the candidate keytexts, and
our test for English enabled us to automate our checking completely.

Mathematically, the most interesting part of our work is our test for English.
Although our test worked very well for our application, there is undoubtedly
much more to learn about the important problem of language detection and
identification.

In addition to describing the Decipher Puzzle and our solution of it, this
paper also points out the following weakness of Beale ciphers. If the statisti-
cal properties of the keytext are known, then the distribution of codenumbers
reveals information about the key-extraction strategy. Conversely, if the key-
extraction strategy is known, then the distribution of codenumbers reveals infor-
mation about keytext. Although our solution did not depend on this weakness,
this weakness helped draw our attention to the correct key-extraction strategy.

There are many lessons to be learned from our experience. One of the obvious
lessons is “Read instructions carefully!” But beyond this obvious lesson, we
would like to reflect on a number of points. First, throughout our cryptanalysis
we found ourselves caught in the following dilemma: how can we tell how close
we are to the solution? Although the windowing technique detects some near
musses, and although interpretations of the clues provide some confirmation, for
the most part it was virtually impossible to know whether or not we were near
solving the puzzle. This made it difficult for us to decide how much time to
dedicate to the puzzle.

Second, the computer’s facility for doing tedious calculations is a double-edged
resource. On the one hand, the computer was a tremendous aid in calculations
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such as trying all possible starting positions in a keytext. On the other hand, the
computer posed a danger in inviting us immediately to follow the straightforward
approach rather than to think about a possibly more effective clever approach.
For example, to check a candidate key, the straightforward approach is to use it
to decipher the entire ciphertext and to check the resulting candidate plaintext
for English. But if the entire candidate plaintext is checked for English, poor
results are obtained because this checking procedure is too sensitive to errors in
the keytext. Someone solving the puzzle by hand would almost certainly check
a candidate keytext without generating the entire key and without deciphering
the entire ciphertext. By virtue of his limited computational powers, the hand-
solver is practically forced to use a superior method that detects when part of a
candidate key is correct! We do not wish to imply that straightforward methods
are necessarily bad; nor do we wish to imply that computers cannot perform
clever feats. We simply point out that computers can make it convenient for
their users not to think deeply.

Third, we found ourselves more interested in the process of our solution than
in the solution itself. For example, we preferred to spend our time analyzing our
test for English or adding features to our cryptanalysis engine rather than to run
our engine on candidate keytexts. This situation contributed to our missing the
deadline.

Cryptanalysis is a complex activity involving probability, statistics, algo-
rithms, computer systems, software and hardware engineering, and general prob-
lem solving. We hope the reader can learn from and enjoy our experiences in
this fascinating area.
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