

APPROVAL SHEET

Title of Thesis: Applying Trustworthy Computing to End-To-End Electronic Voting

Name of Candidate: Russell A. Fink
Doctor of Philosophy, 2010

Thesis and Abstract Approved:
Dr. Alan T. Sherman
Associate Professor
Department of Computer Science and
Electrical Engineering

Date Approved: December 6, 2010

CURRICULUM VITAE

Name: Russell A. Fink
Permanent Address: 8625 Tower Drive, Laurel, MD 20723 USA.
Degree and date to be conferred: Doctor of Philosophy, December, 2010.
Date of Birth: 1968.
Place of Birth: USA.
Secondary Education: Eleanor Roosevelt, Greenbelt, MD.
Collegiate institutions attended:

University of Maryland, Baltimore County, Ph.D. Computer Science, 2010.
University of Maryland, University College, M.S. Computer Systems Mgt, 1997.
University of Maryland, College Park, B.S. Computer Science, 1992.
Prince George’s Community College, A.A. Engineering, 1991.

Major: Computer Science.
Minor:
Professional publications:

1. Fink, R. A Statistical Approach to Remote Physical Device Fingerprinting. In
Military Communications Conference, 2007. MILCOM 2007. IEEE, pages 17. IEEE,
2008.

2. Fink, R. and Sherman, A.T. Combining end-to-end voting with trustworthy
computing for greater privacy, trust, accessibility, and usability (summary). In
Proceedings of the National Institutes of Technology (NIST) workshop on end-to-end
voting systems, October 13-14 2009.

3. Fink, R., Sherman, A.T., and Carback, R. TPM Meets DRE: Reducing the Trust Base
for Electronic Voting Using Trusted Platform Modules. IEEE Transactions on
Security and Forensics, 4(4):628-637, 2009.

4. Kewley, D., Fink, R., Lowry, J., and Dean, M. Dynamic Approaches to Thwart
Adversary Intelligence Gathering. Proceedings of the DARPA Information
Survivability Conference and Exposition II (DISCEX-II), Anaheim, CA, June 12-14,
2001.

5. Fink, R. Reliability Modeling of Freely Available Internet-Distributed Software. Fifth
Intl Software Metrics Symposium (Metrics 1998), Bethesda, MD, Nov 20-21, 1998.

6. U.S. Patent. Fink, R. A., et al. Passive Forensic Identification for Network Access
Control of Computing Devices. APL Invention Disclosure 2612-SPL, filed at
USPTO on October 7, 2009.

7. U.S. Patent. Kruus, P., Fink, R., James, C., and Akinyele, J. PWALL—A Collection
Of Security Components Designed to Eliminate the Risk of External Network
Attacks When Operating Within a Virtualized Environment. Provisional disclosure
filed February 29, 2008 (APL Case number 2588-0305).

8. U.S. Patent. Fink, R.A. Method of Passive Forensic Identification of Networked
TCP/IP Communication Endpoints. Provisional disclosure filed January 18, 2008,
U.S. Provisional Patent 61/022,029 (APL Case number 2446).

9. U.S. Patent. Fink, R.A., Brannigan, M.A., Evans, S.A., and Ferguson, S.A. U.S.
Patent 7,043,633, Method and apparatus for providing adaptive self-synchronized
dynamic address translation, issued May 9, 2006.

10. U.S. Patent. Fink, R.A., Brannigan, M.A., and Ferguson, S.A. U.S. Patent 6,826,684,
Method and apparatus for providing adaptive self-synchronized dynamic address
translation, issued November 30, 2004.

11. U.S. Patent. Fink, R.A., Brannigan, M.A., Evans, S.A., and Almeida, A.M. U.S.
Patent 6,363,071, Hardware Address Adaptation, issued March 26, 2002.

Professional positions held:

Johns Hopkins University / Applied Physics Laboratory. Senior Engineer. (2006–Present).

Private Consulting Firm. Senior Software Engineer. (2003–2006).

Network Associates Labs. Senior Software Engineer. (2001–2003).

BBN Technologies. Senior Software Engineer. (1998–2001).

Orbital Sciences Corporation. Senior Software Engineer. (1996–1998).

Lockheed Martin Space Mission Systems. Software Engineer. (1992–1996).

ABSTRACT

Title of Thesis: Applying Trustworthy Computing to End-To-End Electronic Voting

Russell A. Fink, Doctor of Philosophy, 2010

Thesis directed by: Dr. Alan T. Sherman, Associate Professor
Department of Computer Science and
Electrical Engineering

End-to-End (E2E) voting systems provide cryptographic proof that the voter’s intention

is captured, cast, and tallied correctly. While E2E systems guarantee integrity independent

of software, most E2E systems rely on software to provide confidentiality, availability,

authentication, and access control; thus, end-to-end integrity is not end-to-end security.

Trustworthy Computing (TC) improves the security of software systems significantly.

The Trusted Platform Module (TPM) protects secrets and enforces security policy in a self-

contained cryptographic co-processor. Systems use TPMs to allocate security requirements

not to untrustworthy software, but to tamper-resistant hardware, enabling applications such

as digital rights management and secure computing platforms.

Our research found that adding TC to voting systems is possible, practical, and enhances

privacy even in E2E systems by managing election secrets inside trustworthy hardware. We

produced 4 major results:

• Analysis of how TC can benefit E2E

• Design that adds TPMs to Direct Recording Electronic (DRE) voting systems, binding

ballots and votes, with software state, and enforcing election day policy

• Design that enables voters to verify voting platform system integrity using common

and inexpensive programmable smart cards

• Two designs that add trustworthy receipt printers to the Scantegrity E2E voting system

adding usability, security, and enabling alternative voter interfaces

Applying Trustworthy Computing to End-To-End

Electronic Voting

by

Russell A. Fink

Dissertation submitted to the Faculty of the Graduate School of
the

University of Maryland, Baltimore County in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
2010

c© Copyright Russell A. Fink 2010

For My Family—Christina, Ryan, and Katy

Bob, Marie

Russell, Martha

My Sisters

Timothy Nagel

In loving memory of Millie and Stan, Jewel and John, Mary and Esther,

whose brightly burning stars guided my every step

i

ACKNOWLEDGMENTS

As with any major work, there are too many people to thank, and too little space.

My highest gratitude goes to my beautiful wife, Christina, who encouraged me to start

the program, held me to it, and helped me every step of the way. You have been patient

beyond belief. Thanks to Ryan and Katy for your patience and understanding when dad was

“busy busy.” Thanks to all of you for being a sounding board when I got stuck, and offering

helpful and practical suggestions.

I thank my advisor, Dr. Alan T. Sherman, for everything, especially for carefully

reviewing my writing and always having time to talk.

Thank you, members of my committee, for the help and advice—Dr. Pinkston, who knew

and counseled me from start to finish; Dr. Phatak, your enthusiasm, creativity and brilliance

are unparalleled; Dr. Stephens, your careful review ensured my thoughts were organized

and complete; and Dr. Challener, you are the brightest gem in the trusted computing field.

Thanks for sending that e-mail message to the TCG back in ’09. Thanks to members of

the UMBC Cyber Defense Lab (CDL), especially Rick Carback, John Krautheim, and Mike

Oehler during my formative years at UMBC.

Thanks to my employer, Johns Hopkins University / Applied Physics Laboratory (APL),

and my supervisors for giving me the opportunity to complete this. Thanks to the many

people that have reviewed copies of this paper or offered advice along the way, especially

ii

Ginny Walker, Justin Osborn, and Ryan Gardner. Special mention to Robert Holder, Markus

Dale and Christina Pikas for helping out a fellow grad student.

Last, I thank the following people, for encouraging me to attempt a Ph.D.: Dr. Jayanta

Sircar, Dr. Carlo Broglio, Donna Gregg, Alan and Fran B., and Dr. Ralph Semmel.

iii

Contents

1 Introduction 1

1.1 Research Overview and Contributions . 3

1.1.1 Combining End-To-End Voting with Trustworthy Computing 4

1.1.2 Reducing the Trust Base for Electronic Voting Using TPMs 4

1.1.3 A Human Attestation Protocol—Bootstrapping Trust

Using TPMs . 4

1.1.4 Trustworthy Receipt Printers for the Scantegrity Election

System . 5

1.2 Merit and Broad Impact . 5

1.3 Collaboration and Authorship . 6

1.4 Organization . 7

2 Background 8

2.1 Voting Overview . 8

2.1.1 Goals and Requirements . 9

2.1.2 Architecture . 12

2.1.3 Types of System . 18

2.2 Voting System Risks . 22

iv

2.3 Cryptographic Security . 24

2.3.1 Cryptography Primer . 24

2.3.2 Trusted Platform Modules (TPMs) 27

2.3.3 Timing . 29

2.3.4 Security Analysis . 30

3 Adversary Model 31

3.1 Adversary Capabilities . 31

3.2 Attack Classes . 32

3.2.1 Data and Presentation Manipulation 32

3.2.2 Privacy . 33

3.2.3 Procedural . 34

3.2.4 Discreditation . 35

3.3 Attack Techniques . 35

3.3.1 Software Attacks . 36

3.3.2 Other Attacks . 36

3.4 Assumptions . 36

3.4.1 Security Assumptions . 37

3.4.2 Trusted Roles . 38

3.5 Attack Mitigation . 38

3.6 Attacks Not Countered . 40

4 Combining End-To-End Voting With Trustworthy Computing for Greater

Trust, Privacy, Accessibility and Usability 41

4.1 Introduction . 41

4.2 E2E Gaps in Voting System Attributes . 44

v

4.3 Enhancing Scantegrity . 47

4.3.1 Software Components of Scantegrity 47

4.3.2 Incorporating Trustworthy Computing 48

4.4 Benefits and Problems . 50

4.5 Conclusions . 51

5 TPM Meets DRE: Reducing the Trust Base for Electronic Voting using Trusted

Platform Modules 52

5.1 Introduction . 52

5.2 Previous and Related Work . 56

5.3 Architecture . 59

5.3.1 System Elements . 59

5.3.2 Security Assumptions . 60

5.3.3 System Roles . 61

5.4 Protocol . 62

5.4.1 Detailed Description . 63

5.4.2 Protocol Actors . 64

5.4.3 Protocol Parts . 64

5.4.4 Protocol and Implementation Enhancements 71

5.5 Security Arguments . 72

5.5.1 Countered Attacks . 73

5.5.2 Attacks Not Countered . 75

5.6 Benefits and Limitations . 76

5.7 Future Work . 77

5.8 Conclusions . 78

vi

6 A Human Attestation Protocol for Trustworthy Electronic Voting: Bootstrap-

ping Trust Using TPMs, Smart Cards, Timings, and Scratch-Off Codes 79

6.1 Introduction . 79

6.2 Previous and Related Work . 82

6.3 Threat Model . 85

6.4 Attestation Protocol . 87

6.4.1 System Overview . 88

6.4.2 Component Assumptions . 90

6.4.3 Protocol . 90

6.5 Protocol and Security Analysis . 97

6.5.1 Countered Attacks . 97

6.5.2 Timing Analysis . 101

6.5.3 Attacks Not Countered . 104

6.6 Alternative Protocols . 105

6.6.1 Flat Files . 105

6.6.2 Physical Authentication . 107

6.7 Future Work . 108

6.8 Conclusions . 108

7 On trustworthy receipt printers in the Scantegrity election system 109

109section.7.1

7.2 Related Work . 111

7.3 Requirements . 113

7.3.1 Functional System Requirements 113

7.3.2 Security Goals . 114

vii

7.4 Design . 115

7.4.1 Image Duplicator . 116

7.4.2 Receipt Printer Attestation Protocol 120

7.4.3 Marked Sense Translator . 125

7.4.4 Policy and Procedures . 131

7.4.5 Requirements Traceability . 131

7.5 Security Analysis . 132

7.5.1 Threat Model . 132

7.5.2 Assumptions . 134

7.5.3 Manipulation Attacks . 135

7.5.4 Identification Attacks . 137

7.5.5 Disruption and Discreditation Attacks 138

7.6 Discussion . 139

7.6.1 Comparison of the Designs . 141

7.6.2 Design Tradeoffs and Other Considerations 142

7.7 Extensions . 143

7.7.1 Design . 144

7.7.2 Choosing A Design . 145

7.7.3 Concerns and Benefits . 147

7.8 Conclusions . 148

8 Conclusions 149

viii

List of Tables

2.1 Phases of the election cycle. Many steps take significant effort, and errors

in early phases can influence later phases adversely. 17

4.1 Trustworthy Computing (TC) can enhance End-to-End (E2E) systems in

varying degrees. 44

7.1 Properties of keys in the Scantegrity receipt printer. 125

ix

List of Figures

2.1 A pregnant chad, shown on the left, from the Computer Election Systems’

Votomatic system. Is the pregnant chad an attempted vote, or a mistake that

the voter caught before punching completely through? (Image from [53])

On the right is a sample butterfly ballot. Confused voters thought the second

bubble indicated a choice for the second candidate on the left side of the

ballot. Both technologies were used in Palm Beach County, Florida, during

the 2000 U.S. Presidential election. (Image from [10]) 11

2.2 Notional architecture of a DRE election system. The highlighting indicates

trusted components and paths, plentiful throughout the system. 18

2.3 Example Scantegrity ballot. Special verification codes are printed onto the

ballot with invisible ink. Voters reveal the codes by marking the bubbles

with a special pen, and verify these codes against the public bulletin board

after the election. Standard Precinct Count Optical Scan (PCOS) scanners

will read the marked Scantegrity ballot. (Image from [81]) 21

2.4 Functional block diagram of a TPM showing its major components. (Image

credit: Guillaume Piolle) . 29

x

3.1 Example of the oracle / hostage attack. The voter on the left believes she is

interacting with a legitimate terminal, because the verification challenge has

been answered correctly by the hostage. 35

4.1 The software components of Scantegrity are represented as PC workstation

icons, and include Ballot Printer, Precinct Scanner/Tabulator, Scantegrity

Workstation, Central Tally Server, and Public Results Systems. The Scanteg-

rity Workstation produces commitment codes bound to ballot serial numbers

to supply to the ballot printer. The ballot printer prints the commitment

codes on the ballot, and the voter reveals the codes when marking his ballot.

The scanned ballot images are sent to the verification server, where the

voter can confirm that the system recorded his marked ballot correctly by

checking his codes, and where anyone can verify the tally was computed

correctly. 48

5.1 The architecture includes: DRE terminal (with a TPM), tallying systems,

and tracker/reporting systems such as Election Tracker [89]; trusted au-

thorities, Election Authority (EA), Precinct Judge (PJ), Tallying Authority

(TA), Independent Testing Authority (ITA), the voter; and binary images of

software, ballot, and storage for cast votes. 60

5.2 The protocol loads the Platform Vote Ballot (PVB) key into the TPM to

produce a signed digest of the vote and ballot. The PVB is usable only when

the Platform Configuration Register (PCR)s match a specified set of mea-

surement values. The vote, digest, and hash are stored in a pseudorandom

location on disk and the storage is signed whenever a new vote is inserted. . 63

xi

6.1 Sketch of the architecture and protocol as implemented in a standard PC

environment. Steps: 1) trusted BIOS stores software measurements in TPM.

2) Smart card requests a quote from the TPM. 3) TPM replies with digest of

PCR values. 4) Smart card looks up PCR values (“golden” measurements)

and checks the digest signature. 5a) If PCRs match the smart card golden

values, it reveals attestation secret, 5b) user reveals secret on scratch off

code and makes sure it matches. 88

6.2 Expected Timing Model . 102

6.3 Adversary Timing Model . 103

7.1 Receipt from image duplicator. Images of scanned bubbles are printed in

order of average pixel density, grouped by contest. Notice that partial marks

also appear. (Overvotes and undervotes are detected by the PCOS later in

the voting process.) . 119

7.2 Overview of the marked sense translator. The voter submits his ballot to the

PCOS that sends the marked positions, optional encrypted ballot definition,

and online verification number to the marked sense translator. The voter

optionally uses a smart card to verify the platform. The software uses the

TPM to reveal the Scantegrity codes, prints the codes and attestation proof

onto the receipt. The voter compares the receipt to the ballot. Anyone may

verify the integrity of the receipt and the marked sense translator with the

attestation proof on the receipt. 127

xii

7.3 Election officials may have to choose between the marked sense translator

and the image duplicator depending on their specific election requirements

and procedures: is it necessary to detect PCOS scanning errors in the polling

location, or can it wait until later? Are normal ballots used or are invisible

ink ballots used? Is random ballot ordering permitted, or must all candidates

appear in the same order on every ballot? 146

xiii

List of Abbreviations

AIK Attestation Identity Key . 116

APL Johns Hopkins University / Applied Physics Laboratory . ii

API Application Programming Interface . 23

BIOS Basic Input/Output System . 116

CA Certificate Authority . 134

CDL UMBC Cyber Defense Lab . ii

CHA Challenge Authority . 80

DMA Direct Memory Access . 75

DRE Direct Recording Electronic . 150

E2E End-to-End . 149

EA Election Authority . 121

EK Endorsement Key . 125

HAVA Help America Vote Act . 126

ITA Independent Testing Authority . 89

LPC Low Pincount . 27

xiv

MITM Man-In-The-Middle . 34

NIST National Institute of Standards and Technology . 6

NSA National Security Agency. .84

PCOS Precinct Count Optical Scan . 116

PCR Platform Configuration Register . 115

PDA Personal Digital Assistant . 123

PIN Personal Identification Number .84

PLA Platform Authority . 89

PAP Policy and Procedures . 126

PJ Precinct Judge . 62

PVB Platform Vote Ballot . 84

qrcode Two-Dimensional QR barcode . 117

RSA Rivest Shamir Adleman . 87

SHA Secure Hash Algorithm. 25

SMM System Management Mode . 83

SRK Storage Root Key . 116

TA Tallying Authority . 62

TC Trustworthy Computing . 149

TCG Trusted Computing Group . 110

TNC Trusted Network Connect . 83

TPM Trusted Platform Module . 150

xv

TSPI TCG Service Provider Interface . 90

TSS Trusted Software Stack . 53

TXT Intel Trusted eXecution Technology . 76

VCS Verification Codes Secret . 124

VVPAT Voter Verifiable Paper Audit Trails .58

xvi

Your every voter, as surely as your chief magistrate,
exercises a public trust.

Grover Cleveland, Inaugural Address
March 4, 1885

Chapter 1

Introduction

ELECTIONS are critical to maintaining the leadership of a free society. During elections,

voter’s intentions can be recorded exactly once; voters are hesitant to trust anyone

with their vote; and the data must be simultaneously kept private, free from modification,

and open to verification. Election officials must ensure that differently-abled voters are

represented in elections, data records are preserved and available long after the election,

and decisions can be rendered quickly. To meet these goals, voting systems must address

competing principles of voter utility, information security, and ease of administration—as

well as cost, ease of deployment, and reusability.

Municipalities have applied electronic and computer technology, including fully-

electronic Direct Recording Electronic (DRE) voting systems such as touch screen systems,

to record, transmit, and tally votes. Electronics help election authorities handle ever larger

numbers of voters within declining fiscal budgets. Although electronic voting offers ease

of use, convenient and nearly instantaneous tabulating, it has come under close scrutiny

in the past decade because of exploits in the software and operating systems that make

up a majority of the systems. These risks have been so severe that some leaders advocate

1

moving back toward paper-only systems—and paper-only problems. However, disabled

voters cannot use paper systems without assistance, paper methods lead to problems such

as confusing butterfly ballots and “hanging chads,” and are nearly impossible to tabulate

efficiently.

Recent research has produced End-to-End (E2E) cryptographic voting systems that

guarantee election integrity through software independence, a property that ensures the

outcome of the election is not influenced by the actions of software. More precisely, software

independent systems guarantee with high probability that the voters and election authorities

will detect improper changes to election data made by malicious or defective software. E2E

systems achieve software independence by giving the voter a way to check that his vote is

included in the final election tally, and enabling anyone to verify the correctness of the final

tally without learning how any particular voter voted. However, we observe that end-to-end

integrity does not imply end-to-end security; in particular, E2E does not guarantee privacy

of the vote casting process or transmission of the results for tallying, but instead allocates

these responsibilities to trusted officials and physical security procedures. Further, there are

some software components such as accessibility marking interfaces for the disabled that

some voters trust implicitly, limiting the extent of the software independence claims.

In this dissertation, we investigate augmenting E2E election systems with recent devel-

opments in Trustworthy Computing (TC), including the Trusted Platform Module (TPM)—a

dedicated, separate cryptographic coprocessor that safeguards vital election secrets from

compromised platform software by storing them in tamper-resistant hardware. Our thesis is

that we can significantly advance the state of the art in voting by applying TC to the systems

architecture of E2E voting systems to achieve greater privacy, usability, and accessibility

without weakening E2E’s strong integrity properties. We will manage election secrets

safely by applying TPMs to marking devices, printers, and scanners for both E2E and DRE

2

systems. We will attest platform software state to voters and independent third parties to

prove that the correct software is in charge of the platforms and maintaining voter privacy.

The result will couple E2E integrity with privacy, usability, and accessibility provided by

electronic systems in a way that no present day optical scan, electronic, or E2E system can

achieve.

1.1 Research Overview and Contributions

Our research demonstrates the practicality of adding TPMs to electronic and E2E voting

systems to improve usability and accessibility while maintaining security. Specifically, we

have produced designs that:

• integrate TPMs with DREs, cryptographically binding ballots, votes, and software

state, and enforcing election day policy with trustworthy hardware

• enable voters to verify voting platform system integrity using ordinary smart cards

• couple a receipt printer to the Scantegrity E2E voting system in a way that is usable,

secure, and enables alternative voter interfaces

These designs were inspired by the ways that TC can augment E2E systems, achieving

benefits made possible by trustworthy hardware: protecting voter privacy, identifying

problems early, reducing the trust placed in complex physical chains of custody, and ensuring

central control of the voting equipment through password enforcement of cryptographic

keys. These benefits are explained in detail in four foundational works.

3

1.1.1 Combining End-To-End Voting with Trustworthy Computing

We advocate combining TC techniques—including TPM protocols, application attestation,

and reduced software footprints—with E2E technologies, to provide voter and universal ver-

ifiability while enhancing privacy, accessibility, and usability through trustworthy electronic

systems. TC techniques can bolster E2E systems through ensuring the correct software is

running and managing cryptographic keys securely, thereby enhancing privacy, deterring

confusion, detecting problems sooner, and making possible high-assurance electronic acces-

sibility interfaces including for the blind. We analyze specific benefits that TC can bring to

E2E systems such as Scantegrity with Invisible Ink (Scantegrity).

1.1.2 Reducing the Trust Base for Electronic Voting Using TPMs

We reduce the required trusted computing base for DRE voting machines with a design based

on the TPM. Our approach ensures election data integrity by binding the voter’s choices

with the presented ballot using a Platform Vote Ballot (PVB) signature key managed by the

TPM. The TPM can use the PVB key only when static measurements of the software reflect

an uncompromised state and when a precinct judge enters the correct password revealed

on election day. Using the PVB with the TPM can reveal unauthorized software, ballot

modifications, vote tampering and creation of fake election records early in the election

process.

1.1.3 A Human Attestation Protocol—Bootstrapping Trust

Using TPMs

We present a protocol that enables a voter to verify that he is interacting with a valid

electronic voting machine using a simple smart card. The technique uses a standard and

4

inexpensive displayless smart card and a scratch-off sheet with hidden verification codes,

both obtained from an independent third-party. A TPM on the voting machine provides

attestation evidence to prove that the correct software has been loaded and that the machine

is controlled by the Election Authority (EA). Our protocol detects Man-In-The-Middle

(MITM) “proxy attacks” where a corrupt election official violates voter privacy by installing

a malicious machine that communicates with a hidden legitimate machine, forcing it to

answer attestation challenges.

1.1.4 Trustworthy Receipt Printers for the Scantegrity Election

System

We present two independent designs that add a confirmation number receipt printing capa-

bility to the Scantegrity with Invisible Ink (Scantegrity) E2E election system, improving

voter usability and accessibility while maintaining privacy. We present two designs that

use the TPM to implement a receipt printer in Scantegrity: the first is a stand-alone marked

position image duplicator, and the second is a marked sense translator that requires state and

a connection to the Precinct Count Optical Scan (PCOS) scanner, but that has the possibility

of eliminating the need for invisible ink in the Scantegrity system.

1.2 Merit and Broad Impact

This research shows that TC can improve privacy of E2E systems, improve security and

privacy for DRE systems, can catch problems in the polling location, and enables strong

enforcement of election day policies including start and stop times of voting. Our work

shows that TC approaches offer a sound basis for securing voting systems, including high-

watermark E2E systems.

5

In a broader sense, improving security on E2E systems using TC will lead to greater

acceptance of E2E overall. Our results set the stage for application to many other data

collection and dissemination paradigms that rely on software for security and privacy,

including healthcare, financial processing, and homeland security.

1.3 Collaboration and Authorship

This dissertation includes four technical chapters that were created as independent, publish-

able works. Russell Fink independently thought of applying TPMs to DRE voting, and was

the first to create a detailed engineering protocol describing where to apply the TPM. Fink

designed all of the protocols and use cases presented in this dissertation, vetting them with

his committee and colleagues. He is the lead author on Chapters 4, 5, and 6.

Fink is the co-lead author of Chapter 7 with Richard T. Carback. Fink created the

detailed designs and TPM protocols, and collaborated with Carback on the high level design,

requirements, security arguments and background. The contents of Chapter 7 appear in both

Fink’s and Carback’s dissertations with approval of their respective dissertation committees

and the graduate school.

Other co-authorship and publication information includes:

• Combining End-To-End Voting with Trustworthy Computing (Chapter 4) was jointly

written with Alan Sherman, and a short summary was published in the 2009 National

Institute of Standards and Technology (NIST) Workshop on E2E Voting Systems

• Reducing the Trust Base for Electronic Voting Using TPMs (Chapter 5) is joint

work between Sherman and Carback, and appeared in the December, 2009 IEEE

Transactions on Security and Forensics, Special Issue on Electronic Voting

6

• A Human Attestation Protocol—Bootstrapping Trust Using TPMs (Chapter 6) was

joint work with Challener and Sherman, and owes significant credit to Ryan Gardner

for formative discussions

• Trustworthy Receipt Printers for the Scantegrity Election System (Chapter 7) is

joint work with Carback and Sherman. These ideas, particularly the receipt printer,

benefited greatly from the wisdom of Ronald Rivest

1.4 Organization

The dissertation is organized as follows. Chapter 2 gives a overview of voting, focused

mainly on electronic systems, and discusses the risks to current voting systems. Chapter 3

describes an adversarial model common to the rest of our designs and protocols. Chapter 4

analyzes some security gaps of E2E voting, and describes specific changes that can be

made to E2E systems to incorporate TC for better privacy and control. It is also presents

the central arguments that support our thesis statement. Chapter 5 discusses a protocol

for augmenting DREs with TPM and provides the basis for understanding how the TPM

works in subsequent chapters. Chapter 6 describes a way that the voter can verify the booted

software state of computer systems including voting platforms, and Chapter 7 combines

the ideas of TC and E2E through designs for a verifiable receipt printer for Scantegrity for

greater security and privacy. Chapter 8 concludes the work.

7

Trust, but Verify (Russian proverb)

Trust ⊕ Verify (Russ Fink)

Chapter 2

Background

IN this chapter, we introduce the reader to the concepts used throughout the dissertation.

We give an overview of voting, our perspective on risks of using electronics and

software in modern voting systems, and the techniques we use to secure voting systems

against software-related attacks.

2.1 Voting Overview

When electing their leaders, voters must be sure that their votes are cast as intended, collected

as cast, counted as collected, and that data records are preserved for auditing and future

analysis while maintaining the privacy of their choices. Election officials must ensure that

differently-abled voters are represented in elections, data records are preserved and available

long after the election, and decisions can be rendered quickly.

8

2.1.1 Goals and Requirements

Voting systems must address several principles to ensure that everyone can vote and that

everyone’s vote is counted:

• Voter utility— accessibility to disabled voters, voting usability, transparency, under-

standable marking and casting mechanisms, and detecting problems in the system

close to the point of origin

• Information assurance—integrity, privacy, accuracy, authenticity, availability, repudi-

ated choice, non-repudiated cast [88], and small trusted chain of custody (to minimize

the attack opportunities)

• Ease of administration—auditability, ease of administration, efficiency, policy en-

forcement, total cost of ownership

Voter Utility

Voter utility means simply to provide a usable and efficient election system that is easy to

use; does not require previous training in voting or computer systems; needs only basic

cognitive abilities such as the ability to compare sequences of characters (called strings);

and above all, ensures that procedures and equipment do not confuse the voter into voting

against his will.

A voting system that is easy for the voter to use is said to be usable; a system that is

easy for voters who are blind, or that have other disabilities, is said to be accessible. Special

electronic interfaces provide accessibility in many ways—audible interfaces for the blind,

large screen printing for poorly sighted voters, and sip-and-puff systems for paralyzed voters.

If municipalities did not offer accessible systems, a disabled voter would have to trust a

9

human helper into the voting booth to mark, cast, and verify his ballot, thereby depriving his

of the right to vote in private.1

Transparency is a part of voter utility, and is the property that enables the voter to

understand what is going on with his vote and the election in general. A simple example is

voting with colored marbles, as was done centuries ago. Each candidate in a race—an office

or question, containing one or more possible candidates—is assigned a color, and each voter

merely places the ball of the color corresponding to his choice into a hopper. Later, someone

tallies up the colored balls and decides a winner. This process is transparent because it is

obvious that the winner is determined by a simple plurality count. Unfortunately, “balls

as ballots” is terrible for privacy, as others easily may observe what color ball is being

dropped into the hopper. Further, each voter may be given balls of different sizes, so that

the tallying officials know clearly how each person voted. Ballot stuffing is also possible,

because corrupt officials may dump tons of extra marbles into the hoppers (or spill some

out) after the public part of the election is complete. There are many other problems with

this system, and readers are referred to Doug Jones’ and others’ treatment on the subject

[53].

Voter utility also requires that voting systems provide an unbiased presentation of the

ballot and an unquestionable capture of the voter’s intent. An example of misrepresentation

of ballots and voter confusion from the 2000 Presidential Election is described by Wand et

al. in [100]. Among other problems were interpreting voters’ preferences given failures in

the voting technology. Figure 2.1 shows one such problem.

1We distinguish voting into three phases: marking, where the voter indicates his choice on the ballot;
casting, where he commits his preferences to the official record; and verifying, where he ensures that his cast
vote was tallied correctly. Most systems deployed today do not offer voter verification.

10

Figure 2.1: A pregnant chad, shown on the left, from the Computer Election Systems’
Votomatic system. Is the pregnant chad an attempted vote, or a mistake that the voter
caught before punching completely through? (Image from [53]) On the right is a sample
butterfly ballot. Confused voters thought the second bubble indicated a choice for the second
candidate on the left side of the ballot. Both technologies were used in Palm Beach County,
Florida, during the 2000 U.S. Presidential election. (Image from [10])

Finally, catching problems early is important for utility so that the voter does not leave

the polling place before his preferences are accurately recorded. Making the voter wait until

after the election to verify his vote decreases the likelihood of him identifying problems, as

too much time has gone by for him to remember all the details when he cast his vote.

Information Assurance

Information assurance is defined by some properties that must hold in order for information

to remain correct. The basic properties are: integrity, ensuring that information is not

changed by unauthorized parties; privacy, that sensitive information does not leak out;

authenticity, that information was generated by known parties; availability, that information

can be recorded and accessed when needed by authorized parties; and non-repudiation,

ensuring that if a principal commits to some statement or fact, that this fact cannot be denied

11

plausibly by that principal later. We expect voting systems to provide all of these properties,

or else the election could be subverted. For instance, if a voting system did not ensure

integrity, then votes could be flipped—changed covertly—causing the wrong candidate

to achieve office (End-to-End (E2E) systems offer strong integrity guarantees). Without

privacy, voters could sell their votes or be coerced into voting for a specific candidate.

Without authenticity, voters have no way of knowing that they are interacting with correct

machines, and could be voting on an adversary’s machine. Without availability, voting

and tabulating systems are not available to support quick resolution of the election. If we

allow voter repudiation, then anyone could initiate a false challenge of voting fraud, causing

delays in the certification of election results.

Administration

Election systems must be easy to administer. Although ball and ballot systems may seem

sufficient for very small numbers of voters, physical systems do not scale well. Imagine

having to tabulate hundreds of tons of marbles in a presidential race! Good election systems

capture votes in a way that is easy to tally and easy to verify. Total system cost impacts

ease of administration, as well. Costs of producing the ballots, procuring and deploying

computer systems, and training official poll workers are very high, and our officials are

asked to conduct accurate elections in the face of declining budgets. As a result, a voting

system that is considered “easy” to administer is one that is efficient, scalable, as well as

affordable.

2.1.2 Architecture

A voting system has many components and phases. The system architecture describes

components and their locations in the system; the human administrators, election judges,

12

and officials (called actors); and the phases of the election. Although real-world election

system architectures vary from municipality to municipality, we establish a basic model to

frame our designs.

Locations

Election officials install, configure, and perform preliminary tests of equipment in a central

election office. This is also where they design and print ballots, and manage other materials

required by voters and precinct officials. The precinct polling location is where the actual

polling takes place. There are many precincts in a given election municipality, and therefore

many polling locations. The tallying location is where officials count the precinct results

and certify the election.

The polling place is staffed by election judges, with at least one judge from each

competing political party, to ensure procedures are carried out correctly. The polling place

is visited by officials prior to election day for equipment setup, and by voters on election

day. It is a busy place with many different activities taking place, and can become confusing

especially during peak periods of voter turnout.

Trust

Before continuing, we must distinguish the word trust from trustworthy. These two terms

must not be used interchangeably. Trustworthiness is a characteristic granted to an entity

after it has been observed to perform reliably in some capacity. Trust, on the other hand, is

an assumption that is made independently from any prior performance. To trust a component,

as defined by David Grawrock, is to rely on that component to perform an intended function

for an intended purpose [43]. A component trusted to perform a given function is expected

to perform that function, such that failure of that component likely means failure of the

13

system: failure of a trusted security component (including actor, role, or assumption) usually

implies failure of system security.

Wise systems engineers strive to reduce the trusted base of systems as a result, minimiz-

ing the number and complexity of the things they trust to implement part of their security

policy.

Verification supersedes trust. Verification is the process of confirming certain character-

istics of an entity, for example through samples or measurements of behaviors or outputs,

for the purpose of determining whether to interact with the entity. Verification is a process

used by banks when you deposit a paycheck, for instance. Before crediting your account

with the dollar amount of the check, the bank first verifies that your employer’s account

has the funds available. Trust, on the other hand, implies a reliance that defies verification.

While the bank is busy verifying your employer’s funds, you trust that your paycheck will

clear so that you can pay your mortgage on time. If your employer lacks the funds, then

your payment will be late. In this way, you trust your employer to pay you on time. The

bank verifies your employer’s account, but certainly your bank will not go out of business

if your employer short-changes your wage. In security, verification is the goal, not trust;

but where critical components cannot be verified, designers must settle for trust. Thus, the

design goal of secure systems is to minimize the trust.

Trusted Roles and Procedures

Our notional system architecture assumes the following trusted roles:

Election Authority (EA): Responsible for correct execution of the election. Defines sup-

porting roles, policies, procedures, and election rules. Defines requirements for

election technology. Procures, configures software, and delivers election technology

to precincts. Coordinates candidates and establishes the contests. Designs and creates

14

ballots, prints ballots, delivers to election place. Trains and certifies judges and minor

officials. Resolves challenges, performs recounts as required. Archives election

records according to municipal law.

Precinct Judge (PJ): Enforces election policies and procedures in the precincts. Sets up

equipment in polling place. Resolves equipment failures and related polling place

issues. Assists voters as required. Maintains privacy of results. Conducts parallel

testing. Delivers results securely to tallying location.

Tallying Authority (TA): Tallies and publishes results, certifies the election and decides a

winner. (The EA can perform these duties, but we assume distinct roles for generality.)

Independent Testing Authority (ITA): Reviews, compiles and tests election system soft-

ware for the EA. Responsible for ensuring that the software meets the EA’s require-

ments for the election system.

Parallel testing is an important procedure for election security. In parallel testing,

election officials select sample machines at random from a pool of election-ready systems.

Officials exercise each test system by voting on it using actual ballots, taking care to omit

the test votes from the actual election tally. Parallel testing can catch certain software logic

flaws and malicious code that may be designed to remain dormant until the day of the

election, and then activate to flip votes, confuse voters, or inhibit the election in other ways.

Although parallel testing is meant to catch corrupt software, Shamos [87] points out that the

probability of randomly selecting a tampered unit is quite small. Clever malware can detect

characteristic voter behavior, noting the difference between the “fist” of a high variation of

voters versus a few select test individuals, or it could detect environmental characteristics

using hardware-based techniques such as remote hardware fingerprinting to detect whether

15

it is in the polling place [57]. Still, it is useful against hardware failures or latent errors in

software missed by ITA testing.

Phases

There are several phases in an election cycle, beyond just the day of the election. Table 2.1

shows a simplified representation of the election cycle. Note that with many phases, policy

and procedure failures in early phases can propagate through to subsequent phases.

16

Phase Activities Time Before
Election Day

Duration

Requirements Define requirements for election
systems according to local law

years months

Procurement Purchase and acquire equipment
and software for voting

years months

Independent
Testing

Conduct testing of equipment. Per-
form clean compiles of the software

months weeks

Software
Installation

Load software onto voting plat-
forms

months days

Ballot
Preparation

Prepare ballot designs, print ballots weeks days

Training Hire and train poll workers on tech-
nology

weeks days

Equipment De-
ployment

Deploy equipment, ballots, forms to
precinct officials. Voting machines
often stay overnight at election offi-
cials’ houses awaiting deployment
to the polling places

weeks days

Precinct Setup Install equipment at precinct. 1 day hours
Election Day Open the polling location, take zero

counts of machines, activate ma-
chines, allow voting, close election
at appropriate time. During voting,
conduct parallel testing

(election day) 1 day

Results
Tabulation

Send results to central location for
tallying. Data are often transported
by local law enforcement

1 day after hours

Election
Certification

Certify the results and announce a
winner

days after 1 or 2 weeks,
barring chal-
lenges

Table 2.1: Phases of the election cycle. Many steps take significant effort, and errors in early
phases can influence later phases adversely.

Figure 2.2 is a notional architecture diagram showing the major election components

and phases for a Direct Recording Electronic (DRE) election system.

17

Polling Place
Check-In

Voter Card

Voter

Certification
Authority

Source
Code

Binary
Software

Voting
Terminal

Cast Votes

Vendor State Admin

Poll Worker

Admin Card

Polling
Counter

Election
Tally

Election
Certified

Results
Published

Vendor Admin

Ballot Card

Election Board

Ballot
Definition

Figure 2.2: Notional architecture of a DRE election system. The highlighting indicates
trusted components and paths, plentiful throughout the system.

2.1.3 Types of System

Many voting systems have been proposed to meet the goals of information assurance,

ease of administration, and voter utility. We consider the ability of three contemporary

voting technologies to solve problems: central-count paper record systems, electronic and

specifically DRE systems, and E2E voter and universally verifiable systems.

18

Optical Scan

An optical scan system tallies votes by sensing marks that the voter makes on a paper ballot.

Two types of optical scan systems include central count optical scan and Precinct Count

Optical Scan (PCOS). Both types scan a paper ballot, marked in various ways by a pencil,

dark pen, or punched holes depending on the system, and translate these marks into choices

in the contests. Central count and precinct count differ in where the paper records are

scanned and processed. Central-count paper record systems implement a ballot-box style of

voting where voters mark their ballot cards and drop them into a ballot box. At the close

of the election polls, trusted officials seal and transport the boxes to a central location for

scanning and tabulating. PCOS systems tabulate the records in the polling location, and

officials record counts for each scanner at the close of the polls. Officials also seal the

marked paper PCOS ballots and transport them to the EA for safe keeping in case a manual

recount is required.

The benefits of optical scan systems are relatively inexpensive ballots, cheap marking

systems, fairly basic scanning technology, and ballot records that the voter marks directly.

Additionally, the voter can notate write-in candidates most easily on paper records.

Unfortunately, paper systems have many problems. They have large, trusted chains of

custody to protect the privacy and integrity of the ballots and digital counts during transport

from the precinct to the election authority. Paper systems are hard for blind or disabled

voters to use, requiring special automated marking systems that may require assistance

or training to use. Furthermore, the security of some automated marking systems is an

afterthought, and privacy and integrity could be compromised for blind voters. Undervotes

and overvotes—no mark and too many marks on a given race, respectively—are not detected

by the paper ballot, and tabulating machinery can destroy paper records.

These and related problems with paper records have led to the creation of other systems.

19

Electronic and DRE

Electronic systems have been created to address usability problems, improve counting

efficiency, and increase privacy. DRE systems fully automate the ballot presentation and

data capture steps, reducing the time needed to scan and count the votes enabling quick

election results. DRE provides much better usability and accessibility to voters than do paper

records because the display and entry apparatus can accommodate voters with different

abilities through high-contrast displays, audible ballots, multi-language ballots, and sip-and-

puff systems for paralyzed voters. Electronic systems also detect undervotes and overvotes

prior to vote casting.

Unfortunately, recent electronic and DRE systems implementations were poorly designed

and are susceptible to undetected software replacement and injection attacks [32, 58].

Previous studies on security and implementation problems of current DRE systems include

Kelsey’s [55] catalog of DRE attack strategies, a threat analysis derived from attack trees

by the Brennan Center [66], and research analyses by Kohno et al. [58], SAIC [77],

RABA [71], and Compuware Corporation [27] on flawed commercial DRE implementations.

Additionally, Hursti [49] analyzed the problems of unauthenticated software installs, and

Feldman, et al. [32] analyzed the damage caused by viruses when policies and procedures are

not followed. Additional vulnerabilities in modern DREs were uncovered in the EVEREST

Project [15] and in the California Top-To-Bottom Review [14].

E2E

E2E election systems use voter verifiable cryptography to reveal data discrepancies. One

E2E system is Scantegrity with Invisible Ink (Scantegrity) [23]. Scantegrity uses a single

ballot sheet preprinted with ovals, corresponding to candidates, that contain invisible secret

20

codes. To vote, the voter uses a special ink pen to mark her choice on the ballot corresponding

to her choice, revealing an alphanumeric code that she can check against results posted on

a public server. The marked ballot is scanned with traditional PCOS scanners to record

the voter’s intent. Scantegrity is voter verifiable—the voter can verify that her vote was

accurately captured using the revealed codes—and also universally verifiable, meaning that

anyone can verify that the computation of the final tally is consistent with cryptographic audit

logs. Besides implementing E2E, an additional strength of Scantegrity is that off-the-shelf

PCOS scanners can interpret the ballot marks.

Figure 2.3 shows an example Scantegrity ballot.

Figure 2.3: Example Scantegrity ballot. Special verification codes are printed onto the
ballot with invisible ink. Voters reveal the codes by marking the bubbles with a special pen,
and verify these codes against the public bulletin board after the election. Standard PCOS
scanners will read the marked Scantegrity ballot. (Image from [81])

21

2.2 Voting System Risks

Voting architectures are complex and involve many parts that must work correctly to ensure

that every vote is recorded, cast, and tallied correctly. Component and interconnection

complexity creates specific types of risks that can lead to attacks on system integrity and on

voter privacy. Some of the risks are:

Procedures: Procedures must be carried out by many different election officials. Often,

officials are not trained adequately or are inexperienced with managing elections.

Election day, in particular, involves many specific procedures—from recording zero

tapes at the beginning of the election, to ensuring that the hours of the polling location

are followed (see [41] for a violation of polling location hours). Further, voting booth

rules must be followed, including preventing voters from using cell phones in voting

booths e.g., to communicate to a vote buyer. Many times, not enough officials are on

hand to handle the full voter load, leading to breakdowns in procedures.

Custody Chains: A chain of custody is a trusted path in which items are transported from

one secure place to another. An example is moving printed ballots from the central

authority to the precinct polling sites. An important chain of custody is the transport

of precinct results to the central tallying location at the close of the election; failure

for some votes to appear can lead to widespread disputes of the entire election.

Software Testing: Bev Harris reports that many ITAs are ineffective, staffed by inexpe-

rienced people or are rushed in an effort to certify a product quickly. The vendor

employs the ITA, not the EA, so any bugs that are reported are free to be ignored [45].

Sadly, election authorities lack the expertise to do the testing, and must rely on the

22

results of the ITA and the honesty of the vendors to help certify correctness of the

election equipment.

System and Software Complexity: Computer technology is complicated. In particular,

system and application software is complex, is produced by developers of unknown

pedigree, and is something not easily understood or inspected by the ITA. Voting

software often relies on third-party libraries (e.g., Microsoft Windows Application

Programming Interface (API) and libraries) for which no source code is available,

introducing complex interdependencies and latent errors that appear sporadically

and may be hard to trigger in a cleanroom test lab environment. The Brennan

Center of Justice performed a comprehensive assessment of voting technology in

2006, and discovered specific software risks that include software injection attacks—

where malicious software is loaded onto the voting platform even during the election;

lifecycle attacks, where malware is inserted during system and component libraries

development; and misconfigurations and accidental networking, allowing attackers to

compromise system software remotely. Further, the Brennan Center points out that

software attacks are the least detectable, and most pervasive, of all possible attacks on

election systems because they require the fewest “informed participants.” [65].

These risks can be exploited by a clever and concerted adversary to tamper with the

election results, hinder the certification of the winners, and call the entire voting system

into question shaking public confidence in the system. The adversary receives a special

treatment in our attack model described in Chapter 3.

23

2.3 Cryptographic Security

Before discussing the adversary model and attacks, we review the tools and technologies of

Trustworthy Computing (TC) that we will use to defend against the various attacks.

2.3.1 Cryptography Primer

Cryptography is a field of mathematics that is used in data security. It concerns transfor-

mations of numbers through functions in such a way that ties transformations to pieces

of information called keys. Data are secured by using keys with encryption algorithms—

mathematical operations that transform data from a plaintext, or original representation, into

a ciphertext, or transformed representation that bears no resemblance to the original (with

high probability).

There are two types of encryption algorithms: symmetric algorithms, that use the

same key to encrypt and decrypt data (also called shared key algorithms); and asymmetric

algorithms that use one key to encrypt data and a separate but unique key to decrypt data

(also called public key algorithms). In public key algorithms, the two keys are paired

mathematically such that every key has a unique partner key. Keys such as this are called

key pairs, where one key is called the private or secret key and its paired mate is called

the public key. In practice, the public key can be shared freely, while the private key is

kept extremely secure, often protected by a password and sometimes by a special piece

of hardware like a smart card or cryptographic token or fob. The two keys can provide

confidentiality and authenticity depending on how they are used.

A didactic example involving two communicating parties, Annie and Bob, illustrates the

different use of keys. If Annie wants to send a private messageM to Bob such that only

Bob can read it, Annie encryptsM with Bob’s public key. Bob decryptsM with his private

24

key. If Bob is the only one with access to the corresponding private key, then only Bob may

decrypt and read the message, and messageM was sent in confidence from Annie to Bob.

This is denoted by A→ B : PB[M].

Bob may wish to send an acknowledgment to Annie that he got her message. But, he may

want to ensure that Annie knows it came from him, and not somebody else. Bob encrypts his

replyR with his private key, and sends it to Annie. Annie attempts to decrypt the message

using Bob’s public key; if the decryption succeeds—that is, the message appears to be a

properly formatted acknowledgment message, and not gibberish—then Annie knows R

came from bob if she assumes that only Bob has Bob’s private key. By using his private

key, Bob is said to sign the message. This is denoted by A← B : SB[R]. Signatures factor

prominently in our dissertation.

Besides encryption, hash algorithms are used to implement non-invertible mathematical

transformations on data. While encryption functions transform plaintexts into ciphertexts of

at least the same size, hash functions can take arbitrarily large plaintexts as input and produce

small, fixed-sized digital representations as output. These representations are sometimes

called thumbprints, similar to how an inked thumbprint is a very compact representation

of the thumb owner’s identity. Hash functions have the property that for any two texts Φ

and Υ, hash(Φ) = hash(Υ) only when Φ = Υ with high probability. In other words,

a good hash algorithm resists collision, a condition where two separate texts hash to the

same value. Strong algorithms make it computationally time-consuming for an adversary to

find a colliding text given nothing more than some fixed input message. One popular hash

algorithm is Secure Hash Algorithm (SHA)-1, which produces a 160-bit hash code for texts

of arbitrary size, with a low probability of collision.

Because of these properties, hash algorithms can help indicate message integrity: if

one bit in a message is changed, its hash value will change also. But what protects the

25

hash? If we use public key cryptography, we can sign the hash of a message to prove both

authenticity of the sender, and that the message (and its hash) has not changed in transit.

Signed hashes are called digests, and are used typically on e-mail messages, over secure

connections, or anywhere that data can be intercepted and changed. Here is the full notation

of how Annie verifies Bob’s message:2

Part 1 - Annie Verifies Bob’s Message

B : dB = SB[Hash(R)] (1.1)
A← B : R, dB, “Bob” (1.2)

A : annieHash = Hash(R), (1.3)
PB = GetPublicKey(“Bob”)

A : bobHash = P−1
B (dB) (1.4)

A : (annieHash == bobHash) −→ message valid, came from Bob (1.5)

1. Bob hashes his acknowledgment message and signs it to produce digest dB.

2. Annie receives the message from Bob that includes the acknowledgment, the digest,

and a claim that the reply came from “Bob”.

3. Annie performs her own hash of the reply. She looks up Bob’s public key (if she did

not have it already).

4. Annie decrypts Bob’s digest to get Bob’s hash of the message.

5. Annie compares her own hash to Bob’s decrypted hash. If they match, she knows the

message is valid and came from Bob. (If they do not match, then either the message

was changed in transit, or the message did not come from Bob.)

2Our protocols are written as major parts that each consist of separate steps. The numbered sentences that
follow each part correspond to the steps within that part.

26

2.3.2 Trusted Platform Modules (TPMs)

The TPM is an embedded cryptographic processor and nonvolatile storage device meeting

specifications provided by the Trusted Computing Group [97]. The TPM allows platform

attestation whereby sensitive information and keys can be bound to measured states of

booted software. Version 1.2 of the TPM implements asymmetric RSA 2048-bit encryption,

random number and key generation, monotonic counters, and the SHA-1 within tamper-

resistant hardware.3 The TPM offers three major protections for computing platforms:

physical and architectural security, a flexible key hierarchy, and attestation support.

The physical security of the TPM is bolstered by tamper-evident packaging and secure

mounting on the motherboard. TPM-enabled architectures are designed to use the TPM as a

slave device—some attach the TPM to the Low Pincount (LPC) bus, for example—ensuring

that the TPM cannot interfere with or control the CPU. Sensitive data exchanged between

the CPU and TPM can be encrypted to resist attacks by malicious devices or hardware

probes [97].

The TPM maintains a hierarchy of keys, rooted by the Storage Root Key (SRK) that

protects keys and other data stored externally. The SRK is generated whenever someone

takes ownership of the TPM, preventing new owners from accessing the former owner’s

keys. The SRK is generated and stored internally such that the private part never leaves the

TPM. Keys in the TPM hierarchy have a parent / child relationship, whereby a parent key

encrypts—or wraps—a child key. Children of the SRK (but not the SRK) can be exported

in encrypted blobs, easing the storage burden on the TPM while allowing software to load

keys back into the TPM when needed. In our protocol, the Platform Vote Ballot (PVB) is

created as a child of the SRK. As additional protection, the TPM can enforce passwords on

blobs to prevent unauthorized loading.

3SHA-1’s replacement will be addressed in the next version of the TPM specification.

27

Ownership is enforced by an owner password that allows the administrator to use all

features of the TPM. Occasionally, an administrator other than the TPM owner needs the

ability to perform limited tasks, such as invalidating a key, but the owner does not trust

the administrator with the owner password. The TPM supports delegation to address this

situation by granting limited privileges to an administrator enforced by a distinct password.

The TPM can support system software attestation by recording the state of the platform’s

software processes as measured through means of cryptographic hashes of executable binary

code. Such measurements can be compared to the expected state to verify the platform’s

integrity. Measurements are done typically at the initial boot of the platform by following a

sequence of load, measure, and execute steps among the major software components. For

instance, the Basic Input/Output System (BIOS) loads the boot loader, measures it, stores the

measurements in the TPM, and then transfers control to it. This measurement chain must

include all critical system components and configuration data. Measurements are stored in

a type of TPM memory called a Platform Configuration Register (PCR), a special volatile

memory location that either can be reset to zero, or extended by hashing a new value with

the existing PCR value. PCRs never can be set to a specific non-zero value, for security

against malicious software. A signing key can be bound to a particular software state by

specifying acceptable values for the PCRs, allowing the TPM to load the key only when the

software measurements stored in the PCRs are correct.

Figure 2.4 shows the major functional components of a TPM.

28

Cryptographic
processor

Persistent memory

Versatile memory

Platform Configuration
Registers (PCR)

Attestation Identity
Keys (AIK)

storage keys

Storage Root
Key (SRK)

Endorsement Key (EK)

RSA key generator

SHA-1 hash generator

encryption-decryption-
signature engine

se
cu

re
d

 in
p

u
t

-
o

u
tp

u
t

random number
generator

Figure 2.4: Functional block diagram of a TPM showing its major components. (Image
credit: Guillaume Piolle)

2.3.3 Timing

Computers are built from semi-conducting electronic components with electrical properties

that vary based on physical environment. Clock circuits, in particular, are subject to timing

variations based on thermal conditions. Because clock circuits emit periodic pulses that

let CPUs move from instruction to instruction, variations in temperature can cause CPUs—

including that in the TPM—to function slightly faster or slower than normal. Moreover,

each circuit is a unique, physical instantiation of a design, meaning that two implementations

of the same design may exhibit different timing characteristics. Research has exploited these

timing differences to identify specific computing platforms based on the rate of time gained

or lost relative to a measurer [33, 57]. We suggest that hardware timing techniques can be

29

used to determine timing variance on a TPM’s operations, such that we can tell how many

components lie on the path between a challenger and a TPM. This idea is examined further

in Chapter 6.

2.3.4 Security Analysis

To show the worth of our designs, we use security analysis to show attacks that we can defeat

and, importantly, to justify the assumptions we make. An informal security analysis begins

with a model of the attacker: goals, capabilities, and locations of the attacker; followed by

the system assumptions and an examination of (a) how the design defeats the attacks, and

(b) what can go wrong if some of the assumptions are relaxed or broken.

30

Indian EVMs [Electronic Voting Machines] are fully
tamper-proof when used under complete
administrative safeguards prescribed by the ECI.

Alok Shukla, Deputy, Election
Commission of India (ECI),
EVT/WOTE, August, 2010

Chapter 3

Adversary Model

WE briefly define the adversary in terms of goals, capabilities, and possible attacks.

We assume the same basic adversary model throughout the dissertation, so we

discuss it separately before we present the designs.

3.1 Adversary Capabilities

Our adversary is technologically capable, and computer savvy. He is funded at a fairly high

level, but is risk averse and wants to avoid detection (e.g., the adversary may be an insider,

and wants to remain employed for subsequent elections). Our adversary wants to subvert

the election by changing its outcome wtihout detection. Barring an easy change of outcome,

the adversary will settle for delaying its certification.

The adversary also wishes to establish continued presence in the election system, or cause

election officials to consider reverting back to simpler, more easily compromised election

systems benefiting the adversary. He has physical access to election systems and artifacts

(e.g., printed ballots) before, during and after the election, and can load software, reboot any

31

computer components, and insert or remove data from local storage. The adversary also has

access to secondary storage including the voter authorization card, and also the post-election

precinct data bundled for transmission to the tallying location.

The adversary knows how to take control of system software and its underlying storage.

The adversary can make software changes before or during the election, even to machines in

the polling booth.

3.2 Attack Classes

Several attack types are available to the adversary to help him achieve his goals. These

attacks are separated from attack techniques, as one or more techniques may help carry out

a particular type of attack.

3.2.1 Data and Presentation Manipulation

The attacker can modify data and its presentation. Data modification is the most basic

form of attack against election systems, and it results in flipping enough votes tightening

the margin of victory, causing an expensive manual tabulation of mail-in votes or even a

hand-recount of all cast votes. Data insertion (ballot stuffing) and data deletion also are

possible.

The adversary can attack data at rest, including data stored on local precinct devices, and

can attack data in transit by subverting the trusted chain of custody in transporting precinct

results to the central tallying location.

Subliminal attacks impact the voter and may cause his to become confused, change her

vote, or not vote in a particular contest. These attacks occur when the adversary makes

32

subtle changes to the display, the font, or the order of the candidates on Direct Recording

Electronic (DRE) user interfaces or on the ballot.

The attacker can change the way the ballot is presented through many means. The

attacker may attempt to modify ballot data, either by reprinting physical ballots with

incorrect or reordered information, or by modifying the data image stored in DRE voter

authorization smart cards. The attacker may try to misrepresent the ballot on the screens in

DRE systems, and may try to realign the touch screen areas in DRE systems causing voters

to select the wrong candidates inadvertently.

3.2.2 Privacy

Privacy attacks are possible against the voters in the system. We distinguish two types—

uninformed attack, where the voter is unaware of the attack; and informed attack, where the

voter is a willing participant in disclosing his privacy for personal gain.

Uninformed privacy attacks include election queue observations, where an attacker

might observe the polling place during the election and note the order of the voters that visit

a polling booth. Later, the attacker can correlate the stored or scanned vote order with his

observations to determine how a voter voted.

Informed attacks occur when the voter works in conjunction with the attacker. These

attacks can be thought of dually as coercion attacks or vote buying attacks. In these attacks,

voters carry out instructions on behalf of the attacker, sometimes communicating in real time

with the attacker, transmitting display elements or prompts that the voter sees allowing the

attacker to decide the course of action. For non-DRE systems, the voter can record sentinel

marks on the ballot indicating his identity. The voter typically carries out some proof that he

followed the adversary’s orders, in order to complete the coercion / vote buying transaction.

33

3.2.3 Procedural

Attacks may occur against established election rules or procedures. An example is the

day-before attack, where one or more officials charged with safeguarding voting machines

activate them and vote on them the day before the real election and then substitute the

malevolent data after the polls close. This attack is possible because many municipalities

allow the voting machines to “sleep over” at election officials’ houses the day before the

election, stored in uncontrolled environments. Additionally, post-election attacks may be

carried out by malicious poll workers keeping the polls open “just a little longer,” violating

election law but carrying out their will [41].

If poll workers are unobservant, attacks such as chain voting can occur, in which one

cooperative voter carries a clean ballot out of the booth. The adversary marks the ballot

with his choices, and then hands the ballot to a willing or confused voter entering the

polling booth with instructions to cast the marked ballot and return with another clean ballot,

perpetuating the cycle.

Other polling place attacks include behind-the-curtain attacks, where a legitimate polling

station is secreted away immediately after poll opening and voted on repeatedly by attackers.

Data from these machines are stealthily shuffled in with the legitimate polling data before

transmitting to the central tallying location.

There are also machine substitution and Man-In-The-Middle (MITM) attacks in which

an adversary replaces a legitimate election terminal with his own, or connects a legitimate

election terminal to his own terminal. There is a related attack that can be described as

a hostage or kidnapped oracle attack, where the attacker removes a legitimate terminal,

replaces it with his own machine and connects his machine to the legitimate machine; during

the election, any sort of integrity challenge sent to the attacker machine is relayed to the

34

hostage for response, fooling the voter into thinking he is interacting with a legitimate

terminal when, in fact, he is not. Figure 3.1 illustrates such a case.

Legit PC

Attacker PC TPM

TPM shim
Challenge

Challenge

response

response

Figure 3.1: Example of the oracle / hostage attack. The voter on the left believes she is
interacting with a legitimate terminal, because the verification challenge has been answered
correctly by the hostage.

3.2.4 Discreditation

If the attacker is having trouble with a secure election system, he may take actions that

raise a public question of the validity of the election through modification, substitution, or

unauthorized insertion of vote and ballot data. If he can shake public confidence in the

election system, then the adversary might sway election officials into reverting back to

simpler election methods that are more easily compromised by the adversary.

3.3 Attack Techniques

Adversaries practice a number of attack techniques to disrupt the election process, violate

privacy, or discredit the public’s perception of the election system.

35

3.3.1 Software Attacks

Adversaries exploit the risks inherent in complex election systems. Attacks against system

software come in two varieties—persistent attacks, and non-persistent attacks. Persistent

attacks compromise software images on storage media for various computing platforms.

By simply adding, changing, or removing an application or operating system component

or shared library, the adversary can change the behavior of the application. One type of

persistent attack is a root kit, in which malware virtualizes the installed software base and

runs the system, altering the memory state of the election system software per the adversary’s

request. Non-persistent attacks, otherwise called live, software injection attacks, are more

complex, and involve exploiting some programming errors (e.g., array bounds violations on

fixed memory buffers) to cause a crash and install the attacker’s code. These attacks insert

attacker software or otherwise change the behavior of the running election software without

requiring reboot.

3.3.2 Other Attacks

Other attacks exist, but are beyond the focus of our work. They include human factors, a

majority of corrupt officials, denials of service, and physical attacks. For instance, a single

leader responsible for the elections that also happens to be up for re-election can manipulate

the tally any way he wants, e.g., in [29].

3.4 Assumptions

We make some basic security assumptions about systems that implement our designs. At a

high level, they include assumptions on the system and trusted roles.

36

3.4.1 Security Assumptions

• Asymmetric cryptographic algorithms, including digital signature keys and hashing

done by the Trusted Platform Module (TPM), protect data authenticity and integrity

at rest and in transit; public keys are made available to any groups that participate in

verification of cryptographic results

• Private keys are safeguarded in hardware; the adversary cannot physically access the

internals or influence the operations of the TPM without drawing intolerable levels of

attention

• The TPM correctly implements the Trusted Computing Group (TCG) specifications

and does not leak information, including any private keys or ownership information in

part or in whole

• The computing platform BIOS, CPU, and specialized Trustworthy Computing (TC)

modules perform as intended; system memory cannot be corrupted by internal elec-

tronic components of computing platforms; physical scanning equipment, where

applicable, is aligned correctly and is otherwise in good working order

• Reasonable physical security of election technology is enforced prior to the election,

heading off sophisticated physical delayering attacks against the TPM 1

• Ballot designs are correct, ballots are printed correctly, and are free from errors that

may confuse voters or contain subliminal channels

• Application and platform operating software is free of critical bugs or supply chain

trap doors, and does not become compromised during runtime; software is adequately

inspected and binaries are correctly generated from reviewed software and securely

1Although the TPM resists some physical presence attacks, it is not designed to resist sophisticated
hardware attacks to keep costs low. Some crypto units such as the IBM 4758 are “tamper-responsive,”
containing special technology to defeat tamper attempts, but these cost thousands of dollars each compared to
dozens of cents for a TPM [51].

37

transferred between the vendor, Independent Testing Authority (ITA), and Election

Authority (EA)

• Receipts are secure: obtaining information about a voter’s preferences given the

voter’s receipt is computationally infeasible. Also, any scanning equipment cannot

read invisible ink (where used), and any confirmation codes on receipts do not contain

subliminal information that can influence or confuse voters

• The poll booth is free of cameras, covert microphones or speakers, networking

equipment or anything that can allow communication or observation between an

external attacker and the voter

3.4.2 Trusted Roles

The roles defined in Section 2.1.2 (page 14) are entrusted with carrying out election proce-

dures and enforcing policies. Subversion of the Election Authority (EA), Tallying Author-

ity (TA), Precinct Judge (PJ), or Independent Testing Authority (ITA) can lead to election

system compromise.

3.5 Attack Mitigation

Each of the attack types are defended in closely related ways by the designs we present.

At a high level, our designs protect data from modification by digital signatures performed

inside of secure hardware. Digests covering the entire election data storage area prevents

unauthorized insertion or deletion of single records, and authorized platform signatures

prevent slipping rogue votes, not created on an authorized and activated terminal, into the

main tally.

38

The voter verifies platform attestation evidence to ensure that the platform booted into

the correct operational state. If the right software was booted, then we know that persistent

malwarecannot perform subliminal, misrepresentation and other attacks designed to confuse

the voter. Verifying operational state also thwarts discreditation attacks; if the platform is

running the correct software, then correct software will not disclose information that can be

used by the attacker to initiate false challenges. (An interesting side-bar is how we protect

against non-persistent software attacks, those that exploit buffer overflows to inject code

into live running machines. This special case is discussed in Section 5.7, and requires a

special software module to watch a virtualized operating environment for changes to its

fundamental memory structures.)

Uninformed privacy attacks are countered by using encryption to prevent disclosure

of receipt verification codes to unauthorized parties. Although we cannot prevent voting

queue observation attacks, we can use randomness created by trusted hardware to reorder

the recording of votes into persistent storage, preventing an insider from assigning recorded

votes to observed voter order.

Informed privacy attacks (e.g., coercion and vote buying) are mostly handled by the

higher level voting systems that use our TC designs, but we apply a technique called late

binding to prevent receipt codes from being shown to the voter until the time that he casts

his vote. By guarding the verification secrets from the voter, he cannot take interactive

instructions from an adversary and walk away with verifiable proof that he performed the

adversary’s bidding.

Procedural attacks are prevented by using passwords on TPM signature keys and key

deletion delegations to enforce election policy. When the polls open, the EA releases a

password that allows the TPM to sign vote records. Prior to the EA’s release of the password,

election keys cannot be used to sign votes, heading off day-before attacks. At the end of

39

election day, the EA releases a delegation password that destroys the private keys in the TPM,

to ensure that no further votes may be signed. Destroying the key hierarchy is witnessed

publicly by judges from competing political parties.

We propose the ability to defeat the hostage attack by timing the platform verification

step, constraining the required channel bandwidth that the adversary can use to communicate

to a captured, legitimate system. We minimize the effect of discreditation attacks by using

cryptography to prove authenticity of receipts; also, by controlling the use of keys, we deny

the adversary the ability to produce legitimate artifacts (e.g., receipts) that contain incorrect

information.

3.6 Attacks Not Countered

Procedural attacks such as behind-the-curtain attacks and chain voting are caught only by

attentive poll workers. However, extensions to our work might enable just-in-time printing

of ballots that would circumvent chain voting. We cannot defeat denial of service attacks,

but these attacks draw too much attention to the attacker so we feel it is reasonable not to

address them.

When assumptions are violated, our mitigations disappear. For instance, failure of a

majority of poll workers to carry out procedures can enable all types of attack. Incorrectly

designed ballots, or confusing ballots, can violate the will of the people regardless of any

technological defenses.

40

...we may never know with complete certainty the
identity of the winner of this year’s Presidential
election...

John Paul Stevens, U.S.
Supreme Court Justice, 2000

Chapter 4

Combining End-To-End Voting With

Trustworthy Computing for Greater

Trust, Privacy, Accessibility and

Usability

4.1 Introduction

THE goal of modern voting research is to provide election systems that are usable,

transparent, and secure. Modern Direct Recording Electronic (DRE) systems were

designed with usability in mind, but fail to provide adequate security because they rely

on software and system configurations that can be tampered with undetectably. Poised as

alternatives to risky, software-centric DRE designs, End-to-End (E2E) cryptographic voting

systems offer software independence—the property that the election outcome cannot be

affected surreptitiously by actions of software systems. That is, the features of a software

41

independent system will reveal changes made by malicious or faulty software systems with

high probability.

As election outcome is protected by software independence, E2E systems employ lots

of software throughout their designs for efficiency and usability. For instance, all E2E

voting systems rely on software to help print ballots, record the results, and forward data

for tallying. Software also provides flexible user interfaces allowing the physically disabled

to cast votes without assistance. Voting systems that avoid computing technology suffer

diminished usability and accessibility, despite that usability is the main problem of modern

voting systems. Systems that do not use software suffer usability benefits: Scantegrity,

for instance, lacks a trustworthy receipt printer, requiring voters that wish to verify their

votes manually record numerous codes in lengthy races. Without an electronic interface,

Scantegrity currently impedes the visually impaired from verifying their votes.

Unfortunately, E2E software components suffer integrity problems in the polling place

that cannot be caught until after the election is over, and privacy problems that may never be

caught, countering the benefits of E2E software independence. Vote flipping by incorrect

Precinct Count Optical Scan (PCOS) scanner software might be caught by parallel testing,

but such testing cannot recreate the poll booth conditions—patterns of votes, frequency

of voters—and therefore might not trigger the malicious behavior. Malicious software

could strike at infrequent intervals, changing selections for voters that are not likely to

check the E2E integrity results. Further, malicious software on an E2E system can easily

violate voter privacy in a way that can never be detected. For example, in Scantegrity [23],

malicious printer software could expose ballot codes and destroy voter privacy. Malicious

scanner software could identify voters with stray marks, enabling coercion. Similarly, a

compromised VoteHere touch screen could respond to a pattern of touches to disclose all

votes received to that point. Malicious software can also sow confusion and undermine

42

public confidence in the election outcome, for example, through presentation attacks (e.g.,

misreading voter inputs) and discrediting attacks (e.g., planting fabricated evidence of fraud).

Malicious code can also reduce system availability and reliability. Even with software

independence and the preservation of election integrity, E2E systems trust software systems

to enforce privacy and provide efficiency, and are therefore neither immune to privacy

attacks nor quick at catching integrity attacks.

We claim that despite software independence, E2E integrity is not end-to-end security,

the term security encompassing privacy in addition to integrity. Our research in Trustworthy

Computing (TC) suggests that many software and misconfiguration attacks can be detected

and prevented through using trustworthy hardware to verify software integrity. Since E2E

systems rely on software, TC should be applied to E2E by enabling good usability and by

providing defense in depth against integrity as well as privacy attacks. To realize these

benefits, however, we must understand what features are enabled by TC, and where to

apply TC in an E2E architecture. Our contributions include an analysis of security gaps

in E2E architectures, analysis of where TC can fill some of these gaps, and proposed TC

enhancements to Scantegrity with Invisible Ink (Scantegrity) as an example of how to realize

TC benefits in a fielded E2E system.

In this chapter, Section 4.2 shows where trustworthy computing can add value to E2E

systems, Section 4.3 gives focused trustworthy computing enhancements to a sample E2E

system, Section 4.4 discusses benefits and related problems of the approach, and Section 4.5

concludes the ideas.

43

4.2 E2E Gaps in Voting System Attributes

While E2E features achieve many desirable election system goals, several gaps remain

because of untrustworthy software and poor usability. Table 4.1 summarizes where TC can

improve E2E in each major goal. This analysis motivates the application of TC to E2E.

Goal Attribute TC Adds Value?

Administration

Auditability 4

Ease of Administration
Efficiency
Policy Enforcement 4

Total Cost of Ownership

Assurance

Accuracy 4(w/electronic interface)
Authenticity 4(ballot authentication)
Availability 4

Integrity None—E2E core feature
Privacy 4

Public Confidence in Dispute
Resolution

4

Repudiated Choice,
Non-Repudiated Cast

None—E2E core feature

Small Trusted Custody Chain 4

Voter Utility

Accessibility 4(w/electronic interface)
System Understandability
Voter Verifiability None—E2E core feature
Voting Usability 4(w/electronic interface)
Identify Problems in Precinct 4

Table 4.1: Trustworthy Computing (TC) can enhance End-to-End (E2E) systems in varying
degrees.

TC cannot benefit E2E in every attribute. Attributes marked with “E2E integral feature”

are handled well by E2E, because E2E systems are specifically designed to provide these

features. Unmarked attributes generally are not areas in which TC can help; specifically,

TC does not benefit ease of administration (administrator training is still required), effi-

44

ciency (E2E systems can be efficient without trustworthy techniques), cost of ownership

(TC can add extra cost), availability (computers can crash regardless of malice); and sys-

tem understandability—some say that Trusted Platform Modules (TPMs) actually reduce

transparency.

TC can benefit three critical areas. Privacy is the main area in which TC techniques add

value to E2E systems: platform attestation through TPMs [97] can ensure that cryptographic

operations can be carried out only when the system has booted the correct software (dynamic

attestation can check certain runtime memory properties ([60]), mitigating the risk of

malicious or unauthorized software disclosing the ballot codes, scanned images, or user data

to attackers. Similarly, reliance on the chain of custody can be reduced by binding keys

and software to a TPM to ensure that only the correct platform can access data, and only

the correct data is supplied to or retrieved from the platform. Verifying correct software

operation is crucial to detecting problems early—for example, a trustworthy receipt printer

can reveal in the polling place that scanner software has recorded an incorrect selection,

allowing the voter to discard his ballot and vote again. Voting system software can be

created using formal specifications and translated directly into code, useful for proving

cryptographic protocol properties [28, 47, 48].

Safer DRE designs, in turn, provide good usability which can prevent errors in the

polling place [46]. In addition to catching undervotes and overvotes prior to casting, studies

have shown that electronic systems are generally easier and arguably more preferred for

people to use for ballot marking than directly marking paper ballots, particularly in long

races with many choices [31]. For instance, mistakenly marking a single choice on a long

race by directly marking a paper ballot would require all the selections to be re-entered on a

fresh ballot, introducing transcription errors—a DRE would permit easy remarking as the

choices are specified before the ballot is printed.

45

Other E2E systems that use DRE can be made safer through sealed, non-migratable

keys and platform attestation:1 if the DRE software in Benaloh’s voter-initiated auditing

[12] were compromised, a coercion mode could be activated by a special sequences of

touches applied to the user interface to recognize the voter and bind his identity to his vote.

Managing the device signature key in hardware and sealing it to the correct platform state

would allow the ballot to be signed only when the correct software was running. Additionally,

sealing to the TPM prevents theft of the signature key. Accessibility to disabled voters

and non-native speakers is a compelling reason for DRE: computerized display and entry

apparatus can accommodate differently abled voters through high-contrast displays, audible

ballots, sip-and-puff systems for paralyzed voters, and multi-language ballots for non-native

speakers.

Additional benefits include better enforcement of policy and procedures through TPMs;

for instance, the Platform Vote Ballot (PVB) binding key protocol [35] signs voter choice

and ballot identification data only after an administrator activates the signing key with a

password revealed on election day. Better auditability is achieved by using trustworthy

cryptographic logging systems in the polling booth, augmented with write-once memory.

Our position is that E2E provides good auditability, voter- and universal-verifiability, but

existing E2E systems do not protect against privacy attacks carried out by malicious soft-

ware. Trustworthy techniques perfectly complement E2E by preventing malicious software

operations, protecting both privacy and transport integrity thereby enabling computers to

safely provide accessibility to the disabled.

1The TPM can use a sealed key only when platform software measurements recorded during system boot
match specified values. A non-migratable key can be used only by the TPM that created it.

46

4.3 Enhancing Scantegrity

To illustrate some of the ways TC can enhance E2E voting technology, we propose some

modifications to the Scantegrity voting system.2 Although we focus on Scantegrity, privacy

and many other issues apply evenly to all E2E systems—we chose Scantegrity as our

example because we feel it is the easiest to understand and the most likely to be adopted. In

fact, Scantegrity has been used in the Takoma Park, Maryland mayoral race of 2009 [16].

4.3.1 Software Components of Scantegrity

The software components of Scantegrity are described in Figure 4.1. The privacy risks

occur in the trusted workstation, which creates and manages the commitments, and in the

ballot printer. Both systems are entrusted to protect the mapping of commitment codes

to ballot serial numbers.3 Additionally, the scanner tabulator can recognize stray marks

or identifications and reveal full ballot images to attackers. Malicious software can be

surreptitiously installed to carry out these actions.

2Independently, the Scantegrity team is investigating how to apply trustworthy computing to the system.
3An attacker with the mapping could read the ballot serial number from the voter’s receipt and look up the

ballot codes on the public server to reveal the voter’s selections.

47

Figure 4.1: The software components of Scantegrity are represented as PC workstation
icons, and include Ballot Printer, Precinct Scanner/Tabulator, Scantegrity Workstation,
Central Tally Server, and Public Results Systems. The Scantegrity Workstation produces
commitment codes bound to ballot serial numbers to supply to the ballot printer. The ballot
printer prints the commitment codes on the ballot, and the voter reveals the codes when
marking his ballot. The scanned ballot images are sent to the verification server, where
the voter can confirm that the system recorded his marked ballot correctly by checking his
codes, and where anyone can verify the tally was computed correctly.

4.3.2 Incorporating Trustworthy Computing

To illustrate some of the ways TC can enhance E2E voting technology, we propose some

modifications to the Scantegrity voting system (our focus is on the types of changes that can

be made; full technical details are explored in other chapters):

48

1. Introduce trustworthy DRE marking units—replace the scanner and ballot printer

with a TPM-equipped DRE running the PVB protocol [35]. The DRE will solicit

the voter’s selections, decrypt and print ballot codes, and record and sign votes and

vote storage with sealed keys. A signature made by a sealed key is evidence that the

platform booted the correct software. Using DRE improves usability and reduces

errors by ensuring that everyone marks ballots in a consistent way.

2. Use TPMs for secure software provisioning—allow the software to be installed

only on authorized commitment, ballot printing, and ballot scanning systems by

using non-migratable, sealed keys. The independent testing authority compiles and

encrypts certified software for units with specific TPMs. Protecting software with

non-migratable keys prevents tampering in the software supply chain or software theft

by the adversary.

3. Encrypt commitment codes with TPMs and non-migratable sealed keys—protect

the commitment database codes with a key sealed to a specific ballot printer and

verification server.4

4. Add cryptographic signatures to the ballot printer—using a sealed TPM key, the ballot

printer could print a signature of the ballot codes with a key sealed to its TPM to

prove authenticity. Sample ballots could be intentionally spoiled to verify their codes

against the printer’s public key.

5. Add a trustworthy receipt printer to the Scanner Tabulator—use a PVB-like binding

protocol to reveal and print lettered codes to voters. The tabulator can sign the cast

vote with a sealed signature key providing evidence that the correct software was

4The printer could record encrypted commitment codes on the ballot with Two-Dimensional QR barcodes
(qrcodes), simplifying the data provisioning process.

49

running and that the optical marks were sensed correctly. If errors are detected, the

voter discards his ballot and votes again. A receipt printer also improves usability and

speeds up the election process by printing the code numbers for voters.

4.4 Benefits and Problems

The main benefit of adding TC to E2E is guaranteeing privacy by binding public-key

cryptography to correct software state to protect the commitment codes and scanned ballot

images from exposure to malicious software. The receipt printer catches problems early

in the polling place, rather than after votes are tallied, providing usability in a secure way.

An all-DRE solution could provide good usability while enforcing procedures to prevent

day before attacks as explained in [35]. Integrity and authenticity can reduce the size of the

trusted chain and remediate lifecycle attacks, benefiting system deployment, ballot printing,

precinct data collection and transport. TC can help mitigate software attacks, providing

effective systems security.

The main cost of TC is more complicated engineering design and key management. The

use of TPMs assumes a trusted third party key distribution mechanism that may cause a

deployment problem for the voting community. Further, sealed non-migratable keys must be

created directly on the platforms in question, involving direct interactions to take ownership

of the TPM on possibly thousands of units. These interactions could be made more practical

using an assembly-line process in a secure facility, as ownership of TPMs must be done

only when the systems are first procured—fresh keys can be regenerated at each election,

but trusted software could do this inside a secure facility.

Certain aspects of TC are new, and certain techniques such as formal methods are hard

to understand. For instance, proof checkers can readily discover flaws in formally specified

50

software, but designers may struggle with the formal specification syntax, some proof

checker tools are hard to use, and the independent testing authority might find the tool’s

results hard to understand.

4.5 Conclusions

All voting systems used in large scale elections rely on software for efficiency, usability, and

accessibility, but software carries risk (especially for privacy) even for software independent

verification systems such as E2E. From the main voting goals—ease of administration,

information assurance, and usability—E2E cannot fully satisfy certain aspects without the

help of trustworthy computing techniques. In particular, trustworthy computing increases

privacy and accessibility, and helps voters catch problems in the polling location, making

voting safer and better for everyone. In conclusion, we must work hard to improve the

state of software used in election systems, and we can produce a much better system by

incorporating trusted computing into E2E designs.

51

Part of the inhumanity of the computer is that, once it
is competently programmed and working smoothly, it
is completely honest.

Isaac Asimov

Chapter 5

TPM Meets DRE: Reducing the Trust

Base for Electronic Voting using Trusted

Platform Modules

5.1 Introduction

DIRECT Recording Electronic (DRE) voting machines can offer many compelling

benefits, including good usability and accessibility, support of multiple ballots and

languages, and elimination of overvotes and unintentional undervotes [46]. Unfortunately,

bad security engineering of existing products (e.g., [11, 14, 15, 32]) has largely discredited

the entire approach along with many of its strengths. We offer an approach to DRE design

based on trusted cryptographic hardware that offers a much more secure way to build DREs

while preserving their advantages. This chapter describes in considerable detail how to

design a more trustworthy DRE for achieving outcome integrity and ballot privacy. Our

52

protocol is a first step in our larger effort to apply high-assurance computing techniques to

voting technology.

We have designed a protocol for election systems that secures data with private signature

keys managed by special physically secured hardware resident on commercial PC computing

platforms. Our protocol uses the Trusted Platform Module (TPM)—an embedded processor

that provides cryptographic services, stores measurements of booted software, and manages

on-board nonvolatile memory and counters—to create and manage a special signature key

called the Platform Vote Ballot (PVB) signature key. The PVB binds together the booted

state of the platform, the ballot presented to the voter, and the voter’s cast vote, and thwarts

unauthorized modification, insertion, or deletion of votes.

In our protocol, the PVB key is created and bound to the correct platform state during the

initial DRE software load, and is unlocked by a password revealed on election day. During

the polling phase, the TPM signs a hash of each recorded vote and ballot with the PVB

private key. Votes are recorded in pseudorandomly determined storage slots, and the storage

is signed by the PVB after each recorded vote. At the close of the polls, administrators

deliver the signed storage to tallying officials who verify the signatures of both the individual

votes and the storage area using the PVB public key. Verification ensures that the DREs

booted the correct software, voters used the correct ballots, and the votes were not modified,

omitted, or illegally inserted or deleted. This chapter presents our protocol with enough

detail to demonstrate feasibility of an actual implementation on a system compliant with the

Trusted Software Stack (TSS) published by the Trusted Computing Group (TCG) [97].

Although others have suggested using TPMs for voting, our protocol is the first to use

a TPM to bind the ballot, vote data and storage integrity to the platform state, allowing

election policy to be enforced by hardware and preserving data integrity and voter privacy.

We designed it with these features:

53

• Hardware-based protection of keys—the plaintext PVB signature key is never revealed

outside of the TPM, preventing errant or malicious disclosure of the private key

• Cryptographic binding of vote to ballot—signed proof that a specific ballot guided the

voter’s decisions is available for verification

• Hardware-based software state and election policy enforcement—the TPM requires

proper platform software measurements and election initiation passwords to store

valid data (resisting day-before attacks1)

• Cryptographic integrity and privacy—integrity is enforced by public key cryptography,

and privacy is preserved by pseudorandom ordering of votes in storage

While the TPM and our protocol improve system-level assurance in electronic voting, we

acknowledge valid criticisms about current DRE implementations and many electronic

voting systems. Electronic voting requires voters to have faith in the correct operations

of the system hardware and software; DRE users implicitly trust the CPU, system RAM,

and user interface peripherals (touch screen or other input device), and no random testing

paradigm that we know of includes hardware component analysis. Electronic data capture

systems—including electronic voting systems—mask their inner workings, in that a user

interacting with a computer cannot see the computation taking place or know that the bits

were recorded on the media. While our protocol enables the tallying authority to detect

integrity problems with the software and data, the present design does not allow the voter

to interactively verify proper capture, processing, or storage integrity of his vote while the

polls are open. Despite avoiding the significant expense of printing paper ballots, electronic

voting systems can mean significant up-front costs for procurement, installation, training,

1On June 28, 2009, the day Honduras President Manuel Zelaya was ousted, officials found certified election
results on government computers for an election that was to have taken place that day [29].

54

upgrade and maintenance, reflecting a high cost per user. Improved security engineering and

implementation, a reduced trust base, and better transparency and verifiability are required

to alleviate concerns of traditional DRE and electronic voting.

Apart from the risks, DRE systems provide good usability features. DRE systems readily

support multi-language ballots, multiple ballots for different races, lengthy ballots with

many races or candidates, and a variety of input methods and display modes, including

general use touch screens and also audible and sip-and-puff options for disabled voters. They

can support the option to use innovative presentation techniques such as randomly ordering

the candidate lists to avoid the candidate primacy phenomenon where a candidate receives

an unusually high number of votes based on appearing as the first candidate in a list [61].

Although not always appropriate or currently permitted by law, there are many circumstances

in which such innovative techniques can lead to more accurate capture of voter will. Clarity

of intent is most accurately captured by digital means, avoiding ambiguous user markings

such as dimpled chads, butterfly markings, or incorrect marks on paper-based forms.

DRE terminals can protect the vote records with digital signatures prior to being of-

floaded for tallying, reducing risk in the chain of custody, whereas paper ballots are subject

to omission, loss, or tampering. While our protocol makes certain assumptions about the

hardware as stated in Section 5.3.2, it uses trusted hardware to overcome many of the soft-

ware risks of current DRE systems, thus reducing the overall size of the trusted computing

base. Our vision is that the hardware cryptographic primitives of TPMs can help improve

DRE systems with commercial computing components for a reasonable cost, allowing DRE

benefits with fewer security risks.

This chapter is organized as follows: Section 5.2 briefly reviews previous and related

work; Section 2.3.2 introduces the capabilities of a TPM; Section 5.3 describes a notional sys-

tem architecture and states several security assumptions; Section 5.4 presents our protocol;

55

Section 5.5 analyzes the protocol, including its security and special features; Section 5.6 dis-

cusses benefits and limitations; Section 5.7 presents future work, and Section 5.8 concludes

our current work. We assume that the reader is familiar with some high-level principles

of cryptography including digital signatures, hashing, and encryption, and also a general

voter’s knowledge of elections and election procedures. The protocol is an example of

building secure systems with trust rooted in TPMs.

5.2 Previous and Related Work

Arbaugh [9] suggested using TPMs in voting by outlining an on-line protocol for attesting

systems through a central server. Rössler, et al. [73] proposed using hardware security

modules in postal-voting where each voter submits a ballot encrypted with a public key to

the tallying server. Both approaches seem promising, but omit key design details. Paul and

Tanenbaum [67] sketched a voting system architecture incorporating TPMs, but the TPM’s

role assures only presence of correct software—the platform state is not bound to the cast

ballot.

Yee [101] designed a DRE with a greatly reduced trusted code base to simplify software

inspections, but inspections cannot prevent malicious tampering of the DRE immediately

prior to operations.

The Scytl architecture created by Jorba, et al., described with few details in [54], suggests

using a hardware security module to protect chained digital signatures but not signature keys,

and propose light-weight voting software booted from a CD-ROM to eliminate reliance on

pre-installed software and hardware. The security of any system that obtains software and

private keys from removable media is vulnerable to compromise through theft of the media.

56

Our approach stores and uses private keys only in tamper-resistant hardware, preventing

theft or unauthorized disclosure of the keys.

Feldman, et al. [32] suggested using technology from the TCG, cautioning that this

technology “could not prevent malicious code from changing future votes by altering data

before it is sent to the storage device.” Our approach uses a hardware root of trust making it

harder to inject malicious software, but we rely on software correctly taking measurements

and correctly executing the voting features. Furthermore, because the TPM signs each

cast ballot, malicious software cannot modify a vote (without detection) once it has been

processed by the TPM.

TPMs are described in the specifications [97]. Pearson et al. give a slightly dated

but comprehensive overview of TPMs and the TCG [68], and Challener [19] provides an

excellent practical guide to the TPM for software developers. Additionally, TrouSerS [50]

is an open source implementation of the TSS and includes test suite software useful for

understanding programming interface, while Strasser [95] provides an open source TPM

emulator to aid development.

Previous authors have applied TPMs to non-voting domains. Sevinç [86] described a

key distribution protocol that sends secrets from a server to a TPM-enabled client, but the

server has no way to attest the software state of the client. Our protocol binds the PVB

key to the software state of the DRE allowing the election authority to verify the correct

configuration of the DRE.

Previous studies on security and implementation problems of current DRE systems

include Kelsey’s [55] catalog of DRE attack strategies, a threat analysis derived from attack

trees by the Brennan Center [66], and research analyses by Kohno et al. [58], SAIC [82],

RABA [71], and Compuware Corporation [27] on flawed commercial DRE implementations.

Additionally, Hursti [49] analyzed the problems of unauthenticated software installs, and

57

Feldman, et al. [32] analyzed the damage caused by viruses when policies and procedures are

not followed. Additional vulnerabilities in modern DREs were uncovered in the EVEREST

Project [15] and in the California Top-To-Bottom Review [14].

Unfortunately, most critiques on current DRE systems do not offer a high-integrity

alternative. Some groups advocate using so-called “voter-verified” systems, such as precinct-

count optical scan or Voter Verifiable Paper Audit Trails (VVPAT) (e.g., [42]). However,

such systems provide weak ballot custody assurance and hence offer no guarantee that the

ballot verified by the voter was the ballot actually tallied. Furthermore, such systems offer

poor verification guarantees for visually disabled voters.

End-to-End (E2E) systems (e.g., [24, 25]) provide strong assurance to the voter that his

vote was cast as intended, and counted as cast, and allow independent universal verification

of the election result. Our present design does not give integrity assurance to the voter in

the polling location, but it does offer assurance to the election authority that the correct

software was installed, that voters used the correct ballot, and that votes were securely stored

and transmitted to the central tallying location. Further, our design can detect malicious

installed software in the polling booth, catching persistent software injection attacks early.

Our approach could complement E2E systems by adding prompt detection of unauthorized

platform software—safeguarding voter privacy—and leading to a hybrid system with a more

secure electronic interface coupled with E2E voter verifiable results [34].

Some researchers have raised questions of how trustworthy the TPM is. The specifica-

tions can be difficult to understand, and as a result, implementation problems can occur.

Sadeghi et al. performed a detailed compliance analysis of five TPM implementations; of

the three found to be non-compliant, only one of those implemented the current version

(1.2) of the TPM specification [76]. Although correct TPM implementation is critical to a

protocol like ours, there are many different TPM vendors to choose from, and the specific

58

problems identified in the single 1.2-compliant TPM discovered by Sadeghi have no impact

on our protocol.

A DRE system could be built on today’s commercial platforms without hardware con-

trolled key management or software attestation, but such systems would rely on software

and procedures to prevent key theft, data modification, malicious software injection, and

privacy loss. Keys can be stolen quite easily through physical attacks [44]; data can be

modified on disk without added protections such as full disk encryption [83]; and rogue

software can be loaded in a way that is undetectable by antivirus products [74] compromis-

ing privacy and data integrity. Trusted hardware can enhance many voting technologies

by providing a secure place to store keys and the ability to attest the software state of the

platform cryptographically.

5.3 Architecture

We now present our design. We define a notional architecture consisting of high-level

system elements, including hardware, actors, dependencies, and some security assumptions.

The architecture is patterned deliberately after existing DRE architectures to show the

applicability of the protocol to current technology.

5.3.1 System Elements

Figure 5.1 shows the system elements in the context of the high level architecture.

59

Source
Code

Cast
Votes

Ballot
Definition

Binary
Software

Election
Tally

DRE

Voter
Auth Card

Admin Card

Voter

PJ

EA

ITAVendor

TA

Election
Tracker

verifies results

Results

Election
Certified

Figure 5.1: The architecture includes: DRE terminal (with a TPM), tallying systems,
and tracker/reporting systems such as Election Tracker [89]; trusted authorities, Election
Authority (EA), Precinct Judge (PJ), Tallying Authority (TA), Independent Testing Authority
(ITA), the voter; and binary images of software, ballot, and storage for cast votes.

5.3.2 Security Assumptions

The protocol protects the cast vote (recorded intent of the voter) and evidence of the ballot

(the choices presented to the voter) provided that certain assumptions hold:

• Asymmetric digital signature keys and hashing afforded by the TPM adequately

ensure data authenticity and integrity during storage and transmittal

60

• The chain of trust of Platform Configuration Register (PCR) measurements includes

all relevant software, firmware, and configuration files, including the operating system

kernel, software drivers, loadable modules, relevant dynamic libraries, the voting sys-

tem software and configuration files, and relevant portions of the Basic Input/Output

System (BIOS)

• The TPM and other trusted hardware are operating correctly

• The software components that form the measured chain of trust are behaving as

expected (correctly implemented, correctly executing)

• A pseudorandom index is sufficient to protect voter identities against analysis of stored

vote order

• A trusted hardware path exists between the DRE motherboard/CPU and all other

hardware components including the screen, hard drive, external storage connections,

peripherals, and input devices

• System memory is unmodifiable by on-board devices

Further, the protocol requires that binaries are correctly generated from reviewed software

and securely transferred between the vendor, Independent Testing Authority (ITA), and

Election Authority (EA); and that the ballots are reviewed for accuracy.

5.3.3 System Roles

The protocol trusts certain human roles to carry out parts of the election process. We take

the word trust to mean an expectation of a certain behavior for a particular purpose; that is,

if a trusted role behaves errantly, the security claims of the protocol no longer hold. These

roles are more fully explained in the protocol parts, but a short summary follows:

61

• Election Authority (EA)—charged with ensuring integrity of the election and its

procedures, and entrusted to protect voter privacy. Responsible for approving software

and slates, initializing the election system and voting units, creating cryptographic

keys and protecting the TPM key creation passwords (owner password). The EA is

critical to the entire protocol

• Tallying Authority (TA)—receives encrypted, completed ballots, tallies them, and

produces the general results

• Precinct Judge (PJ)—primary polling location worker who activates and shuts down

the DREs, enforces election rules at the polling location, and resolves problems

detected by the TPM and voting software. The PJ is trusted to help resolve problems

in the precinct, taking action if the TPM refuses to load the PVB key, putting a backup

machine into operation. Trust is less strict here as the protocol limits the set of

cryptographic operations that the PJ can conduct. (Denial of service is still possible

by a rogue or poorly trained PJ.)

• Independent Testing Authority (ITA)—tests vendor-supplied software for compliance

to specifications, performs random machine testing to ensure quality of hardware and

other components outside of the protective boundary of the TPM.

5.4 Protocol

We present a protocol for platform and data binding of electronic data captured at the

DRE during election time, and describe its assurance and security properties. The protocol

will be described in several parts that tie closely with a typical election timeline, to aid

understanding in how an actual implementation might be executed. The protocol provides

62

integrity and authenticity of ballot data recorded electronically at the DRE, and utilizes the

main features of the TPM. The central work of the protocol is management of the PVB key.

Figure 5.2 highlights the main features of the protocol.

11100100100….

Storage Digest

11100101110….

11100111111….

11110101010….

11111011010….
Hash

Boot Loader OS

Ballot

Y N taxes

Y N educ

Y N tolls

o Alice

o Bob

o Carol

N Y Y Alice

Vote

Election SW

PCR

TPM

Signed Digest

PVB Key

Signed DigestN Y Y Alice Hash111

Figure 5.2: The protocol loads the PVB key into the TPM to produce a signed digest
of the vote and ballot. The PVB is usable only when the PCRs match a specified set of
measurement values. The vote, digest, and hash are stored in a pseudorandom location on
disk and the storage is signed whenever a new vote is inserted.

5.4.1 Detailed Description

We now present the full details of the protocol broken into distinct voting phases. For

clarity, we focus on the cryptographic aspects of the protocol, and list only a few TCG

Service Provider Interface (TSPI) calls in the discussion. Some TSPI calls have numerous

63

arguments, and others require additional setup/take down commands. We have purposely

simplified these elements of the protocol to keep the presentation clear.

We assume the use of version 1.2 of the TPM specifications [97] and the associated

TSPI implementation. Certain protocol features such as sealing are not available on prior

versions of the TPM.

5.4.2 Protocol Actors

Several actors and software items referenced in Section 5.4.3 include:

• SWvote – the platform software (voting application and operating system, plus any

configuration files) needed for the polling phase

• SWinit – initialization software used during platform initialization

• Platform – the DRE computing unit, including the TPM, the user interface, CPU,

memory, persistent storage (disk or other), I/O channels, and BIOS

• Storage – persistent storage on the DRE, e.g., hard disk

5.4.3 Protocol Parts

The Platform Initialization and Platform Software Load and Key Creation parts are assumed

to be conducted in a trusted environment.

64

Part 1 - Platform Initialization, Software Load, and Key Creation

EA→ Platform : TakeOwnership(ownerPass, srkPass), (1.1)
Platform→ Storage : metaSRK

EA→ Platform : CreateDelegation(SRK, (1.2)
DELEGATE LoadKey, srkPass, pollopenPass),

EA→ Platform : CreateDelegation(Owner,

DELEGATE OwnerClear, ownerPass, pollclosePass)

EA→ Platform : Key CreateKey(PV B, srkPass, (1.3)
pcrComposite),

P latform→ Storage : PSRK(PV B),metaPV B

Platform→ Storage : SPV B(h(V oteStorage)) (1.4)
Platform→ TA(via EA) : PPV B (1.5)
TA→ Storage : PTA (1.6)

1. The TPM is physically reset to erase any previous ownership. SWinit is in-

stalled and booted. The EA chooses a password for the platform’s TPM, owner-

Pass, and a password for the Storage Root Key (SRK), srkPass, and then invokes

TPM TakeOwnership to create the asymmetric SRK within the TPM. The SRK

is protected by srkPass. The private portion of the SRK never leaves the TPM. The

platform exports the SRK metadata, which includes information needed to reference

the SRK later on, to platform persistent storage.

2. The EA creates two delegations: a load key delegation, protected by pollopenPass,

allowing the PJ to use the SRK to load the PVB; and an ownership delegation,

protected by pollclosePass, allowing the PJ only to clear ownership in the Voting

Termination part. These passwords are kept secret until election day. Delegation

grants only the needed rights to the PJ without disclosing the full-use passwords,

maintaining least privilege.

65

3. The EA supplies expected software PCR measurements to SWinit which stores them

in a PcrComposite object. SWinit calls Key CreateKey with srkPass to create the

PVB—the PVB is both a child of the SRK and bound to the PcrComposite values.

The platform calls RegisterKey to store the encrypted PVB keypair and the metadata

(called a blob) to platform persistent storage, wrapped by the public portion of the

SRK.

4. A large area to store the votes called VoteStorage is allocated and initialized along with

a separate area for cryptographic audit logs.2 Storage consists of fixed-size slots, each

initialized to a sentinel value (e.g., all zeroes). The storage should be generously sized

to accommodate a large number of votes, and to reduce the probability of collisions

when recording votes. The EA signs the empty vote storage area with the PVB.

5. The TPM exports the public portion of the PVB to the EA, and the EA securely

transmits the public key to the tallying authority. (PKI could create an integrity-

protected channel between the EA and TA in this step, to ensure that the TA receives

the correct public key.)

6. The TA’s public key is installed on the platform to encrypt the storage during Voting

Termination—Precinct.

Finally, the EA installs SWvote onto the platform. The audit storage area is created,

hashed and signed. The platform is shut down, securely erasing the values of the

volatile registers including the PCRs and any loaded keys or other authorization data.

The platform is delivered to the precinct.

2The audit log is not central to the use of the TPM, but is necessary for verification. All actions of the
protocol should be logged. Section 5.7 discusses important issues related to secure auditing and logging.

66

Part 2 - Election Day Initiation (and Reboot)

EA→ PJ : pollopenPass (2.1)
PJ → Platform : LoadKey(PV B, pollopenPass) (2.2)
Verify h(V oteStorage) = P−1

PV Bh(V oteStorage) (2.3)

1. The EA reveals the delegation pollopenPass to the PJ. This delegation password

allows the PJ only key loading, vice unrestricted access to the SRK, and can be posted

publicly.

2. The PJ boots SWvote, causing measurements of SWvote to be extended into the

TPM’s PCRs. SWvote attempts to load the PVB key, which succeeds only if: (1)

pollopenPass is entered, and (2) the PCRs match the measured PCR values of the

certified SWvote software. If either condition fails, the PVB key cannot be used and

the PJ is alerted. Note that pollopenPass could be stored on the platform, allowing

periodic reboots throughout the day to ensure a fresh set of PCR measurements.

3. The platform verifies the value and the signature on the storage area’s recorded hash

value. This ensures that that the storage (and audit log) is in a consistent and valid

state, meaning that no votes have been improperly inserted, deleted, or modified. If

the signed hash value is invalid, then the storage is corrupt and the administrator can

be notified or the unit can be shut down. An audit entry is created reflecting the result

of the boot. (After every entry, the audit log is signed securely).

67

Part 3 - Voting and Recording

V oter → Platform : vote (3.1)
i← RANDOM(1, sizeof(V oteStorage)) (3.2)
Platform→ V oteStorage[i] : vote, SPV B(h(vote ‖ ballot)), (3.3)
Platform→ Storage : SPV B(h(V oteStorage))

1. The voter receives an electronic ballot from the PJ (possibly via voter registration

card) and presents it to the platform. The platform displays the ballot to the voter, and

the voter commits his choices to the SWvote software. (Aborts are possible on each

race, or on the whole ballot, and are recorded in vote storage as such.)

2. A pseudorandom offset into the vote storage is computed, and adjusted for collisions.

(The pseudorandom seed is obtained from the TPM which, in turn, is seeded with

system randomness and/or PJ randomness at platform reboot.)

3. The software hashes the vote and ballot data into a hash object using Hash SetHashValue,

then calls Hash Sign to sign the hash inside the TPM with the PVB private key.

Atomically, the vote record is inserted into storage and the storage area hash is updated.

The audit log is updated after every vote with any information required by the higher

level protocol (but none that threatens voter privacy). This procedure is repeated

for subsequent voters. As added security, the PJ keeps counts of how many people

attempted to vote and completed voting on each DRE.

68

Part 4 - Voting Termination—Precinct

EA→ PJ(and TA) : pollclosePass (4.1)
Platform→ PJ : PTA(V oteStorage, (4.2)
SPV B(h(V oteStorage ‖ pollclosePass)), PPV B)

PJ → Platform : OwnerClear(pollclosePass) (4.3)

1. The EA reveals pollclosePass to the PJ and the TA (used later). The PJ enters this in

SWvote, witnessed by others.

2. The platform offloads the vote storage, the public PVB key, and a digest of the vote

storage and the pollclosePass encrypted with the TA’s public key. (Omitting, or

submitting an invalid pollclosePass in this step reveals premature precinct termination

to the TA.)

3. The PJ clears ownership of the TPM. Hereafter, the PVB private key can never be

used since the internal TPM state enabling its use has been erased. Cleared units can

be rebooted and tested to validate that the PVB blob cannot be loaded.

The above events are audited and must be officially witnessed. The audit log is

offloaded, but also retained on the platform. The encrypted data are transported to the

Trusted Tallying Authority (TA).

69

Part 5 - Tallying

Decrypt : P−1
TA(V oteStorage, (5.1)

SPV B(h(V oteStorage ‖ pollclosePass)), PPV B)

Verify h(V oteStorage ‖ pollclosePass) (5.2)
= P−1

PV B(h(V oteStorage ‖ pollclosePass)
∀i ∈ {1, 2, 3, . . .},Verify h(V oteStorage[i]) (5.3)

= P−1
PV B(h(V oteStorage[i]))

1. The TA decrypts the transported data. The TA looks up the supplied public PVB key

against that supplied earlier by the EA—if the key is not known, halt and report the

error.

2. The TA verifies the vote storage digest, and that it matches the pollclosePass. If

verification fails, then either the precinct was terminated without knowledge of poll-

closePass, or the storage digest is corrupt—halt and report an error.

3. The TA verifies each recorded vote in the VoteStorage area—failure indicates a corrupt

vote.

The TA checks audit logs for proper sequences of operations, e.g., initiation, voting,

and termination, as well as the proper signature on the audit logs. When satisfied with

the votes and results, the TA publishes vote digests and the public key of the PVB to

the election trackers for public verification and adds the votes to the general tally.

70

Part 6 - Election Termination

At the conclusion of the election, the digital vote records and PVB public key are

securely archived, allowing independent verification and historical analysis of the

results.

5.4.4 Protocol and Implementation Enhancements

The protocol as described above has been kept simple for clarity, but certain design improve-

ments could increase security and usability.

Authenticating DRE Presence—Preventing “Day-Of” Attacks

Day-of attacks are carried out by a malicious minority of trusted officials who might hide

a valid DRE (perhaps intended as a spare) in a closet at the precinct to carry out a fake

election. Policy could require some number of independent officials N to supply multiple

passwords to terminate the precinct voting phase. When the TA checks the vote storage,

it also checks for knowledge of pollclosePass before considering the data to be legitimate.

Dividing pollclosePass N ways prevents N-1 or fewer corrupt officials from slipping fake

results into the tally. (In addition to election termination, N witnesses could be required to

bring a machine into operation as well.)

Authenticating DRE Identity—Preventing Alternative Machine Substitution Attacks

A rogue official may attempt to substitute a terminal of his own choosing that exactly

matches the software and configuration of authorized terminals in the polling booth. This

attack may deceive the voter, compromising privacy; additionally, denial of service will

occur because any votes collected by the machine will be signed by a PVB key unknown to

71

the TA, causing all such votes to be rejected. Our protocol could be extended to allow the

voter, using third-party hardware, to verify the PVB signature on a voter-issued challenge to

confirm platform correctness in the polling booth.

Other Enhancements

Assurance of the protocol requires that the storage remain in a consistent state, surviving

simple power outages or even “pull the plug” attacks; implementations can utilize a com-

mit/redo/undo protocol in a log-based recovery system for implementing stable storage [93].

Additional privacy can be provided by splitting the cast ballot and storing each voted race

independently, defeating privacy attacks that might deduce relationships among different

decisions, e.g., “most folks that voted for Amy voted ‘no’ to the tax hike.” Repeat voting

can be prevented by assigning a unique serial number to a voter, chosen from a large pool of

random numbers each encrypted by the PVB public key. The PVB decrypts the supplied

serial number, ensures membership in an authorized numbers table, and adds it to a list of

used numbers before allowing the vote. Write-in candidates can be handled by a dynamic

strings table referenced by the vote record, protected by encryption with the TA public key.

5.5 Security Arguments

We begin with a model of the adversary in terms of goals, capabilities limitations, and

information available for attack, and describe the security against several types of attacks

given the model. Our adversarial model focuses on attacks against only integrity and privacy

of the data storage and transmission mechanisms.

We assume that the adversary wants to subvert the election by changing the outcome or

causing the public to question the validity of the election through modification, substitution,

72

or unauthorized insertion of vote and ballot data. The adversary has physical access to the

DRE unit before, during and after the election, and can load software, reboot the platform,

insert or remove data from local DRE storage. He can also insert software or otherwise

change the behavior of the running election software without requiring reboot, perhaps using

buffer overflows. The adversary also has access to secondary storage including the voter

authorization card, and also the post-election precinct data bundled for transmission to the

tallying location.

We assume that the adversary does not know the PVB private key, and is not able to

recover the private key. We assume that he cannot physically access the internals or influence

the operations of the TPM without drawing significant attention.

5.5.1 Countered Attacks

Given this model, we describe high level attack vectors and show the infeasibility of the

attacks given the adversary’s limitations.

Ballot Modification and Misrepresentation: The attacker may attempt to modify

ballot data in the voter authorization card to deceive the voter. Because the ballot is hashed

with the vote and signed, the TA would fail to verify the digital signature in the tallying

phase, exposing the attack. If the attacker can somehow misrepresent the ballot on the

screen, then the voter’s choices would not reflect his intent, but this attack violates our

assumption about certain trustworthy hardware.

Stored or Transmitted Vote Modification: If the attacker makes offline modifications

to the individual vote—when the platform is turned off or when the vote is in transit—then

the TA would detect the difference on the vote and storage area digests when verifying the

PVB signature (as recorded by the TPM), revealing the attack.

73

Stored or Transmitted Vote Insertion or Removal: The attacker may try to insert or

remove votes from the vote storage area on the DRE storage. Since the TPM protects this

storage area by signing a hash of the whole area by the PVB private key, the TA would

notice the integrity violation during verification of the storage digital signature.

In-Memory Data Modification: In-memory data modifications can occur if the attacker

can subvert the correct operation of the software. Two methods of subversion include (1)

file injection attacks that require a platform reboot to activate injected code (e.g., rootkits),

and (2) runtime integrity attacks that alter the memory state of the running software without

reboot (e.g., dormant activation flags, SQL injections, buffer overflows). Assuming (1), the

PCRs would reflect measurements of the malicious software and invalid configuration files

in the PCRs collected during boot, preventing the PVB from loading. The case of (2) cannot

be mitigated without write-once storage. An adversary that subverts a running platform after

the PVB is loaded can replace the vote storage and command the TPM to sign it. Although

case (2) violates our assumption of correctly running software, defenses include write-only

secure logging and dynamic runtime integrity measurement as discussed in Section 5.7.

Observed Voter Order: An attacker might observe the polling place during the election

and record the order of the voters using a DRE, and later correlate the stored vote order with

his observations. Our protocol stores votes in a pseudorandom order onto the storage media,

countering this attack against privacy by ensuring that the order of recorded votes does not

match the order of voter interactions (with high probability).

Election Substitution/Day-Before Attack: One or more officials charged with safe-

guarding the machines activate and vote on properly initialized voting terminals the day

before the actual election and then attempt to substitute the malevolent data at the end of

the election. This attack is prevented because the system controls when the PVB key can

sign data through a password revealed only on the day of the election. Since the TPM

74

refuses to sign anything with the PVB key without proper authorization, binding the key to

the election phase prevents the day-before attack. Further, password guessing attacks are

detected and resisted by declining performance of the TPM, to the extent that certain TPM

implementations will completely shut down once a certain threshold is achieved.

5.5.2 Attacks Not Countered

Several classes of attack cannot be prevented by our protocol, or by any protocol that uses

the TPM.

Hardware Attacks: These are specific hardware attacks that affect any complex soft-

ware and hardware system:

• Memory attacks via rogue devices—devices could use Direct Memory Access (DMA)

to manipulate system memory during the vote casting process to display an incorrect

ballot while recording a hash of the correct ballot. One partial defense is deactivating

DMA on platforms, the other is physical security of ports; however, prior voting

systems analyses show that locking down port access never fully solves the problem

[58].

• Device tampering—misrepresenting a ballot to a voter can cause him to cast a vote

that opposes his intention. Our protocol cryptographically binds the contents of the

ballot with the vote, but there is no way to prove what the voter actually saw when

making his decision.

Other Attacks: The following attack classes are not mitigated by the protocol: insider

attacks, including coercion or payoff of a trusted entity; attacks against the higher level

election system that uses our protocol; sophisticated physical attacks such as TPM power

75

analysis, microscopy, or disassembly (easy to detect in the polling precinct); destruction of

machines, resource exhaustion, and other denial of service attacks; procedural breakdowns

where the PJ fails in his duty allowing repeat DRE visits by the same voter; and overt

physical tampering. Certain insider attacks could be mitigated by using shared secrets (for

instance, defending against the day-of attack), but the remaining problems require correct

procedural controls.

5.6 Benefits and Limitations

The main benefit of the protocol is that trusted hardware assures the election authority of

the integrity of the software and ballot data during collection of the vote, and the integrity

of the vote data during storage and transmittal, increasing the security of the election. It

also allows vote collection only during the legitimate election period. By delegating critical

cryptographic operations to trusted hardware in a verifiable way, we can reduce risk and

enjoy the usability benefits of DRE systems. Other benefits include:

• Readily implemented with the TSPI through prototype code.

• Works for any TPM implementation and platform with TPM support

• Supports Static Core Root of Trust or Late Launch trust models—Late Launch is a

special mode that ensures full measurement of the system components without trusting

any of the software or firmware, but requires special CPU and chipset capabilities

such as Intel Trusted eXecution Technology (TXT) extensions

One limitation of the protocol is its dependence on trusting the hardware. There are several

respected authorities that validly argue that hardware is inherently opaque, and that any

76

system (including ours) that delegates critical functionality to the correct operation of hard-

ware is too risky. Further, some authorities struggle to accept foreign-made cryptographic

hardware modules as trustworthy for processing sensitive national data such as elections.

Another limitation is that the PCR measurements verify only that the correct software is

running, not that the software is running correctly. Validating correct software design and

operation requires techniques such as formal proofs, trusted compilers, branch test coverage,

and dynamic attestation of data structures [60]. Software independent E2E systems also

offer protection against software faults.

Last, the design in this chapter provides no assurance to the voter that the machine is

an authorized device or is configured or behaving correctly. This specific issue is treated in

Chapter 6.

5.7 Future Work

This protocol represents a start at using trusted hardware to mitigate some risks of DRE.

One area related to the protocol is to modify the TPM specification to manage count-limited

signing keys. This feature could allow numerous smaller vote storage areas—each signed

with its own unique PVB—instead of one large one, to reduce the risk of total storage

compromise. Sarmenta et al. [80] refers to this as clobs—count-limited objects. Another

task would be to prove the protocol properties formally to ensure that the security claims are

satisfied under the stated assumptions.

A prototype could validate correct use of the TPM, and incorporate a full voting appli-

cation to show usability with higher level voting systems. The protocol can be extended

to include and improve E2E cryptographic audit trail technology. For instance, technolo-

gies such as Scantegrity [24, 25] empower each voter to verify that his vote was correctly

77

recorded and tabulated, but verification takes place only after all results are reported. Our

protocol can catch problems much sooner than is possible without technology assistance.

The problem of runtime integrity attacks—in our case, compromise of the live platform

after the PVB has been loaded—can be addressed by at least two research areas. Policy-

driven, secure write-once log storage could be used to cryptographically verify historic

system state and event occurrence, preventing surreptitious wholesale replacement of the

voting storage. The challenge is determining what data to record to balance the competing

requirements of voter privacy and public verifiability. Dynamic attestation of software

state could thwart live software attacks by measuring the running system, perhaps with the

help of virtualized environments, to verify the correct state of system memory structures

[60]. Advances in both of these areas would benefit both electronic voting and information

assurance in general.

5.8 Conclusions

We have created a protocol based on hardware TPM enforcement of attested software state

that resists vote modification, insertion, election replacement and augmentation, and can

reveal the use of incorrect software during the election data gathering phase. Our protocol

works by protecting the integrity of both data at rest and data in transit as well as protecting

voter privacy, and is compatible with higher level election techniques including end-to-end

systems. We have shown in practical detail how trusted hardware can reduce the required

trust base for electronic voting. Our work enables meaningfully more secure DRE voting

with excellent usability and accessibility.

78

I can’t explain myself, I’m afraid, Sir, because I’m not
myself you see.

Alice, from Alice in Wonderland
(Lewis Carroll)

Chapter 6

A Human Attestation Protocol for

Trustworthy Electronic Voting:

Bootstrapping Trust Using TPMs, Smart

Cards, Timings, and Scratch-Off Codes

6.1 Introduction

IN the voting and computing industries, managers and policy makers desire the benefits of

electronic technology but are hesitant to accept the security and privacy risks associated

with using complicated computing platforms that may be vulnerable to compromise, prefer-

ring instead to use simpler systems that are perceived to be more trustworthy. Electronic

voting, like other general purpose computing applications, must ensure user privacy and

vote integrity in the face of malicious software taking control of a user’s platform or even a

determined adversary replacing the user’s platform with one under the adversary’s control.

79

One feature that is consistently lacking in modern computing technology is the ability for

a human to verify the correctness of the software state of the platform prior to entering

sensitive information into it.

We provide a protocol through which the voter can verify the software state of an

electronic voting machine. To do so, the voter uses a trusted smart card and scratch-off

sheet of result codes, both provided by what we call the Challenge Authority (Challenge

Authority (CHA)). The voter may also verify the smart card through a timing test, and he

may audit the scratch-off sheet. Thus, our method bootstraps trust from the CHA, to the

smart card, to the voting machine.

In the protocol, a Trusted Platform Module (TPM) in the voting machine stores measure-

ments of the configuration and software that the voting machine booted. The smart card

verifies the measurements cryptographically. Whereas the TPM design of Fink et al. [35],

used to secure Direct Recording Electronics (DREs) voting systems, produces an official

record that the election authority can verify was generated by a valid voting machine after

the election, our protocol enables the voter to confirm the validity of the voting machine

before entering any sensitive data (e.g., making selections, casting his vote).

There are advantages to using an ordinary and inexpensive smart card for bootstrapping

trust versus having the voter interact directly with the voting machine. First, the card can

perform calculations helpful to verifying certificates issued by the voting machine’s TPM.

Second, the smart card can perform sensitive timing measurements helpful in detecting

“proxy attacks” (e.g., in which a corrupt election authority presents an evil voting machine

that communicates with a hidden valid machine).

Our approach overcomes two significant challenges: communicating with an ordinary

smart card (one that lacks any sort of built-in display, e.g., an LCD display or indicator light),

and verifying the smart card. First, to communicate its results to the voter, the smart card

80

sends a one-time “results code” to the potentially hostile voting machine for it to display to

the voter. Using the scratch-off sheet, the voter interprets the displayed code.1 Because the

voting machine does not know what the code means, and because it cannot fabricate valid

codes, it cannot interfere with this communication without detection.

Second, after being issued a smart card, the voter may choose to verify the software

running on it. To do so, the voter can perform a timing verification step using a trusted

laptop provided by the challenge authority. Because the smart card has limited capabilities,

such timing techniques (including e.g., Pioneer [84] or Endor [39]) can be used without

incurring the major drawbacks that arise when applied to full voting machines.

Our contribution is a protocol with these innovative features:

• Smart cards used for attestation do not require built-in displays or keypads, safely

using the display and input devices of the untrusted platform

• The voter verifies the platform authenticity and software state prior to the voter

entering any private information

• The protocol detects a specific type of proxy attack that we define in Section 6.5.1

through timing measurements of the attestation process

Our attestation protocol can be combined with other voting techniques, including End-

to-End (E2E) technologies and ballot-marking machines for paper ballots. Whereas E2E

systems (e.g., Scantegrity [23]) provide strong election outcome assurance, they detect

potential problems late in the process and do not guarantee voter privacy (e.g., a corrupt

scanner could violate ballot privacy).

Our protocol is designed for electronic voting but can be easily adapted to general-

purpose mobile computing applications.

1The scratch-off sheet keeps the attestation decision string a secret until needed, preventing unauthorized
disclosure to adversaries in advance of the attestation step.

81

This chapter is organized as follows. Section 6.2 reviews prior and related work;

Section 6.3 discusses the adversary threat model; Section 6.4 provides the protocol in detail;

Section 6.5 presents the security claims and analysis, including timing constraints that must

be present to detect the proxy attack; Section 6.6 describes an alternative to smart cards;

Sections 6.7 and 6.8 discuss future work and concludes the ideas.

6.2 Previous and Related Work

The field of trustworthy computing is proliferating due to information protection require-

ments and digital rights management. One of the products of groups such as the Trusted

Computing Group (TCG) is the TPM, an embedded cryptographic processor and non-volatile

storage device that can generate keys and use them securely. Additionally, TPMs support

advanced features such as key migration, enabling one authority to provide a platform and a

different authority to create a key to be used on it. Our protocol uses these features to ensure

that the platform is the correct one and that its software is in the correct state. The TPM is

explained in specifications [97], and the software programming interface is explained in

[98]. Although reading the TPM specifications is challenging, there are several resources

available to help navigate the functionality [19, 75] and the authors find that browsing the

code in the test suite [50] is useful when programming the API.2

We time the sequence of challenge/response operations—a process we call a timing side-

channel—to verify a resource-constrained smart card that later attests the TPM, achieving

bootstrapping of trust. Seshadri et al. created Pioneer [84] to verify the software integrity of

general purpose computing platforms by timing how long a self-verifying checksum routine

2Further, IBM recently released their 1.2-compliant TPM emulator [52] that comes with a command line
environment which can be used to prototype TPM protocols, or verify how to do things with the TPM. A
different emulator is in [96].

82

takes to answer a challenge. Pioneer is, however, plagued by too many assumptions: no

communications with a third-party host; a single CPU (vice multicore) architecture; the

challenge transmission is instantaneous;3 the verification code is optimal. Gardner et al.

proposed Endor [39] that exploits main memory latency to expose substitution attacks in

fewer processing steps than Pioneer, but it, too, suffers from impractical assumptions: no

multithreading, single core CPU, no proxy attack, and no System Management Mode (SMM)

interrupts. Seshadri et al. [85] propose the SWATT timing approach but stipulates the use

of a resource constrained environment such as embedded systems microcontrollers. It is

their suggestion, and the strict assumptions made by the other approaches, that led us to

consider time-based attestation of smart-cards as a first step in verifying the software running

on a general purpose computing platform. In further support of timing side-channels for

attestation, Franklin and Tschantz [38] prove that tamper-evident data and control programs

are possible as long as a synchronous channel—one with a known minimum delay—is used

between a verifier and a prover.

One feature that is consistently lacking in modern computing technology is the ability

for a human to verify the correctness of the software state of the platform prior to entering

sensitive information into it. Trusted computing supports attestation by using TPM to engage

in a special challenge/response protocol with networked computers, called Trusted Network

Connect (TNC). Although useful for the data center, TNC runs only when the platform

attempts to connect to the network, and therefore does not support the mobile, “hotel room”

scenario where the TNC back-end is not available. In our approach, the user can verify a

non-networked platform using a smart card previously verified with a simple stopwatch.

3to avoid the possibility of precomputing the responses before the user enters the final character of the
challenge

83

TPMs have been proposed for voting. Paul and Tanenbaum [67] sketched details of how

a TPM can provide attestation evidence of software for voting, while Fink, Sherman, and

Carback [35] designed the Platform Vote Ballot (PVB) binding protocol in which the TPM

signs cast ballots with a PVB key that loads only when the correct software is booted on

the platform. The PVB design ensures integrity of the cast ballot and correctness of the

voting platform software state, but it provides no such assurance to the voter. While no

protocol cannot detect subtle hardware errors in the voting booth, our design can rule out the

malicious terminal and proxy terminal scenarios by proving the integrity and authenticity

of the platform to the voter immediately prior to him entering his vote. Our protocol can

fit in nicely with the PVB DRE system, or other DRE-based systems like VoteBox [78]

and it can work with non-voting systems; for instance, it might be a nice complement to

the National Security Agency (NSA)’s High Assurance Platform program [62] and various

vendor implementations, e.g., [40] where tactical warfighters want proof of the platform

state before interacting with mobile, non-networked systems.

Our protocol requires the voter to compare response characters (also called strings) to

verify the attestation decision made by the smart card. Some voting systems such as [3] have

assumed that the voter is capable of doing string comparisons, adding minimal usability

burden to the voter. We require the use of scratch-off cards to keep the response strings

secret until needed during attestation. Since other voting systems such as Adida’s Scratch

& Vote [5] use scratch cards, we incur no additional usability issues compared to these

systems. Kelsey describes attacks against scratch card systems used for ballot commitments

in [56], but our protocol does not tie any ballot commitment to the revealed secret; therefore,

knowledge of the secret is useless in a vote-buying attack.

Mutual authentication using smart-cards was examined by Abadi et al. [2], in which

a Personal Identification Number (PIN) and proof of a private key authentication the user

84

to a server and the server used a certificate and a private key to authenticate to the user.

However, the server private key was not bound to the software state of the platform, enabling

a malicious computer program to take over the server and compromise the user’s privacy.

The TPM quote feature used in our protocol provides measurements and cryptographic

proof of the software state of the platform, mitigating this risk.

Much has been written on the problem of software injection attacks against electronic

voting systems and on DRE in particular (e.g., [11, 14, 15, 32]). Some interesting work that

mitigates software compromise include Yee’s [101] reducing the size of the software stack

and Jorba’s et al. [54] Scytl architecture that uses hardware security modules to protect

chained digital signatures. Others prefer not to trust the voting terminal and advocate E2E

voter verifiable voting systems [23, 25] that prove to a voter his vote was cast as intended,

recorded as cast, and counted as recorded. Fink and Sherman [34] note that end-to-end

integrity is not end-to-end security, and argue that combining TPM methods such as PVB in

parts of the election process improve privacy thereby improving overall security. Our human

attestation protocol builds on this idea by ensuring privacy through software attestation prior

to the voter indicating his preferences.

6.3 Threat Model

We define the adversary’s motives and technical ability, the voting environment, and specific

threats.

A correctly configured platform runs authorized software and uses authorized data files.

It boots the authorized operating system software, starts the correct voting software, interacts

with authorized devices including smart cards that typically help initiate the voting session,

presents the authorized ballot to the voter, and records the vote into storage without any

85

changes, deletions, or duplications of the vote or previous votes. Correct configurations

affect only the software and configuration files; a voting platform must ensure trusted paths

between the hardware components, including the display, system and I/O bus, memory,

CPU, and the user input device.4

We define the adversary as part of our attack model. The adversary wants to compromise

voter privacy and disrupt the intent capturing process that records the voter’s choices. The

adversary is technically proficient, has access to legitimate voting terminals before and

during the election, and has access to the software source and compiled binaries. The

adversary has physical access to an actual voting terminal before, during and after an

election, and owns a replica voting terminal that can pass as a real one. The adversary is

risk-averse, wanting to avoid detection where possible while meeting as many goals as

possible.

The adversary is assumed capable of, and willing to execute the following attacks:

• corrupting the voting platform software or ballot definition files

• corrupting or substituting a smart card used to initiate the voting session

• deploying an unauthorized machine

• deploying an authorized machine under adversary control

• deploying an unauthorized machine that can communicate to an authorized machine

under adversary control

We assume the polling location consists of a private polling booth in which the voter

interacts with the terminal and casts his vote in privacy. The poll booth consists of a single,

stand-alone voting terminal connected to an electrical power source. Entry to the booth is

4Failure of a trusted system component to function as intended may cause the security controls to fail.

86

monitored by election officials, and entry is restricted to the voter or a group of two or more

administrators (with competing interests) during the open poll hours.

We assume that the adversary wants to avoid detection and excessive cost, making certain

attacks undesirable. One such attack is a “hidden camera” privacy attack that requires a

breach of the voting booth integrity, adding extra physical hardware that could be detected.

The denial of service attack, caused by destroying voting equipment or the polling location,

is trivial and is too risky and detectable for our adversary, in addition to being too obvious.

We assume that a majority of the poll workers are “good,” following correct procedures and

halting the election upon detecting any malicious activity.

Additionally, the adversary cannot corrupt all makes and models of smart cards, nor

force a majority of smart card makers to assist him with his attacks.

Ours and other protocols make use of trusted cryptographic hardware such as the TPM;

therefore, we assume that the adversary cannot learn any private keys, in whole or in part,

created within the TPM. This assumption is made based on the difficulty of factoring the

Rivest Shamir Adleman (RSA) moduli and the extreme technical problems of physically

de-layering a TPM and probing it during operations to recover the keys.

6.4 Attestation Protocol

We now describe the attestation protocol in terms of assumptions (components, actors),

assumptions, and specific steps.

87

6.4.1 System Overview

Architecture

The architecture consists of: a general purpose computer (PC) voting platform that has

a TPM; a smart card; and scratch off cards that hold verification decision secrets. The

smart card is able to load data and attestation software, process TPM quotes of Platform

Configuration Register (PCR) values, perform timing measurements of attestation exchanges,

generate random numbers, and communicate verification decisions to the PC. The PC accepts

voter input, exchanges data with the card, and displays the card’s response. The smart card

does not have an independent display or user input capability. A trusted public authority

certifies the public keys of the other authorities.

The basic architecture, and overview of the protocol is shown in Figure 6.1.
Graphical 5b

1. Measurement

Smart

Card

2. TPM_Quote (nonce)
3. Sk[Quote, nonce]

5a. Reveal

KITTENS

KITTENS

4. Compares Golden

5b. Reveal

Figure 6.1: Sketch of the architecture and protocol as implemented in a standard PC
environment. Steps: 1) trusted BIOS stores software measurements in TPM. 2) Smart card
requests a quote from the TPM. 3) TPM replies with digest of PCR values. 4) Smart card
looks up PCR values (“golden” measurements) and checks the digest signature. 5a) If PCRs
match the smart card golden values, it reveals attestation secret, 5b) user reveals secret on
scratch off code and makes sure it matches.

88

Authorities

We reference the following authorities in our protocol, and they are trusted to do certain

things:

• Platform Authority (PLA) - procures, configures, deploys, and maintains the voting

platform’s hardware and software; in the voting context, the election authority acts as

the PLA

• Independent Testing Authority (ITA) - ensures correctness of voting software and

correct compilation of software executables from source

• Challenge Authority (CHA) - creates independent challenge strings that voter uses to

confirm the attestation decision, manages the smart cards

Other authorities and actors in the election process not central to our protocol include

the election authority that oversees the entire process, the legislature that defines voting law,

state and national agencies that define voting and cryptographic standards, and candidates

and additional stakeholders in the correct outcome of the election.

System Trust

The system actors are trusted to perform their intended duties, such that failure of any one

of them can compromise the security claims of our system. In our model, the voter is not

trusted, but instead is a consumer of the security provided by our system.

There is no multi-party trust—the system trusts each authority explicitly and indepen-

dently. Likewise, trust is not transitive among authorities. Last, the voter trusts the challenge

authority and the independent testing authority, but does not have to trust the platform.

89

6.4.2 Component Assumptions

• Voter can compare text strings (suggested by Adida and Neff [4])

• Smart cards are given to voters only on election day

• Voting terminals use version 1.2 TPMs

• The time taken by a certain computing platform to communicate with the smart card

and its TPM; and the time for the platform’s TPM to perform signature operations,

produces time measurements that have a repeatable mean and variance

• The path between a smart card and the PC is a synchronous channel as defined by

Franklin and Tschantz [38]

6.4.3 Protocol

The protocol is broken up into several protocol parts, each part consisting of a sequence of

steps. The actor indicated in the part title is the primary actor, and performs all the steps

in the protocol part. Other actors exchanging information with the primary are explicitly

stated.

The commands in this protocol correspond to calls in the TCG Service Provider In-

terface (TSPI); however, many TSPI calls require numerous arguments and additional

setup/takedown commands. We purposely have simplified these elements of the protocol

to keep the presentation focused on the overall protocol design. Refer to [19, 98] for API

details.

90

Part 1 - Voting Software Initialization and Certification (ITA)

binaries = TrustedCompile(platform software . . .) (1.1)
pcrV als = ExtendHash(binaries) (1.2)

ITA→ Public : SITA(pcrV als) (1.3)

1. The ITA receives the platform software from the vendor and reviews the software

for correctness according to the design and specification. The platform software

consists of all components needed to boot the platform, initiate the voting software,

and perform the ballot display, intent capture, and ballot casting operations. The ITA

uses a trusted compiler to convert the software source code into executable binaries

for the target platform.

2. The ITA computes the expected Platform Configuration Register (PCR) values of the

target binaries using cryptographic hashes as defined by the TCG [97]. The PCRs

are created by extension, an operation that produces a single hash value by ordered

concatenation of a sequence of hash values of the individual software components.

The pcrV als reflects a “golden measurement” of the platform and systems software.

3. The ITA signs the set of PCR values and posts this for public inspection. For proper

security, the ITA certificate must be issued by a trusted root certificate authority.

Part 2 - Platform Load and Key Creation (PLA)

∀i ∈ platform inventory, do (2.1)
plaSRK = TakeOwnership(. . .)

plaSRKPub[i] = GetPubKey(plaSRK)

PLA→ Public : SPLA(plaSRKPub[]) (2.2)

91

1. For each platform in the inventory, the PLA takes ownership of the TPM. This creates

the Storage Root Key (SRK) and exports it to local storage.

2. The PLA obtains the public portions of the SRK from each authorized platform, and

signs them.

The PLA loads the voting software onto the platform and distributes the platforms to the

precinct managers when appropriate.

Part 3 - Challenge Key Creation (CHA)

PLA→ CHA : plaSRKPub[] (3.1)
ITA→ CHA : pcrV als

chaSRK = TakeOwnership(. . .) (3.2)
quoteSignKey = CreateKey(chaSRK,SIGNING, (3.3)

MIGRATABLE)

∀i ∈ platform inventory, do

maKey = CreateKey(chaSRK, plaSRKPub[i]) (3.4)
ticket = AuthorizeMigrationTicket(maKey,

REWRAP)

quoteMigBlob[i] = CreateMigrationBlob(chaSRK, (3.5)
quoteSignKey, ticket)

1. The Challenge Authority receives the list of public keys from the Platform Authority.

It receives the set of expected PCR values from the Independent Testing Authority.

2. The CHA establishes its own platform by taking ownership of its TPM, producing

chaSRK.

3. The challenge key, quoteSignKey, is created as a migratable signing key. This key

will be used by the voting platform to sign the TPM quote challenge.

92

4. The quoteSignKey is encrypted into special migration blobs, one for each platform

in the inventory. First, a migration authority key maKey is created out of the SRK

public key provided by the Platform Authority, corresponding to the target voting

terminal. The migration authority key is merely a fancy wrapper around the target

platform’s SRK public key, used solely for wrapping (encrypting) the quote signing

key. Next, a temporary migration ticket is created that reflects the intended recipient

and usage mode of the quoteSignKey key. The REWRAP parameter says to wrap the

migration key with the recipient’s public key allowing the recipient to load the key

only and not forward it on.

5. CreateMigrationBlob takes the Challenge Authority’s SRK, the quote signing

key, and the migration ticket and creates an encrypted blob. The blob can be decrypted

only by the TPM that corresponds to plaSRKPub[i] created in Step 2.1.

Part 4 - Smart Card Initialization and Timing Verification (CHA)

ITA→ CHA : pcrV als (4.1)
CHA→ Card : CardLoadSW(SelfV erif)

attT ime[card] = Time(SelfV erif, nonce) (4.2)

PLA→ CHA : sample platform Plat (4.3)
CHA→ Plat : quoteMigBlob[Plat]

attT ime[quote] = Time((4.4)
Card→ Plat : Quote(quoteSignKey, PCRs, nonce)

Plat→ Card : SquoteSignKey[quoteResp, nonce]

)

CHA→ Public : SCHA(attT ime[]) (4.5)

93

1. The CHA obtains PCR values from the ITA. Special software for platform attestation

and self-verification, SelfV erif , is loaded onto the smart cards. The self-verification

module is of the type suggested by Seshadri et al. [85] that is able to hash itself

and a critical software module repetitively, is implemented optimally, and runs in a

deterministic amount of time.5

2. The CHA verifies integrity of the card by collecting timing data on how long the

card takes to process a challenge. CHA verifies that base timing data is the same

on all cards of same type, discounting any with significant timing variance. Timing

may vary between different models of cards. The CHA verifies the timing against

known/published measurements, or against those results obtained in a cleanroom

setting using a trustworthy instance of the card.

3. The CHA randomly chooses a sample voting platform from the PLA. The CHA

should reload a fresh copy of the platform software, or do any other refreshes that are

necessary, including taking new ownership of the TPM and repeating protocol parts 2

and 3. The quote migration blob is loaded, and the platform TPM unpacks and loads

quoteSignKey from the blob.6

4. The card measures the time taken by the platform to receive a quote request, sign the

request with the proper key, and return the response. The card also collects timing

variance. Last, the platform is completely cleared prior to being returned to the PLA

to ensure that the quote signing key can never be loaded again without a new TPM

5Different types of cards should be procured from different vendors to ensure diversity, driving up the cost
of lifecycle attacks on the cards that could otherwise detect and modify the base timing attestation step. As an
alternative, destructive delayering and examination can be performed on random examples of cards to ensure
no extra logic gates, or wireless communications mechanisms, are present.

6quoteMigBlob could be an associative array, indexed by a hash of the platform SRK public key reported
by GetPubKey.

94

owner context. As timing may vary based on the type of platform being used, each

type of platform needs its own baseline.

5. The CHA publishes the timing test data and observed timing variances for use by

various voting rights groups.

Part 5 - Secret Creation and Card Data Load (CHA)

for large j, do : secrets[j][good|bad] = CreateSecrets() (5.1)
CardLoadData(pcrV als, attT ime[], quoteMigBlob[], secrets[]) (5.2)

1. The CHA creates a large set of random independent secret string pairs. Each pair

includes one string indicating platform attestation success (e.g., “kittens”), and an

independent string indicating attestation failure (e.g., “bunnies”). The CHA creates

scratch-off tickets encoded with several secret pairs chosen at random, and a serial

number uniquely identifying each secret pair.

2. Each smart card is loaded with the “golden measurement” pcrV als, the attestation

response times and variances for each type of voting platform, the migration blobs of

the quoteSignKey for every authorized platform, and the attestation response secrets.

The CHA securely distributes the cards and scratch-off tickets to the various voting

rights groups.

95

Part 6 - Voter Attestation (Card)

V oter → Card : Time(SelfV erif, nonce) (6.1)

V oter → Plat : secSerial (6.2)
Plat→ Card : secSerial, platId

Card→ Plat : LoadKey(quoteMigBlob[platId], . . .)

attT ime = Time((6.3)
Card→ Plat : Quote(quoteSignKey, PCRs, nonce)

Plat→ Card : SquoteSignKey[quoteResp, nonce]

)

result = Verify(quoteResp, pcrV als, attT ime) (6.4)

Card→ Plat : string =

{
secrets[secSerial][good] if result is good
secrets[secSerial][bad] otherwise

}
Plat→ V oter : string (6.5)

1. The voter receives a scratch off ticket and a smart card from the voting rights group.

The voter (or voting rights group) performs a timing challenge of the smart card,

comparing expected times with those published by the CHA, to verify that the smart

card is of the correct type and running the correct software. (Other voting details

are implied, e.g., signing into the polling location, receiving a ballot from the poll

workers, . . .)

2. The voter inserts the smart card into the voting platform. He randomly chooses a

secret pair from his ticket and enters the corresponding serial number into the platform.

The platform communicates this number to the smart card. The card looks up and

sends the correct migration blob to the platform, and the platform loads this key into

its TPM.

96

3. The card begins a timed, quote signing attestation loop with the platform, using a

fresh nonce every time. The TPM Quote command takes the handle of a key to sign

the quote, and an index specifying which PCRs are to be read and signed; the TPM

replies with the values of the PCRs, indicating platform software state, and a signed

digest. The smart card records the times for each loop and the variance.

4. The card verifies the quote response against pcrVals and checks that the signature

matched quoteSignKey, and the card verifies that this loop completed in the expected

amount of time with acceptable variance. If these tests pass, the card releases the

attestation success string, otherwise it releases the failure string. The revealed string

carries no information about the attestation decision made by the card.

5. The voter scratches off the “good” part of the ticket, and confirms the result displayed

on the platform. If the strings match, the voter continues interacting with the system.

If the strings do not match, the voter may summon a poll worker to reveal the “bad”

string to confirm a misconfiguration (or an unknown or no string, revealing an attack

or total software failure).

6.5 Protocol and Security Analysis

We describe the security properties of the protocol. We also derive the timing requirements

and assumptions necessary to defeat the proxy attack.

6.5.1 Countered Attacks

The protocol defends against attacks on voter privacy. Voter privacy is compromised if

the voter interacts with the wrong platform, the right platform running the wrong software,

97

or a proxy platform covertly interacting with the right platform that has been “kidnapped”

to answer the attestation challenge. With these attacks, the adversary learns the voter’s

intention (violating privacy) while preventing the vote from being recorded on authorized

equipment. These attacks can be detected only after the voter verifies his vote on the public

bulletin board well after the end of election day.

A further attack is on the smart card itself, causing the smart card to reveal the incorrect

attestation string to the voting terminal, hiding malicious software on the terminal. The

protocol exposes these attacks in the following ways:

Unauthorized Voting Platform: This scenario occurs when an unauthorized voting termi-

nal, one with a TPM not owned by the platform authority, is placed in the voting booth.

The quoteSignKey created in Step (3.3) is wrapped by the public SRK keys of only

authorized voting platforms. The SRK is created in Step (2.1) when the PLA takes

ownership of the TPM. The CHA’s TPM uses the SRK public key from an authorized

platform to encrypt the quoteSignKey key during creation of the migration blob

quoteMigBlob in Step (3.5), ensuring that only the authorized platform–possessing

the corresponding SRK private key–is able to load and use the quote signing key. If

an unauthorized platform is asked to sign a quote, it will fail because its TPM’s SRK

is unable to decrypt the quoteSignKey.

Key migration enables the challenge authority to create the key used to sign the

quotes. The reader may observe that a TPM quote request can be signed with any

signing key, and wonder about the reason for doing key migration. Although there

is a system design elegance and added security of the key management process in

enabling the challenge authority to create its own keys, the main reason that the CHA

creates the keys and not the platform is to ease the burden on the platform authority.

98

With our design, the platform authority has to do nothing more than certifying and

publishing the public key, a minor extra burden to taking platform ownership of the

TPM. (A reader skilled in TPM application will notice that the migration steps are

severely condensed in the protocol steps; as mentioned, several TPM commands

involve lengthy setup and take-down sequences, and none are more demanding than

those used in the migration process.)

Authorized Platform, Unauthorized Software: This scenario covers both the case of a

minor software component or configuration discrepancy on an otherwise legitimate

(known TPM) voting platform, and the case of an adversary completely replacing

the software on a legitimate voting terminal. When the platform boots, the measured

launch process loads and creates cryptographic hashes of the platform software,

including the critical operating system, configuration, and voting software binaries

and stores them in the TPM PCRs. The TPM Quote request causes the TPM to

load the quoteSignKey, read and report the PCR measurements stored within, and

sign them with the key. Changes to any of the measured launch files will result in

differences between the PCR values in the quote response and one or more PCR values

in the golden hashes. The smart card uses a copy of the golden hashes determined by

the ITA in Step (1.3) to detect these differences in the verification in Step (6.4), and

communicates the “bad” string to the platform.

Since the platform always receives a string from the smart card, it has no way to

know whether the attestation evidence was confirmed or rejected, and has no choice

but to display the string given by the card. In the case of “mostly good” attestation

where the platform software is able to follow the protocol correctly, it will display

the string given to it which will happen to be the “bad” string. The administrator

99

can reveal the “bad” string and know that the problem is due to some definite, but

honest, misconfiguration or corrupt file. In the case of complete adversary takeover,

the malicious software will run the protocol but will have to display a random string

to the voter, (or no string at all,) which will match neither the “good” string or the

“bad” string with high probability and instantly reveal the corruption.

Proxy Terminal, Kidnapped Authorized Platform: In this scenario, the adversary ob-

tains an authorized voting terminal with a known TPM SRK, places a proxy terminal

capable of interacting with a smart card in the voting booth, and connects the two

together in such a way that the kidnapped platform is made to answer challenges.

During smart card initialization, the challenge authority obtains a sample voting plat-

form and times its quote responses and signatures as indicated in Step (4.4). During

attestation, these times are loaded onto the smart card which then confirms the time it

takes the platform to respond to the quote request in Step (6.4).

As will be demonstrated in Section 6.5.2, response time not only includes the time

needed by the TPM to sign the quote, but also the time that the communication

channel takes to deliver the quote message from the smart card to the platform and

back again. The proxy case requires an extra hop in the communication path to

forward the card challenge to the kidnapped platform and get a response, and we

hold that this extra time can be detected by the smart card provided that the timing

assumptions in Section 6.5.2 hold. Timing analysis is the key to thwarting the proxy

attack.

Smart Card Software Attack: In this scenario, an adversary corrupts the card system

software to get it to reveal the “good” string regardless of quote values returned by

the TPM. The CHA measures the root of trust of the card software in Step (4.2) prior

100

to entrusting the card with the secret strings in Part 5. Based on previous research,

adversary software cannot fool the timing challenge step in a resource-constrained

environment [85], so the secrets are safe. The voter repeats the timing verification in

Step (6.1).7

6.5.2 Timing Analysis

Our protocol defeats the proxy attack only if fundamental timing constraints on the commu-

nications channel between the smart card and the TPM are upheld. The timing model and

the resulting constraints are now developed.

We define the following times in our model:

• TC is the time it takes for the smart card to send a challenge message to the platform

CPU (intended for the TPM) over a synchronous channel

• TP is the time required by the platform CPU to forward the challenge onto the TPM,

and send replies back to the card

• TTPM the time taken by the TPM to to exchange messages with the CPU, obtain the

PCR values sign the quote and issue the response.

• ε is the end-to-end channel noise time resulting from natural variations caused by, for

example, environmental effects, system interrupts, and CPU message queuing delays

The expected time to complete one TPM quote challenge in the non-proxy case is:

2TC + 2TP + TTPM + ε (6.6)
7The voter does not need to do timing verification of the card if he trusts the chain of custody of the card

from the CHA.

101

TC
TP

TP

TTPM

TC

Card Processor TPM

Figure 6.2: Expected Timing Model

Figure 6.2 is the expected timing model. This involves the time for the card to send a

challenge to the platform CPU TC ; the time for the CPU to format the proper TPM command,

TP ; and the time to send it to the TPM, the TPM to answer the challenge, and reply to the

CPU, TTPM . The extra factors on TC and TP reflect the return trip times.

To model the proxy attack, we need some additional times:

• T ′P is the adversary’s CPU time

• TN is the time taken to send a message across the adversary’s covert network linking

the adversary proxy to a kidnapped, legitimate voting terminal

102

T
′

P
TC

TN

T
′

P

T
′

P

TTPM

TN

T
′

P

TC

Card Processor TPMProcessor

Figure 6.3: Adversary Timing Model

Figure 6.3 is the proxy attack timing model. During the attack, the voter unwittingly

inserts his smart card into a proxy machine that accepts the challenge from the smart card,

and must transmit it over some covert network to a kidnapped, legitimate platform parked

outside the voting booth. The kidnapped platform must answer the challenge, send it back

over the network to the proxy which then writes it to the card. Further, we assume that the

adversary uses a different, potentially faster processor than we do. This sequence has an

expected time of:

2TC + 4T ′P + 2TN + TTPM + ε (6.7)

For the proxy attack to succeed, the time required by the adversary model in equa-

tion (6.7) must not exceed the time taken by the expected model in equation (6.6). One

strategy is to use a fast processor and network connection, and try to hide in the noise. This

103

strategy succeeds if inequality (6.8) holds:

2TC + 4T ′P + 2TN + TTPM ≤ 2TC + 2TP + TTPM + ε (6.8)

Reducing inequality (6.8) gives:

TN ≤ (TP − 2T ′P) +
ε

2
(6.9)

If we assume that the time TP for a CPU to encode or decode a TPM message is no

worse than time T ′P to encode/decode a message for the covert adversary network, then we

get:

TN + TP ≤
ε

2
(6.10)

exposing the proxy attack if either TN or TP = T ′P is greater than ε/2. (We will

determine real-world values of ε with further research on timing.)

6.5.3 Attacks Not Countered

Our protocol cannot not defend against the following classes of attacks:

Life Cycle Attacks: If the TPM or smart card hardware are implemented from corrupt

designs, or employ malicious extra logic gates, we cannot ensure that the timing

attestation phases complete properly, and we cannot believe the results. Most likely,

such problems will be detected through vendor diversity or large timing variations,

but no known technique can prevent the effects of lifecycle attacks.

104

Ticket Theft/Reprint: If an adversary steals the stack of secret scratch-off tickets, he can

steal the secrets, encode his voting machine with the codes, and reprint and redistribute

the scratch cards. This attack requires some skill in reprinting scratch-off cards, as

well as a breached chain of custody on the scratch-off tickets.

Insider Attacks: The trusted officials and entities are relied upon to carry out their respon-

sibilities fully. This protocol, and any other protocol, would fail if one or more of the

trusted parties failed to do their jobs correctly.

6.6 Alternative Protocols

In this section, we briefly discuss two alternative approaches. The first replaces the smart

card with a ”flat file” (e.g., presented to the voting machine on a CD). The second uses

physical techniques (e.g., glitter glue in clear epoxy) to authenticate the TPM in the voting

machine.

6.6.1 Flat Files

In original discussions, the authors debated the use of smart cards. If defending against the

proxy attack were not a requirement, a system of encrypted flat files could be used instead.

The seal feature of the TPM could enforce the integrity of the platform state by restricting

use of a decryption key only to states where the correct software has been booted.

Sealing is a way that a TPM can be made to load a key only if all of the platform

configuration registers contain the correct values. Fink’s et al. [35] PVB voting protocol

relies on TPM sealed keys.

105

In the flat file protocol, the PLA creates a key sealed to the expected PCR values. Since

the sealed key is bound to the TPM SRK, it can only be used on that platform. The CHA

receives the public portions of the sealed keys, and uses these to encrypt “good” strings into

flat-files—one encrypted secret per sealed key—that are stored on removable media.

In the poll booth, the voter presents the encrypted flat-file to the platform, and selects a

challenge serial number from his scratch off card. The platform loads its sealed key into

the TPM. If the PCRs match the golden values, the load succeeds, otherwise it fails. On

success, the platform then searches the media for the secret encrypted by its sealed key

(public portion), decrypts the secret with the TPM, and displays it to the voter. The voter

verifies that the decrypted secret matches his scratched off value and proceeds to enter his

choices.

The flat file attestation technique is likely cheaper to design, implement, and procure

than the smart card attestation protocol and eliminates the scratch-off tickets, but there are

significant problems:

1. The CHA must encrypt all secrets with keys from every possible platform that the

voter is likely to use. This forces the challenge authority to use smart cards with

lots of memory, or somehow manage and organize cards into subsets based on, for

example, the assigned precinct.

2. The platform authority must create the sealed keys, not the challenge authority. This is

because sealed keys are non-migratable, and therefore must be created on the platform

they are to be used on. This has two implications:

(a) Creating the sealed keys is extra work for the platform authority, and any prob-

lems with creating the sealed key will result in a dead platform on election day.

106

(If the CHA fails to create a migration blob, the voter can just use another smart

card)

(b) Letting the platform authority create the keys places requires the voter to trust the

platform authority in addition to the challenge authority. If a malicious platform

authority administrator creates a key without using the TPM and gives the public

portion to the challenge authority, then the malicious system can bypass the TPM

and decrypt the attestation secret regardless of platform state. (The CHA creates

the key in the smart card protocol, thwarting a malicious platform administrator)

3. The challenges are created ahead of time (the smart card creates a fresh nonce with

each attestation loop iteration).

4. The flat-file alternative cannot detect the proxy attack.

6.6.2 Physical Authentication

There are relevant physical authentication techniques that can be used instead of, or in

addition to, our protocol, to increase the voter’s assurance that he is interacting with a valid

voting machine. For example, the machine could be built so that its TPM is clearly visible

to the voter–e.g, through a window in the front of the machine.

Moreover, the TPM could be secured to the machine by embedding it in clear epoxy

glue scattered with glitter. This technique [94] provides both tamper evidence and physical

authentication of the TPM: the three-dimensional glitter patterns are unique and essentially

impossible to duplicate, and attempts to compromise the epoxy are physically apparent. The

epoxy should also contain a clearly visible serial number. Prior to the election, newspapers

and websites could publish the glitter patterns for all voting machines.

107

During voting, each voter could visually examine the TPM and its glitter pattern in

his voting machine, comparing the observed pattern to that expected for the given serial

number.8

This technique provides strong physical assurance to the voter that the voting machine

has an authorized TPM. The technique does not guarantee the integrity of other critical

aspects of the machine (e.g., display, CPU). Also, the usability of this technique by voters

must be verified.

6.7 Future Work

Further work must investigate the timing variance on the communications path—starting

with the smart card and ending with the TPM—during TPM quote operations. Timing

variance must be determined on how long a fast CPU takes to format a TPM message. Each

of these operations should be done against a large number of keys and incorporate differing

environmental factors. Further, the attestation approach should be implemented to support

usability implications of the attestation approach.

6.8 Conclusions

We have developed a timing- and TPM-based attestation protocol that allows a human to

attest the software state of a voting platform prior to entering sensitive information and vote

selections into it. This protocol can extend to other sensitive security applications.

8For military systems, making the TPM visible holds an additional benefit. In an emergency, a soldier
could easily destroy the TPM by firing a gun directly into the TPM, greatly complicating the enemy’s task of
recovering secrets from the TPM.

108

Computers may save time but they sure waste a lot of
paper. About 98 percent of everything printed out by a
computer is garbage that no one ever reads.

Andy Rooney

Chapter 7

On trustworthy receipt printers in the

Scantegrity election system

7.1 Introduction1

THE Scantegrity system [24] provides End-to-End (E2E) voter verifiability. Each voter

uses an optical scan paper ballot with special invisible printing in the markable

positions. When selecting his candidate, the voter marks his ballot with a special pen filled

with reactive ink that reveals a hidden confirmation number in each marked position. The

voter can record each number revealed by his selection to check them later on an election

website to verify that her vote was recorded and tallied correctly, helping verify election

integrity. Each code is random in each contest (sometimes called “race”) and each ballot,

and therefore does not reveal the corresponding vote. The ballots are handled as traditional

ballots, preserving the ability to hand count and perform other traditional election activities

associated with optical scan systems. A final tally can be computed from the confirmation

1This is joint work and appears in both Richard Carback’s and Russell Fink’s dissertation with committee
and graduate school approval.

109

numbers, and the system provides a public digital audit trail that allows verification of the

election.

A key feature of Scantegrity is enabling results verification without trusting any system

component that potentially can change the election results without detection. Practical

experience [17, 91], however, points to several problems that occur when voters and election

judges interact with the system.

The most prevalent of these problems is that voters have trouble recording the confirma-

tion numbers to make their receipts. Often, voters do not notice that they can make a receipt,

or they do not follow the instructions to write down the online verification number and other

information so that they can check the receipt online after the election. The codes can also

be hard to read, and voters can make mistakes when writing the codes down.

Adding a receipt printer to Scantegrity could solve these problems by automatically

generating receipts for voters, substantially improving use experiences with the system.

However, a receipt printer potentially introduces a complex trusted component. The Scan-

tegrity authors warned against such a trusted component, and did not propose a design for

it. A malicious receipt printer could generate improper receipts that may go unnoticed by

voters and cause undetectable changes in election outcomes, and violate voter privacy.

We propose two designs that balance trust and usability, enabling the benefits of a printer

while minimizing privacy risk. Rather than trusting the entire receipt printer platform–

operating system and software of a general purpose computing platform–we place trust in

the Trusted Computing Group (TCG)’s Trusted Platform Module (TPM), a small, embedded

cryptographic processor that safeguards keys from malicious software. Our designs use

the TPM to mitigate the problems of malicious software, enabling the benefits of printing

without aiding manipulation, integrity, or privacy attacks. Further, the TPM enables our

designs to be trusted to maintain secure digital records of the receipts, enabling bulk, third-

110

party verification of every receipt, strengthening the security of the overall Scantegrity

approach.

We propose two designs: The first attempts to be as simple as possible, and the other

provides more features at the cost of additional complexity. Both of our designs make use

of the TPM to protect the confidentiality and integrity of information passing through the

receipt printer, offering good usability without compromising privacy or election integrity.

Section 7.2 discusses background information and related work. Section 7.3 presents the

functionality and security goals that any receipt printer for Scantegrity must implement, and

motivates our design. Section 7.4 provides our two designs, while Section 7.5 evaluates the

security of these designs. Section 7.6 presents additional considerations for receipt printers.

Section 7.7 discusses a controversial change to Scantegrity that is possible only by using a

receipt printer. Section 7.8 concludes the work.

7.2 Related Work

Scantegrity is an E2E voting system [70]. Voting systems that are E2E provide high

assurance that the tally is computed properly while maintaining ballot secrecy.

These systems have their origins in work by Chaum [21] in 1981, who first proposed

cryptography for the purpose of anonymizing ballots in a verifiable manner. Adida provides

a survey of the next two and a half decades of work in this area [6].

The 2005 VVSG proposal [99] initially defined E2E voting systems, and Popoveniuc

et al. [70] improved on this definition. The first proposals that can be identified as E2E

were proposed by Chaum [22] and Neff [63]. Other proposals include: Prêt à Voter [26],

Punchscan [69, 37], the proposal of Kutylowski and Zagórski [59] as Voting Ducks, and

Simple Verifiable Voting [13] as Helios [7] and VoteBox [79].

111

Making usable E2E systems is challenging, and the Scantegrity project has been a

leader in this effort. It has been deployed in a Mock election [90, 91] and a real election at

Takoma Park [17, 18], and in both cases the Scantegrity team studied the voter experience

and concluded that Scantegrity could be used effectively and is well accepted by election

officials and voters. They also concluded that making printed receipts for the voters,

rather than having voters record confirmation numbers manually, would improve the voter

experience and the likelihood of voters verifying their results.

Previous voting designs have used printers. Andy Neff’s VoteHere system used a receipt

printer as part of its protocol to commit cryptographic codes to the voter [8]. Our system

uses a receipt printer for convenience and usability, printing legible codes for the voter, but

our printer is not part of the Scantegrity cryptographic commitment protocol.

The printed ballot version of SureVote, invented by David Chaum, prints sure codes onto

the voter’s receipt corresponding to his selections [20]. However, we cannot find any design

element for securing the printer or safeguarding the sure codes from surreptitious disclosure

by a rogue receipt printer. Our system encrypts the Scantegrity codes using keys managed

by the TPM in such a way that ensures only the correctly booted platform software can gain

access to the Scantegrity codes.

Fink et al. gives a comprehensive overview of the TPM relative to the field of voting

in [35]. For other features and references on the TPM, the TCG publishes the main TPM

specifications in [97]. Pearson et al. give an alternative overview of the TPM and the TCG

[68], and Challener et al. [19] wrote an excellent practical guide to the TPM for software

developers. Developers using the TPM are guided to the TrouSerS software stack and test

suite for understanding the programming details [50].

Others have suggested using TPMs for voting. Fink, Sherman and Carback designed

a TPM protocol for Direct Recording Electronic (DRE) voting that signs the ballot and

112

voter selections using a key managed by the TPM that provides proof of the correct DRE

software state at the time the vote was cast [35]. Arbaugh outlined an on-line TPM-based

protocol for attesting systems through a central server [9]. Rössler et al. suggested hardware

security modules for postal-voting [73]. Paul and Tanenbaum [67] sketched a voting system

architecture incorporating TPMs. Although there is interest in using TPMs for voting, no

previous approach uses TPMs to design secure receipt printers.

7.3 Requirements

The security of the receipt printer is important, because it can affect the privacy and integrity

of the election. As part of the receipt printer designs, we present the high level requirements

that any receipt printer for Scantegrity must implement to ensure integrity, authenticity, and

confidentiality while improving overall usability, and discuss traceability in the designs.

7.3.1 Functional System Requirements

The functional requirements describe the high level features that any Scantegrity printer

must provide:

Printed Scantegrity Codes: The receipt printer will produce Scantegrity receipts, provid-

ing the user with the confirmation numbers of the selected candidates and the online

verification number for the ballot.

Self-Verifiable Receipts: Anyone should be able to verify that each receipt came from

an authorized receipt printer using information printed on the receipt. Further, The

voter, and anyone else, shall be able to confirm that the receipt printer booted only

authorized software by verifying information printed on the receipt.

113

Independence: The receipt printer shall not rely on the correct operation of any other

component in the system.

Usability: The design should be intuitive to use and able to accommodate accessibility in-

terfaces. A printed format is good for sighted voters, but designs should accommodate

disabled voters and speakers of different languages.

Longevity: The same receipt printing equipment should be able to be used in multiple

elections over many years.

7.3.2 Security Goals

In addition to basic features, a Scantegrity receipt printer must uphold some security goals

or constraints while providing the basic features:

Privacy: The receipt printer should not compromise voter privacy, e.g., by disclosing

Scantegrity codes to unauthorized parties or printing information on the receipt that

would help correlate a confirmation code to the voter’s selection.

Integrity: The receipt printer should not facilitate attacks on the integrity of the election.

Further, the receipt printer should not facilitate false challenges to the election integrity.

Generally speaking, the printer shall not enable an attacker to impart credibility to a

false receipt.

Event Control: The receipt printer shall not be capable of presenting valid cryptographic

proof prior to, or proceeding, the authorized election period. This requires strong

controls on signature keys.

Information Control: Only authorized platforms shall be entrusted with any sensitive

ballot data, e.g., Scantegrity confirmation codes.

114

There are many ways to meet these requirements and constraints, and a TPM-based

approach is merely one way to do this. (A different way might involve provisioning

cryptographic material via removable smart cards, but we do not consider such a design

because it involves more trusted components than a TPM design.)

7.4 Design

We present two design variations for receipt printing for Scantegrity. The first is a stand-

alone image duplicator, and the second is a marked sense translator that requires state and

a connection to the PCOS scanner. There are benefits and problems with each, as will be

discussed in Section 7.6.

Both variations assume that the voter has completed his ballot prior to requesting a

receipt. Neither variation encodes any information onto the receipt that can identify the

voter or how he voted.

Both methods record attestation evidence onto the receipt, a special cryptographic code

generated by the TPM that can prove to the voter that the receipt printer platform booted the

correct software. Since the attestation method is common to both approaches, we present

its design as a segue from the basic functional design of the image duplicator to the more

feature-rich marked sense translator.

Both designs rely on certain features of the TPM. The central TPM features that our

designs use include:

• Platform Configuration Register (PCR)–storage inside the TPM that securely stores

cryptographic hashes of booted printer operating and application software

• Sealing–a operation that binds the unwrapping and use of a secret to the identity of

the TPM and the software state reflected in the PCRs

115

• Monotonic Counters–non-decreasing counters managed securely within the TPM

• Quote–a listing of the PCR values, signed by the TPM

• Cryptographic Keys–including the Attestation Identity Key (AIK), a signature key that

confirms some known TPM without identifying which specific TPM, and the Storage

Root Key (SRK), the parent of other decryption keys

• Ownership–the act of establishing the key hierarchy in the TPM, including creation

of the AIK, SRK, and associated keys

Both designs rely on a core root of trust for measurement, a process that initiates a series

of software measurements made in sequence during platform boot, comprising a boot chain.

In the trusted computing context, the TPM’s PCRs store measurements of all components

in the chain enabling sealing, quotes, and other operations. The core root of trust is either

some firmware in the Basic Input/Output System (BIOS), or the AC INIT software module

present on modern Intel processors (AMD has a similar module).

To simplify the presentation, we describe the functional designs of each alternative in

terms of a use case, or what the voter sees during interaction. The attestation approach is

common to both alternatives, and appears separately.

7.4.1 Image Duplicator

The image duplicator scans the images of all markable positions and prints them in a

permuted order onto the receipt. The image duplicator requires no knowledge of the

Scantegrity ballot encodings, and no connections to the Precinct Count Optical Scan (PCOS)

scanner–thus, we call this a stateless design. For this reason, the image duplicator is the

simpler of the two receipt printer approaches.

116

Functional Design

The image duplicator consists of an image scanner coupled with a printing device. For the

purposes of this design, the image duplicator’s scanner and printer are an integrated unit.

A simple use case sequence best describes the major design elements of the image

duplicator. The use case follows:

1. The voter completes his Scantegrity ballot in the polling booth.

2. The voter presents his marked ballot to the image duplicator.

3. The image duplicator scans the markable positions of the ballot—all of the Scantegrity

bubbles, whether marked or not—and also scans the online verification number from

a Two-Dimensional QR barcode (qrcode).

4. The image duplicator creates the receipt by printing: (a) images of the marked

positions exactly as scanned onto the receipt, but with their order rearranged; and

(b) an AIK digest of the online verification number2

5. The voter verifies the codes from the filled bubbles printed on the receipt with those

on his ballot. He also verifies that the online verification number matches his ballot.

If there is a discrepancy, he alerts a poll worker and his marked ballot is revoked,

consistent with the precinct’s practices and procedures.

The voter verifies the integrity of the image duplicator software using the attestation

protocol described in Section 7.4.2.

2A digest consists of some plaintext values and a hashed representation of them signed by some key, the
AIK in this case.

117

Details

The critical design details of the image duplicator include how the markable positions–the

bubbles–are identified and scanned, and how the bubble images are presented and used.

Markable Positions The image duplicator identifies markable positions within individual

contests using x, y offsets from preprinted alignment marks detected on the ballot. The

Scantegrity ballot uses dark circles to identify the qrcode and the markable positions

to the PCOS scanner [25], and the image duplicator will reuse this feature.

The image duplicator scans an image of the entire area of each markable position.

A suggested resolution for the scan is 150 dots per inch and 8-bit grayscale (256

levels of gray), sufficient for resolution of the revealed Scantegrity codes. The image

duplicator does not attempt to determine the filled state of the corresponding bubble,

but merely captures the image as marked on the ballot.

Scanned Bubble Printing The image duplicator groups the images of the scanned mark-

able positions by contest, and sorts the images within each contest by average pixel

value. The average pixel value is computed over an 8-bit grayscale representation of

the image. Images of blank bubbles will appear after images of partially marked and

fully marked bubbles, respectively. For each contest, the image duplicator prints a

contest indicator, e.g., contest 1, and the scanned bubble images for that contest, onto

the receipt.

Receipt Usage The voter compares the verification code images printed on his receipt with

those reflected on his ballot, to make sure that the verification codes are correctly

and intelligibly recorded. A potential implementation issue is whether the grayscale

scanning and print features can render the verification codes legibly onto the receipt;

118

having the voter verify his codes at this stage can help determine whether the receipt

will be useful to the voter later.

An example receipt is shown in Figure 7.1.

DEF

ABC

Race 1:

Race 2:

PQR

Online Verif Num: 3-23641

TPM Proof

Figure 7.1: Receipt from image duplicator. Images of scanned bubbles are printed in
order of average pixel density, grouped by contest. Notice that partial marks also appear.
(Overvotes and undervotes are detected by the PCOS later in the voting process.)

Before presenting the marked sense translator, we break for a moment to show the

attestation design, as it is the same for the image duplicator as it is for the marked sense

translator.

119

7.4.2 Receipt Printer Attestation Protocol

Our claim is that the authorized software will print the correct information and will safeguard

the voter’s privacy by not disclosing his preferences. We ensure this claim by giving the

voter a way to confirm that the receipt printer loaded the correct software at boot time. To

verify the state, the TPM gives the voter cryptographic evidence of the platform software

state, and in this way, the TPM is said to attest the state of the platform to the voter. The

attestation design uses the TPM to report boot-time measurements of the platform state

securely.

The two design alternatives for attestation are pre-scanning attestation, in which the

voter verifies the software prior to scanning her ballot or entrusting the printer with other

private information, and post-scanning attestation in which the voter verifies the platform

software state after scanning his ballot, using the attestation proof printed on it. While the

pre-scanning variation is better for privacy, the post-scanning variation is more practical,

and still can detect misconfiguration or rogue software before the voter leaves the polling

location.

Attestation protects voter privacy and receipt authenticity–it cannot guarantee election

integrity, and therefore is not a substitute for the voter verifying the confirmation codes on

his receipt against those on his ballot. The voter, or a trusted third-party voting rights group,

should use at least one type of attestation to prove to the voter that he is interacting with a

correctly configured receipt printer.

We discuss the individual phases of attestation: system initialization, election day

initialization, voter attestation, and termination.

120

System Initialization

The Election Authority (EA) performs some initialization to enable platform attestation:

1. The EA takes ownership of the receipt printer TPM. Ownership establishes the key

hierarchy in the TPM. It is done only once, and is good for as long as the EA owns

the equipment.

2. The EA determines the set of expected PCR values by measuring software components

of the approved build for the receipt printer.

3. The EA commands the TPM to create the AIK used for signatures, sets an autho-

rization password on the AIK, and binds the AIK to the expected PCR values. The

EA certificate authority signs the AIK public key certifying that it was created by an

approved TPM.

4. The TPM creates a monotonic counter bound to the authorization password and PCR

values, similar to the AIK. Note, this counter is only useful in the marked sense

translator as explained in Section 7.5.

5. The EA creates a delegation of the TPM ownerClear command used to destroy the

TPM key hierarchy, and sets a special tear-down password on the delegation.

The EA publishes the AIK public key, the AIK certificate, and the PCR values, but keeps

the AIK and tear-down passwords a secret until election day. The critical secret component

is the AIK private key, and it is exposed only inside of the TPM.

Although several AIK keys should be created per platform to prevent an adversary from

correlating a usage pattern to a particular platform, we assume a single AIK to simplify the

above narrative.

121

Election Day Initialization

1. At the start of election day, the EA distributes the AIK password to the poll workers.

2. The poll workers boot the receipt printer. The printer performs a trusted boot process

where each booted component cryptographically measures each subsequent compo-

nent, storing the measurements in the TPM’s PCRs. The poll workers enter the AIK

password into the receipt printer; the password and correct PCR values enable the use

of the AIK.

3. The receipt printer platform prints the digest of the monotonic counter value, signed

with the AIK.

4. (Poll workers do other general initialization, e.g., test scans to check scanner and

printer connections, alignment integrity, ink and paper levels, etc.)

Election Day Attestation

1. The voter marks his ballot during voting, and takes it to the receipt printer.

2. In pre-scanning attestation, the voter uses a smart card to verify the receipt printer’s

integrity using the technique discussed in [36]:

(a) The voter obtains a smart card from a trusted third party.3

(b) The smart card generates a random number called a nonce, and sends it with a

quote request to the receipt printer.

(c) The receipt printer requests a TPM QUOTE. The TPM fetches its PCRs and signs

them and the nonce with the AIK, producing the quote.
3The trusted third party can verify the smart card using a self-signing timing technique, as explained in

[36, 39, 85].

122

(d) The receipt printer returns the quote to the smart card, along with the AIK key

identifier. These data are called the attestation proof.

(e) The smart card checks its keys dictionary for the AIK. If found, it verifies the

PCR values in the quote reply, and validates the signature.

(f) (Steps 2b to 2e can be repeated several times by allowing the smart card to time

the responses to detect a proxy/oracle attack [36].)

(g) Upon successful verification, the smart card reveals an attestation secret to the

receipt printer–a word, phrase or number that means the platform software is

correct–and the printer reveals this secret to the voter.4

(h) The voter confirms the attestation secret with the trusted third party, and alerts a

poll worker if he cannot confirm the secret.

3. The voter releases ballot details and the ballot online verification number to the receipt

printer (design-specific, either by direct scanning or by PCOS transmission).

4. The receipt printer issues a TPM QUOTE as in Step 2c, but using the online verification

number as the nonce. The TPM responds per Step 2d.

5. The receipt printer prints the Scantegrity receipt, including the Scantegrity codes and

the online verification number and attestation proof and additional design-specific

proof as required. The proof is printed as a qrcode for ease of use.

6. In post-scanning attestation, the voter uses a trusted device to read the qrcode, look

up the AIK public key, and verify the attestation proof. The trusted device can be

a Personal Digital Assistant (PDA) or cell phone, or can be a separate computer

4The implementation dictates how the secret is revealed: if the printer has a display, it shows the smart
card secret on it; if not, it prints the secret on a blank sheet of paper.

123

maintained by a trusted third party, possibly a voting rights group located in the

polling place.

7. If the attestation proof fails verification, the voter alerts a poll worker to take remedial

action.

Election Termination

At the end of the election period, the platform signs the final value of the monotonic counter

with the AIK. When the EA releases the ownerClear password, the poll workers enter it

causing the TPM to erase its key hierarchy so that the AIK private key never can be used

again. Although not part of attestation, the poll workers can retrieve digital archives of the

receipts at poll close time, to publish for verification by third-parties.

Cryptographic Keys Summary

The AIK (and the Verification Codes Secret (VCS), used by the marked sense translator for

confidentiality described in Section 7.4.3) have several properties shown in Table 7.1.

124

Operation AIK VCS
Purpose Prove platform booted cor-

rect software
Protect Scantegrity verifica-
tion codes from disclosure

Type Asymmetric
(public/private)

Asymmetric
(public/private)

Owner EA EA
Key Creation At platform initialization Just after platform initializa-

tion
Import/Export Public/plaintext Sealed blob
Distribution One or more unique AIK

per platform
One VCS shared over all
platforms, wrapped by indi-
vidual platform SRK

Parent Internal TPM Endorsement
Key (EK)

TPM SRK public

Key Use Sign online verification
number and PCR values

Decrypt Scantegrity verifi-
cation blob

Authorization PCR values, election day
password

PCR values, election day
password

Table 7.1: Properties of keys in the Scantegrity receipt printer.

We will now show an additional use of the TPM in the second variant of the receipt

printer described below.

7.4.3 Marked Sense Translator

The marked sense translator connects directly to the PCOS scanner. It receives mark sensed

positions from the PCOS, translates the positions into the Scantegrity codes that should be

revealed on the ballot, and prints the codes onto a paper receipt. Unlike the image duplicator,

the marked sense translator requires knowledge of the Scantegrity codes for each cast ballot,

making it a stateful design. It also reports a count of the number of receipts printed, to

support auditing.

125

Functional Design

Figure 7.2 gives an overview of the marked sense translator in operation. A use case

describes the high level design:

1. The voter completes his Scantegrity ballot in the polling booth, then presents his ballot

to the PCOS for scanning.

2. The PCOS scans the marked bubbles and ballot ID from the ballot. It interprets the

marked bubbles as selections. The PCOS sends the selections and ballot ID to the

marked sense translator. Other data, such as overvote or undervote details compliant

with Help America Vote Act (HAVA) requirements, may be transmitted also [1].

3. The marked sense translator securely retrieves the Scantegrity verification codes for

each selection, and prints them onto a paper receipt. It also prints an AIK digest of

both the voter’s codes and the monotonic counter value. The TPM increments its

counter.

4. The voter verifies that the Scantegrity codes on the receipt match those on his ballot.5

If there is a discrepancy, he alerts a poll worker and his cast ballot is retrieved and

revoked, consistent with the precinct’s Policy and Procedures (PAP).

The voter verifies the integrity of the marked sense translator software using the attesta-

tion protocol described in Section 7.4.2.

5Section 7.4.3 discusses practical ways of comparing codes.

126

Smart
Card

Receipt Printer
Platform

TPM BIOS

OS

Printer Software

CPU

PCOS

B
a

ll
o

t R
ec

ei
p

t

ABC

PQR

Printer

Figure 7.2: Overview of the marked sense translator. The voter submits his ballot to the
PCOS that sends the marked positions, optional encrypted ballot definition, and online
verification number to the marked sense translator. The voter optionally uses a smart card to
verify the platform. The software uses the TPM to reveal the Scantegrity codes, prints the
codes and attestation proof onto the receipt. The voter compares the receipt to the ballot.
Anyone may verify the integrity of the receipt and the marked sense translator with the
attestation proof on the receipt.

Details

The critical design details of the marked sense translator include contents of the receipt,

protection of the Scantegrity verification codes, and modifications required of the PCOS.

Receipt Contents As with the image duplicator, the marked sense translator groups the

revealed codes by contest. It randomly orders the codes within each contest. Unlike the

127

image duplicator, the marked sense translator does not scan the ballot, and therefore it

does not report codes of partially marked bubbles, those not sensed by the PCOS.

Connection to PCOS The PCOS is connected to the marked sense translator using a data

cable. The data sent to the marked sense translator include (a) ballot ID; (b) contest

designations; (c) marked positions by contest (e.g., “contest 1, position 1 of 3 is

marked”); and (d) optional indication of overvoting or undervoting per contest.

The PCOS must enforce a well-defined message interface format to protect it from

a corrupt marked sense translator that may send ill-formed messages to the PCOS.

A one-way data cable may mitigate this threat, but it might break any message that

requires acknowledgment from the marked sense translator.

Scantegrity Codes Retrieval The marked sense translator uses the private portion of its

VCS–bound to the platform PCRs–to decrypt the codes corresponding to the scanned

ballot. The codes for each ballot are encrypted uniquely for every platform by the EA,

and are indexed by ballot ID. Further, the EA signs the codes blob proving authenticity

of the codes to the marked sense translator.

Required PCOS Modifications The PCOS must be modified to supply the ballot ID and

sensed marked positions to the image duplicator. These data are part of the content

already retained by the PCOS.

Cryptographic Key Summary

The EA creates the VCS and encrypts it with the public portions of the SRK of each platform.

A common password restricts the VCS use until election day, and the key is sealed to the

receipt printer PCR values. The EA loads the encrypted VCS blobs onto the platforms

128

during system initialization. Table 7.1 in Section 7.4.2 summarizes the properties of the

VCS keys.

Design Enhancements

Some enhancements to the basic design include how to display the scanned ballot, and how

to transport the Scantegrity codes efficiently and securely to the marked sense translator.

Ballot Image Display

The voter needs a way to cross-check the Scantegrity codes on the receipt with those on his

ballot. Unlike the image duplicator, the marked sense translator lacks a scanner and relies

on the PCOS for its information. As a consequence, once the voter submits his ballot to the

PCOS scanner, it is no longer available to her.

Although a straightforward solution is to have the voter handwrite a few spot check

codes from his ballot onto a piece of scratch paper to check against the receipt, this is

problematic and defeats the purpose of the printer. Therefore, we suggest two usable design

alternatives that let the voter see his votes to ensure that the PCOS sensed the correct marks:

a lever cast mechanism on the PCOS, and an integrated graphical ballot display.

The lever cast mechanism is a glass display case attached to the output end of the PCOS

scanner. The glass case makes the scanned ballot fully visible–but unalterable–until the

voter pulls a physical lever to release it into the ballot hopper. After receiving his receipt,

the voter compares it to his ballot under the glass, and if the codes match, he pulls the lever

to drop the ballot into the hopper; if there is any problem, the ballot can be retrieved and

revoked.

The integrated high-resolution display renders a graphical image of the ballot with the

Scantegrity codes filled into the marked ovals. It recreates the ballot using information sent

129

from the PCOS. The display shows (a) individual contest and possible choices as printed on

the physical ballot; (b) blank bubbles for unselected choices (including undervoted contests);

(c) filled bubbles showing Scantegrity codes (including overvoted contests); and (d) the

ballot ID number and other information that will be printed on the receipt.

After receiving his receipt, the voter scrolls through the display and ensures that (a) the

displayed ballot reflects his intent; and (b) the Scantegrity codes on the receipt match those

on the display.

The display could incorporate magnification or an audible interface for improved acces-

sibility.

For voter privacy, the image on the display can never be captured or printed, just as we

do not photocopy the Scantegrity ballot itself.

Transporting State with the Ballot

One challenge is transporting the ballot state–the Scantegrity verification codes–to the

marked sense translator so that it can print the correct verification codes. A simple design is

for the EA to encrypt the verification codes for every ballot with the VCS, and load these

onto the platforms’ persistent storage prior to election day. Unfortunately, this reduces

flexibility by requiring extra work prior to the election.

A smarter design would have the PCOS read the encrypted verification codes from the

ballot itself, and transmit these to the marked sense translator. The qrcode printed on the

Scantegrity ballots can encode up to 2,953 binary bytes, enough for about 1,400 individual

3-digit codes. Transporting the codes with the ballot reduces pre-election work, and requires

only a single chain of custody for both the physical ballot and its digital representation.

130

7.4.4 Policy and Procedures

With both designs, some general procedures must be followed to ensure the security of the

system. At a high level,

• All authorized receipt printers must be in visible locations, e.g., no printer can be

carried off to an undisclosed area during the election by malicious poll workers

• The poll booth must be free of cameras, covert microphones or speakers, networking

equipment or anything that can allow communication or observation between an

external attacker and the voter

• Reasonable physical security of the printers must be enforced prior to the election,

heading off physical attacks against the scanning mechanism or the TPM6

The security of the system relies on a majority of poll workers knowing, and correctly

enforcing these policies and procedures, regardless of design choice.

7.4.5 Requirements Traceability

The features of both the image duplicator and the marked sense translator map well to

the requirements we defined before in Section 7.3.1. Both print Scantegrity codes on the

receipts. The operations of both are independent of other components in the system, such

that failures in other system components do not cause either receipt printer to fail e.g., reveal

voter privacy or fail to print codes. Both designs offer good usability; although the marked

sense translator is better for disabled voters, the image duplicator could be made to enlarge

the scanned codes making it easier for sighted voters with visual impairments. Both designs

6Software injection is “fair game” as it is done much more quickly than microprocessor delayering attacks

131

can be used many times over many elections: this is trivial for the image duplicator, and the

marked sense translator needs only a new batch of encrypted codes for each election.

Anyone can verify the software integrity of both designs using information printed on

the receipts. The marked sense translator offers completely verifiable receipts because it

signs the codes that it printed on the receipt with the measurements of the platform software,

binding software integrity to the codes.

The security goals in Section 7.3.2 are met similarly by both designs. Privacy is

maintained by virtue of the platform running the correct software. Integrity, including false

challenge prevention, day-before attacks, and sensitive data handling are features all handled

by the TPM through sealing decryption and signature keys to PCRs and also to special

passwords that are revealed at the start and end of election day.7

7.5 Security Analysis

We rely on the assumptions of TPMs for our system security, but in this section we evaluate

the total impact a receipt printer will have on election security. We analyze what happens

when these assumptions are violated by an attacker to get control of a receipt printer, and

what types of attacks he could perform.

7.5.1 Threat Model

We limit our model to attacks that utilize a rogue receipt printer during the election. See [24]

for a more general security analysis of Scantegrity and voting, and [35] for an analysis

of TPM protocols for voting. In the election context, our adversary could be an insider, a

7During early voting in the 2010 Nevada state election, a registrar official allegedly allowed a couple to
vote after the polls were closed based on their stated preferences [41].

132

foreign government, a minority of corrupt poll workers, one or more of the contestants, or a

coerced or paid voter. We consider four general categories of attack:

1. Manipulation Attacks, where an adversary attempts to manipulate the election result.

2. Identification Attacks, where an adversary attempts to identify voter choices and

violate election privacy.

3. Disruption Attacks, where an attacker wishes to prevent certification of the election

undetectably.

4. Discreditation Attacks, where an attacker imbues sufficient doubt in the public’s

perception of Scantegrity’s worth.

We do not consider denial of service attacks explicitly, although disruption attacks are

similar. A denial of service attack is applicable to any voting system and is difficult to

prevent but easy to detect. Covert disruption attacks can be considered a special case of

denial of service, where the adversary undetectably delays certification of the election when

it suits his purpose.8

Note that many attacks involve procedural elements that are not easily captured by a

cryptographic description, so our intent is not to establish and prove security properties in

a formal cryptographic model. Instead, we provide an informal analysis of the underlying

security goals in our design. Because our analysis is limited to attacks involving the receipt

printer, we consider their designs successful if they do not increase the ability of an adversary

to carry out successful attacks undetectably.

8Undetectability is central to disruption. While attestation failure of the receipt printer may delay the
election, at least the EA knows the problem and the printer unit in question. A successful disruption attack
will offer little clue as to where the problem is.

133

7.5.2 Assumptions

Assumptions listed here are limited to those made on the receipt printer and how it should

be used in an election scenario. Some assumptions, such as unreadability of the codes, are

required by Scantegrity and not just the receipt printer.

1. TPM Integrity–the TPM correctly implements the TCG specifications and does not

leak information it is entrusted with. In particular, the TPM safeguards the AIK

private key, the monotonic counter, and the ownership authorization secrets.

2. Supporting Hardware Integrity–the platform BIOS and AC INIT module, if applica-

ble, initiates the measured boot process correctly and stores initial measurements in

the TPM’s PCRs. The scanner, printer, and integrated display mechanisms operate

correctly.

3. Software Correctness–platform software is free of critical bugs or supply chain trap

doors, and does not become compromised during runtime.

4. Trusted Actors–(a) EA correctly manages ballot creation and privacy, the Certificate

Authority (CA), the public bulletin board, and the AIK and ownerClear secrets; and

(b) a majority of poll workers follow correct PAP (further described in Section 7.4.4).

5. Voter Actions–(a) voters check the receipt’s online confirmation number prior to

releasing the ballot; and (b) for the image duplicator, voters check the Scantegrity

confirmation codes in addition to the online number.

6. Ballot Security–(a) obtaining information about a voter’s preferences given only the

confirmation codes is intractable; (b) scanning equipment cannot read unmarked codes

printed in invisible ink; and (c) confirmation numbers and printed mark positions do

not contain subliminal information that can influence voters.

134

We believe that these assumptions are reasonable, standard in the literature, and corre-

spond to existing assumptions about Scantegrity and the TPM as used for voting.

7.5.3 Manipulation Attacks

Manipulation attacks are when the adversary tries to change the outcome of the election

without anyone noticing. They succeed in Scantegrity only when not enough voters verify

their confirmation codes on the public bulletin board. A malicious receipt printer could

cause the voter to verify the wrong codes against the bulletin board, if the voter fails to

verify all the details of her receipt, enabling an efficient manipulation attack.

For example, a malicious receipt printer could perform a chain printing attack where it

caches and reprints a valid scanned image and ballot online confirmation number saved from

a previous ballot, leading the voter to verify the wrong ballot on the bulletin board. In this

way, chain printing would “pigeonhole” Scantegrity verifications preventing certain ballots

from ever being verified, while misleading voters into verifying other ballots multiple times.

The PCOS could flip votes of the unverified ballots, altering the outcome of the election.

Chain printing is detected using the image duplicator if the voter verifies his online

verification number and enough of his confirmation codes before he releases his ballot to

the PCOS. In the marked sense translator, a voter or an independent third-party verifies

the AIK signature on the receipt and carefully tracks previously seen online verification

numbers, posting observed numbers to a public bulletin board. In both the image duplicator

and the marked sense translator, if the voter verifies the attestation proof on the receipt, he

detects malice in the receipt printer restricting ballot modifications to a malicious PCOS

and detecting a discrepancy on the public bulletin board–precisely the attack case that

Scantegrity is designed to prevent.

135

Further, keeping digital archives of the receipts enables independent verification of every

receipt very quickly and easily, showing an actual improvement in election integrity by

combining Scantegrity with a receipt printer.9

In all of these cases, the attack is detectable by any attentive voter that is affected by it.

It would not be clear, however, if the attack was malicious or simply an equipment failure,

though the equipment could be flagged for inspection and not used for the rest of the voting

period.

Other defenses include audited ballot scanning where auditors vote and run test ballots

through all receipt printers to check correctness of the receipt generation. An audit like

this would provide an advantage in the marked sense translator design, because the auditors

would be testing the scanner hardware (not software) at the same time.

Because Scantegrity is only concerned with counting the ballots that were cast correctly,

it could be vulnerable to ballot stuffing attacks in the event that officials fail to count the

number of voters accurately. A receipt printer cannot prevent election day ballot stuffing

because the PCOS, not the printer, is the authoritative vote tallying device. In particular, the

image duplicator has no connection to the PCOS and cannot track any part of the process.

However, the marked sense translator acts as a trustworthy counter and can act as a backup

to official voter counts for detecting polling place stuffing attacks. If the marked sense

translator is malicious, the signatures and attestation evidence will fail verification. If the

PCOS is malicious but the marked sense translator is good, two scenarios play out that

involve the monotonic counter:
9When using DREs, many voters do not check the printed receipts when voting [30], and this might be true

for the receipt produced by the printer; therefore, automatic checking of digital archives is extremely useful.

136

1. PCOS fails to communicate to the marked sense translator: the EA observes a dis-

crepancy in the number of printed receipts compared with the number of digital vote

records included in the PCOS storage.

2. PCOS communicates to the marked sense translator to print a receipt: adjacent,

legitimate voters notice a discontinuity in the counter value stamped on their receipt.

Also, poll workers notice a higher receipt print count than the number of actual voters

at the end of the day.10

Attackers could produce valid receipts for stuffed ballots in this case, but the discrep-

ancy in voters versus printed receipts would have called all the results of the affected

poll into question, including the attackers’ stuffed ballots.

As mentioned, the image duplicator cannot help detect election day ballot stuffing attacks

because it is not integral to the ballot casting process. Same for the marked sense translator

if there are some independent PCOS not connected to one.

7.5.4 Identification Attacks

An identification attack with a malicious receipt printer would allow an adversary to deter-

mine how a voter has voted simply by recording the voters choices and the online verification

number. Alternatively, to avoid having to be accessed by the adversary later, it could print

hard to notice “markers” on the receipts to indicate the selection by the voter, through a

subliminal channel in the signature or by some graphical marker on the receipt. It would be

difficult to detect or prevent these privacy attacks.

10To prevent “behind the curtain” ballot stuffing attacks, poll workers note which authorized machines
participated in the election [35]. Additionally, TPM tick stamps could stamp the “time” on the receipt for
correlation with observed arrival times of authorized voters.

137

If assumption 6c is violated, an attacker could use the information on the receipt provided

by the receipt printer to coerce or identify the selections made on that ballot. An attacker

would have to violate this assumption by subverting the printing authority or the Scantegrity

trusted workstation. This attack is somewhat orthogonal to the receipt printer, but it could

succeed in the image duplicator design because the images on those receipts are not posted

publicly. An attack could be discovered in a marked sense translator design because all

of the information is publicly posted to a bulletin board, allowing auditors to verify the

pseudorandomness of the Scantegrity confirmation numbers.

The image duplicator design may be susceptible to tampering that would reveal ballot

selections. If voters can modify the ballot to skew the alignment detection, a slight angle

and/or offset may make it possible to determine the order the codes appeared on the ballot.

The implementation should be strict regarding the alignment detection and reading the

online verification number, and should not print a receipt if it cannot align the ballot image.

7.5.5 Disruption and Discreditation Attacks

The manipulation attacks described in Section 7.5.3 can be used as disruption attacks. In

general, simply having misbehaving equipment can affect the perception of trustworthiness

in the election, but it does not inherently prevent certification of the election.

An undetected malicious receipt printer could print and sign illegitimate receipts e.g.,

chain printing. This would delay certification of results, as the paper record would have to

be consulted to determine the legitimacy of false claims.

The marked sense translator design, because it has access to all the confirmation numbers

of the scanned ballot, could enable an attacker to submit false challenges for every ballot

it sees. But for this to work, assumption 1 must be violated. This attack would certainly

disrupt certification of the election, and the electorate might, rightly, believe that the privacy

138

of the election had been compromised upon discovery of such a large number of legitimate

complaints, leading to disruption and discreditation of Scantegrity. Another variation would

reveal additional codes to voters (as in an overvote). Voters may not notice in the polling

place, and could legitimately complain that the receipt does not match the online record

after the election.

Receipt forgery is not possible with the marked sense translator, but cannot be prevented

easily by the image duplicator. The marked sense translator signs the ballot state (Scantegrity

verification codes) with its AIK preventing forgery. Since the attestation evidence is printed

on the receipt, anyone can verify the receipt for authenticity and correctness. Unfortunately,

the image duplicator cannot prevent forgery, because the only state it has are the scanned

representations of the bubble images. Rescanning a physical artifact may lead to different

digital values of the page, a fact used to great benefit by certain randomization techniques

e.g., [64]. Image processing algorithms may be able to “bin” the scanned ballot images into

a small set of discrete values, making it difficult to forge the receipt without violating the

signature.

7.6 Discussion

Both receipt printer designs provide two distinct advantages over using the underlying

election system only:

1. Usability is improved when voters can use the printers to produce receipts automati-

cally. Automatic receipts save voters time and energy, making each voter more likely

to produce and check the receipt after the election. It may decrease the amount of

time each voter spends in the polling site and increase the flow of voters through the

139

polling place. Voters who accidentally undervote or overvote the ballot can also be

better informed about what happened via the receipt printer.

2. Security is improved through signed, publicly authenticatable receipts. Such receipts

weaken several attacks that may exist in the underlying system. A signed and au-

thenticated receipt gives a voter stronger evidence of recording errors than simple

knowledge of a code. A receipt that does not authenticate properly is proof of an

equipment issue that should be investigated. The receipt printer can also now provide

proof of an under- or overvote, preventing a ballot from being invalidated or allowing

change of intent.

The main disadvantage of the printer designs are that, in general, they become an

attractive target for violating voter privacy during the election and must be implemented

carefully. Because they are polling place devices, even under the assumption that the central

authority can store them properly, an attacker could have up to several days to tamper with

the machines when they are deployed right before the election, including carrying out costly

physical presence attacks [72].

Assuming the hardware is secure, an attacker could not fake a receipt. This makes an

attack on the printer costly and unlikely. If it could be done, however, it is unclear when

fake hardware would be noticed and that could also pose a denial of service problem.

Only one voter needs to find a discrepancy for an attack on the printer to be discovered.

If the intent of the attacker is to attack privacy or election integrity, then a 50% chance of

detection makes it a very high risk approach. If the intent is simply disruption, these attacks

would be effective; however, there are many simple and presumably less costly disruption

attacks (e.g., distributed denial of service on the bulletin board mechanism where receipts

are posted).

140

7.6.1 Comparison of the Designs

The image duplicator design is simple compared to the marked sense translator. The marked

state of each bubble is ignored, avoiding complex algorithms to decide whether a bubble

is filled, blank, or partially filled. Printing the bubbles in order of average pixel intensity,

within contests, is straightforward and gives enough position permutation to protect how the

voter voted.

The image duplicator design has the advantage of being intuitive to voters. Because it is

simple and a completely separate component with one function, it is easier for a voter to

understand what it is supposed to do. Also, to a security conscious voter, it may appear like

a more secure design decision to deploy it as a separate component. Making it a separate

component may allow the receipt printer—a completely new device—fit in better with a

voter’s mental model of elections (“Oh, this thing is supposed to give me a receipt to improve

security, I get it”). Attaching the receipt printing to an existing component with a well

known function may make it harder to comprehend what is happening.

As a standalone independent component, the image duplicator could be used as an option

and would therefore have minimal impact on voter flow through the polling site. However,

the independence could introduce problems with voter flow if confused voters tried to scan

their receipt or other materials instead of their ballot.

The marked sense translator design makes the process easier for the voter. It eliminates

having to scan the ballot twice. It allows the voter to verify that the PCOS sensed and

recorded the ballot marks correctly, and if there is a problem on the ballot (e.g., overvotes) it

can be shown to the voter and poll workers immediately, catching problems early.

The marked sense translator design allows for better accessibility features. Because the

selected confirmation numbers are known, they can be provided easily with audio. Since the

Scantegrity codes reveal nothing about the voter’s preferences, the marked sense translator

141

could also broadcast the confirmation numbers over a standard interface, allowing voter-

controlled devices to get signed digital copies of the receipt on their own trusted devices

(this is very useful for blind voters). The image duplicator design could be outfitted with

a similar interface, but—barring a optical character recognition algorithm—is limited to

providing the image data only.

The marked sense translator design, in general, has a smaller digital footprint than the

image duplicator design. A 3-digit confirmation number can be expressed in 3 bytes or

less, depending on the number of symbols used to create the confirmation number. Images

generally require much more space to store. Thus, the marked sense translator design

produces smaller receipt files than the image duplicator design. This can turn out to be a

advantage to an auditor who needs to verify a large number of receipts.

Both designs add cost to the election. The image duplicator design incorporates scanning

hardware that would be more expensive initially than the marked sense translator. Addition-

ally, the marked sense translator requires changes to the PCOS to support the one-way data

transfer interface. The long-term cost of operations of both should be minimal, compared to

the value of the security and usability benefits.

7.6.2 Design Tradeoffs and Other Considerations

Election officials could deploy both types of receipt printer, as a way of verifying the receipt

printers independently from each other, and independently from the PCOS scanner. This

could catch problems early, and perhaps a scanner with the marked sense translator attached

could be used in addition to other scanners, with only some voters using the marked sense

translator for the better accessibility capabilities and reduced overall cost (and reduced

likelihood of catching ballot stuffing attacks).

142

A one-way cable between the PCOS and marked sense translator provides extra protec-

tion to safeguard the PCOS from a rogue marked sense translator. There is no other security

property, and therefore a two-way cable could be used as long as the PCOS implements a

rigorous interface definition. Enabling the PCOS to hang onto ballots after scanning helps

the poll workers to retrieve the ballot easily in the event of an attestation failure or a receipt

check problem. It is important that the cast lever be mechanical in this situation (even if the

mechanical lever merely moves a computer controlled motor into contact with the ballot)

because the scanner should not be able to make the decision to cast without action from

the voter. Otherwise it would not be possible to determine if a complaint from a voter is

legitimate.

In the marked sense translator, the confirmation codes decryption key cannot be used

if the marked sense translator platform booted the wrong software, but transporting the

encrypted confirmation numbers on the ballot is better for security because not all codes

would be known to all TPMs. This limits exposure in the event that an adversary gains

control of a TPM. Using an AIK instead of any other key keeps knowledge of the specific

TPM a secret, while proving that the signature came from some valid TPM, thwarting voter

identity attacks.

7.7 Extensions

The marked sense translator, described in Section 7.4.3, produces verifiable codes to the

voter in a highly readable format—including audible formats, not possible with the image

duplicator—and it catches any marked position sensor errors in the polling place (or vote

flips!) committed by the PCOS. These features make the marked sense translator the best

143

design for usability, accessibility, and security, and is the best way to employ a printer in the

Scantegrity architecture.

Thinking further, since we entrust the marked sense translator platform with the Scanteg-

rity confirmation codes, can we just print the codes on the receipt instead of printing them

redundantly on both the receipt and the ballot? If we could, we can eliminate invisible ink

altogether. We explore this possibility through an alternative design.

7.7.1 Design

The basic design prints the codes on a receipt, becoming the way that the voter receives his

Scantegrity confirmation codes. A key design consideration is that if we late-bind the codes

to the ballot using the receipt, we must enable the voter to verify that the codes actually

correspond to his choices on his ballot—that is, he must be able to tell that the PCOS sensed

his marks correctly. Recall that in the marked sense translator, the voter submits his ballot to

the PCOS and no longer has access to his ballot, except to look at it behind glass in a lever

cast configuration.11 There are two cases to consider.

Random Order Ballots

Some jurisdictions allow random candidate reordering on the ballots, such that the order

of candidates within each contest varies from ballot to ballot (like it does with Punchscan

[69]).12 In the random reordered ballot case, the marked sense translator could print a

copy of the ballot, omitting candidate names but printing the confirmation codes in the

correct position, or listing an index of marked positions and corresponding codes. The voter

11The image duplicator is a stand-alone design, and therefore cannot verify the PCOS.
12This avoids the primacy problem, where undecided voters choose the first listed candidate more than any

other. See Miller [61].

144

confirms that the marked positions are correct before casting. This approach resembles

Chaum’s visual cryptography idea, described in [22].

For example, consider three choices in a hypothetical race for president, Bush, Buchanan,

and Gore, in that order, with the voter selecting Buchanan on the ballot. The PCOS scans

the ballot and transmits the selection to the marked sense translator, which prints the

confirmation code for Buchanan plus an index of “middle selection made.” The voter checks

his ballot to ensure that Buchanan is the middle choice in the race. The voter checks the

election bulletin board later for his Buchanan code.

Fixed Order Ballots

Some jurisdictions object to random ordering, arguing that massively duplicated, fixed-order

ballots are less confusing to voters and are cheaper to produce than randomly ordered ballots.

In the fixed-order ballot case, the marked sense translator can detect PCOS errors only if it

can reveal the voter’s selections safely, without violating his privacy. To do this, it creates

a temporary replica of the voter’s ballot, and either displays it on a graphical (or audible)

terminal, or prints it on a separate sheet that must be destroyed before the voter leaves the

scanning station. The voter checks the replica of his ballot, and ensures that it reflects his

intent before releasing his ballot for casting.

7.7.2 Choosing A Design

Given the two choices for receipt printer; a potential need for the voter to verify the PCOS

before leaving the polling location; and the need to minimize costs, we present a decision

tree in Figure 7.3 that describes the election experience, from the voter’s perspective, for

various configurations.

145

END

Immediate
PCOS Validation?

Use Image
Duplicator

no

Use Marked
Sense Translator

yes

Ballot Type?

Using Random
Ballot Reordering?

 Standard Print

Validate Codes
List To Ballot

Invisible Ink

Listing Of Marked
Ballot Positions

yes

Temporary Ballot
Replica Showing
Marked Positions
(display or print)

no

Use Invisible
Ink Ballot

Image Duplicator
Scans The Ballot

Release
Ballot To PCOS

PCOS Scans
Ballot, Casts
Into Hopper

Voter Validates Codes
Against Bulletin Board

After Poll Close

PCOS Scans And
Holds Ballot

Computer Listing Of
Codes (Reordered)

Reordered Bitmap
Images Of Codes

(Reordered)

Cast - Release
Ballot Into Hopper

Cast - Release
Ballot To PCOS

Validate Marked
Positions To Ballot

Validate Replica's Marks
To Ballot (Shred Replica)

Figure 7.3: Election officials may have to choose between the marked sense translator
and the image duplicator depending on their specific election requirements and procedures:
is it necessary to detect PCOS scanning errors in the polling location, or can it wait until
later? Are normal ballots used or are invisible ink ballots used? Is random ballot ordering
permitted, or must all candidates appear in the same order on every ballot?

146

7.7.3 Concerns and Benefits

Critics may argue that a replica ballot, used in the fixed-ordered ballot case, threatens

voter privacy. Researchers including Sherman et al. studied vote verification devices, and

concluded that voter privacy is at risk with many of these systems [92]. Since the marked

sense translator is a vote verification technology, similar problems could exist. For instance,

the voter verifies the replica ballot in the scanning booth, and the poll worker potentially

could see the ballot and learn the voter’s preferences.

A display covered by a special hood could mitigate the poll worker threat, but curiously,

this threat exists already in the lever cast mechanism—the same security controls for lever

cast should be applied to the replica ballot.

By trusting the marked sense translator as the place where the voter first sees his codes,

we eliminate invisible ink and all the problems that go with it. We enable officials to deploy

traditional optical scan PCOS ballots that are cheap and easy to produce while still being

able to catch errant or malicious PCOS behavior as soon as it happens. Voters might require

less assistance with a traditional ballot than an invisible ink one, reducing the burden on

officials while preserving voter privacy. Additionally, trusting the digital print subsystem

with the codes makes it easy to add audible accessibility devices, removing the need for

custom Scantegrity ballot markers and verifiers. By late binding the codes to the ballot,

we also eliminate chain of custody attacks against the ballot. Of more concern is that the

prototype form of invisible ink darkens over time revealing the codes—and revealing the

inherent risks of protecting privacy through chemistry and material processes, risks that

are much less with traditional printing processes. In short, the marked sense translator can

revolutionize Scantegrity by enabling alternative interfaces and eliminating the most costly

and problematic part of preparing the ballots.

147

7.8 Conclusions

While the image duplicator design has some advantages over the marked sense translator

design due to its simplicity, the lack of accessibility features and its additional costs are

something that should be considered when procuring the receipt printer. The security of

the marked sense translator design, while more complex, is not adversely affected by being

closely coupled with the PCOS, and the advantages it offers in accessibility appear to

outweigh its disadvantages. Because they are independent and offer complementary benefits,

both designs could be deployed.

Three key design decisions greatly improve the security properties over other design

choices. First, the attestation function allows any voter, election official, or observer to verify

the integrity of the software running on the printer. Second, carefully limiting exposure of

secret information by using only data printed on the ballot in each design—instead of giving

each receipt printer access to all ballot codes—greatly reduces the privacy risk involved

when using a receipt printer. Last, any attacks on the integrity by producing false receipts

are difficult because the voter verifies the generated receipt against the voted ballot in each

design. As there is no way to cheat undetectably (as seen in DRE review screens), it is

highly likely such attacks using the printer will be caught.

In conclusion, while the marked sense translator and the image duplicator design have

different advantages and disadvantages, both can provide a usable and viable way to automat-

ically generate receipts in the Scantegrity election system. Using the TPM as a trusted base

helps us verify that the platforms are using the correct software, the receipts are genuine,

and voter privacy is maintained.

148

We can only see a short distance ahead, but we can see
plenty there that needs to be done.

Alan Turing

Chapter 8

Conclusions

We have analyzed how to apply Trustworthy Computing (TC) to voting systems. We have

shown that TC has a place among all voting systems that use computer technology, including

End-to-End systems that are software independent. Our protocols are based on common,

inexpensive cryptographic hardware that ships with every modern desktop, laptop, and

server computer configuration, making them readily accessible by systems designers for

implementing in new systems. By using Trustworthy Computing, we enable the safe addition

of accessibility interfaces, automatic vote verification by third party voting rights groups,

improve the usability of the election systems for voters. Adding TC to Scantegrity, for

instance, will lead to much more interest in adopting it for large municipalities.

In a greater sense, although integrity may be maintained by software-independent

methods, we have shown that privacy can only be ensured through secure hardware. Thus,

Trustworthy Computing brings a somewhat forgotten security property back into voting, and

into related fields such as healthcare and defense, as well.

In performing this work, we encountered some initial opposition from the End-to-End

(E2E) community. It was then that we realized that TC can enable privacy and accessibility

149

in these high integrity voting systems. The balance involves knowing what to trust and for

what purpose. Systems designers face a number of trade-offs when creating secure systems.

We feel that the ability to provide the same system for every voter safely, with alternative

interfaces, is worth trusting a single, simplistic hardware component to protect signature

keys in software-intensive platforms. Further, no system in a large democracy can function

efficiently without software. Since the need for software in voting is never going away, we

must find a way to use it more safely, and Trusted Platform Modules (TPMs) is a viable and

low-cost alternative that exists today.

We also encountered opposition to TC, and the TPM in particular. Free-use advocates

decry that the TPM is used primarily for digital rights management, supporting the corpora-

tions by denying certain freedoms to the end-user. Our work has positioned the TPM as a

protector of voter rights, transforming the role of the TPM from “mall cop” to “bodyguard.”

Our work uses TC altruistically showing that the TPMs can help guarantee fair elections,

upholding freedom for all.

Looking forward, the software / Direct Recording Electronic (DRE) and E2E commu-

nities must work closely together to answer fundamental questions: where can hardware

security best be applied? What controls must be put in place to detect effects of malicious

hardware? Can trusted hardware enable the use of software in ways that reduce perceived

system complexity in cryptographic voting systems, increasing acceptance and understand-

ing by voters and systems procurement officials? Removing trust from software by using

inexpensive hardware may have profound implications beyond those that we have discussed,

and may lead to more simple, maintainable, and understandable election systems.

150

Bibliography

[1] 42nd Congress of the United States of America. The Help America Vote Act of 2002

(HAVA). United States Public Law 107-252, 2002.

[2] M. Abadi, C. Burrows, C. Kaufman, and B. Lampson. Authentication and delegation

with smart-cards. Science of Computer Programming, 21(2):93–113, 1993.

[3] B. Adida and C.A. Neff. Ballot casting assurance. In Proceedings of the

USENIX/Accurate Electronic Voting Technology Workshop 2006 on Electronic Voting

Technology Workshop. USENIX Association, 2006.

[4] B. Adida and C.A. Neff. Efficient Receipt-Free Ballot Casting Resistant to Covert

Channels. In EVT/WOTE’09: Proceedings of the USENIX Electronic Voting Tech-

nology Workshop/Workshop on Trustworthy Elections, Berkeley, CA, USA, 2009.

USENIX Association.

[5] B. Adida and R.L. Rivest. Scratch & Vote: self-contained paper-based cryptographic

voting. In Proceedings of the 5th ACM workshop on Privacy in electronic society,

pages 29–40. ACM, 2006.

[6] Ben Adida. Advances in Cryptographic Voting Systems. PhD thesis, MIT, August

2006.

151

[7] Ben Adida. Helios: Web-based open-audit voting. In Proceedings of the 17th Usenix

Security Symposium (USENIX Security 2008), pages 335–348. USENIX Association,

July 2008.

[8] J.M. Adler, W. Dai, R.L. Green, and C.A. Neff. Computational details of the votehere

homomorphic election system. In Proc. Ann. Intl Conf. Theory and Application of

Cryptology and Information Security (ASIACRYPT), 2000.

[9] William A. Arbaugh. The real risk of digital voting? Computer, 37(12):124–125,

2004.

[10] AustralianPolitics.com. Hanging Doors, Pregnant Chads And Dimples:

Florida Recount Proceeding! AustralianPolitics.com, November 12,

2000. Available at http://australianpolitics.com/news/2000/

00-11-12.shtml, 2000. Last accessed November 3, 2010.

[11] Adam Aviv, Pavol Černy, Sandy Clark, Eric Cronin, Gaurav Shah, Micah Sherr, and

Matt Blaze. Security evaluation of ES&S voting machines and election management

system. In EVT’08: Proceedings of the conference on Electronic voting technology,

pages 1–13, Berkeley, CA, USA, 2008. USENIX Association.

[12] J. Benaloh. Ballot casting assurance via voter-initiated poll station auditing. In

Proceedings of the USENIX Workshop on Accurate Electronic Voting Technology,

page 14. USENIX Association, 2007.

[13] Josh Benaloh. Simple verifiable elections. In EVT’06: Proceedings of the

USENIX/Accurate Electronic Voting Technology Workshop 2006 on Electronic Voting

Technology Workshop, Berkeley, CA, USA, 2006. USENIX Association.

152

http://australianpolitics.com/news/2000/00-11-12.shtml
http://australianpolitics.com/news/2000/00-11-12.shtml

[14] Debra Bowen. Top-to-bottom review. Available at http://www.sos.ca.gov/

elections/elections_vsr.htm, 2007. Last accessed June 23, 2010.

[15] Kevin Butler, William Enck, Harri Hursti, Stephen McLaughlin, Patrick Traynor,

and Patrick McDaniel. Systemic issues in the Hart InterCivic and Premier voting

systems: reflections on project everest. In EVT’08: Proceedings of the conference

on Electronic voting technology, pages 1–14, Berkeley, CA, USA, 2008. USENIX

Association.

[16] R. Carback, D. Chaum, J. Clark, J. Conway, A. Essex, P.S. Herrnson, T. Mayberry,

S. Popoveniuc, R.L. Rivest, E. Shen, et al. Scantegrity II Municipal Election at

Takoma Park: The First E2E Binding Governmental Election with Ballot Privacy.

IEEE Transactions on Information Forensics and Security, 4:4, 2009.

[17] Richard Carback, David Chaum, Jeremy Clark, John Conway, Aleksander Essex,

Paul S. Herrnson, Travis Mayberry, Stefan Popoveniuc, Ronald L. Rivest, Emily

Shen, Alan T. Sherman, and Poorvi L. Vora. Scantegrity II Municipal Election at

Takoma Park: The First E2E Binding Governmental Election with Ballot Privacy. In

19th USENIX Security Symposium, Washington, DC, USA, August 2010. USENIX

Association.

[18] Richard Carback, David Chaum, Jeremy Clark, John Conway, Aleksander Essex,

Paul S. Herrnson, Travis Mayberry, Stefan Popoveniuc, Ronald L. Rivest, Emily

Shen, Alan T. Sherman, Poorvi L. Vora, and Bimal Sinha. Exploring Reactions to

Scantegrity: Analysis of Survey Data from Takoma Park Voters and Election Judges.

Pending Publication, 2010.

153

http://www.sos.ca.gov/elections/elections_vsr.htm
http://www.sos.ca.gov/elections/elections_vsr.htm

[19] D. Challener, K. Yoder, R. Catherman, D. Safford, and L. Van Doorn. A practical

guide to trusted computing. IBM press, Upper Saddle River, NJ, 2007. ISBN

978-0132398428.

[20] David Chaum. SureVote. Available at http://surevote.com. Last accessed

November 3, 2010.

[21] David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.

Commun. ACM, 24(2):84–90, 1981.

[22] David Chaum. Secret-ballot receipts: True voter-verifiable elections. IEEE Security

and Privacy, 2(1):38–47, 2004.

[23] David Chaum, Richard Carback, Jeremy Clark, Aleksander Essex, Stefan Popoveniuc,

Ronald L. Rivest, Peter Y. A. Ryan, Emily Shen, and Alan T. Sherman. Scantegrity

II: end-to-end verifiability for optical scan election systems using invisible ink con-

firmation codes. In EVT’08: Proceedings of the Conference on Electronic Voting

Technology, pages 1–13, Berkeley, CA, USA, 2008. USENIX Association.

[24] David Chaum, Richard Carback, Jeremy Clark, Aleksander Essex, Stefan Popoveniuc,

Ronald L. Rivest, Peter Y. A. Ryan, Emily Shen, Alan T. Sherman, and Poorvi L.

Vora. Scantegrity II End-to-End Verifiability by Voters of Optical Scan Elections

Through Confirmation Codes. IEEE Transactions on Information Forensics and

Security: Special Issue on Electronic Voting, 2009.

[25] David Chaum, Aleks Essex, Richard Carback, Jeremy Clark, Stefan Popoveniuc,

Alan Sherman, and Poorvi Vora. Scantegrity: End-to-end voter-verifiable optical-scan

voting. IEEE Security and Privacy, 6(3):40–46, 2008.

154

http://surevote.com

[26] David Chaum, Peter Y. A. Ryan, and Steve A. Schneider. A practical, voter-verifiable,

election scheme. Technical Report Series CS-TR-880, University of Newcastle Upon

Tyne, School of Computer Science, December 2004.

[27] Compuware Corporation. Direct Recording Electronic (DRE) Techni-

cal Security Assessment Report, State of Ohio, Office of the Secretary

of State. Available at http://www.sos.state.oh.us/sos/hava/

compuware112103.pdf, 2003. Last accessed Mar 15, 2008.

[28] Coq. The coq proof assistant. Available at http://coq.inria.fr. Last ac-

cessed October 29, 2010.

[29] Europa Press. Decomisan varios ordenadores en la casa presidencial con los resultados

de la consulta que queria hacer zelaya. (rough trans: Computers seized with bogus

election results pre-loaded). Available at http://bit.ly/dpeOM0 (short). Last

accessed October 29, 2010.

[30] Sarah P. Everett. The Usability of Electronic Voting Machines and How Votes Can

Be Changed Without Detection. PhD thesis, Rice University, May 2007.

[31] S.P. Everett, K.K. Greene, M.D. Byrne, D.S. Wallach, K. Derr, D. Sandler, and

T. Torous. Electronic voting machines versus traditional methods: Improved prefer-

ence, similar performance. 2008.

[32] Ariel J. Feldman, J. Alex Halderman, and Edward W. Felten. Security analysis of

the diebold accuvote-ts voting machine. In EVT’07: Proceedings of the USENIX

Workshop on Accurate Electronic Voting Technology, pages 2–2, Berkeley, CA, USA,

2007. USENIX Association.

155

http://www.sos.state.oh.us/sos/hava/compuware112103.pdf
http://www.sos.state.oh.us/sos/hava/compuware112103.pdf
http://coq.inria.fr
http://bit.ly/dpeOM0

[33] R. Fink. A Statistical Approach to Remote Physical Device Fingerprinting. In

Military Communications Conference, 2007. MILCOM 2007. IEEE, pages 1–7. IEEE,

2008.

[34] R. Fink and A.T. Sherman. Combining end-to-end voting with trustworthy computing

for greater privacy, trust, accessibility, and usability (summary). In Proceedings of

the National Institutes of Technology (NIST) workshop on end-to-end voting systems,

October 13-14 2009.

[35] Russell A. Fink, Alan T. Sherman, and Richard Carback. TPM meets DRE: Reducing

the trust base for electronic voting using trusted platform modules. IEEE Transactions

on Security and Forensics, 4(4):628–637, 2009.

[36] Russell A. Fink, Alan T. Sherman, and David C. Challener. A human attestation

protocol for trustworthy electronic voting: bootstrapping trust using TPMs, smart

cards, timings, and scratch-off codes. Unpublished manuscript, June 2010.

[37] Kevin Fisher, Richard Carback, and Alan Sherman. Punchscan: Introduction and

system definition of a high-integrity election system. In Preproceedings of the

2006 IAVoSS Workshop on Trustworthy Elections (WOTE 2006), Robinson College,

Cambridge, United Kingdom, June 2006. Available at www.punchscan.org/

papers/fisher_punchscan_wote2006.pdf.

[38] J. Franklin and M.C. Tschantz. On the (Im) possibility of Timed Tamper-Evident

Software in (A) synchronous Systems. 2008.

[39] Ryan W. Gardner, Sujata Garera, and Aviel D. Rubin. Detecting code alteration

by creating a temporary memory bottleneck. IEEE Transactions on Security and

Forensics, 4(4), 2009.

156

www.punchscan.org/papers/fisher_punchscan_wote2006.pdf
www.punchscan.org/papers/fisher_punchscan_wote2006.pdf

[40] General Dynamics C4 Systems. General dynamics’ high assurance systems. Available

at http://www.gdc4s.com/highassurance, 2010. Last accessed June 23,

2010.

[41] Jeff German. Vote allegations keep authorities busy. Las Vegas Review-

Journal, Nov. 2, 2010. Available at http://www.lvrj.com/news/

vote-allegations-keep-authorities-busy-106505448.html.

Last accessed November 3, 2010.

[42] Stephen N. Goggin, Michael D. Byrne, Juan E. Gilbert, Gregory Rogers, and Jerome

McClendon. Comparing the auditability of optical scan, voter verified paper audit

trail (VVPAT) and video (VVVAT) ballot systems. In EVT’08: Proceedings of the

conference on Electronic voting technology, pages 1–7, Berkeley, CA, USA, 2008.

USENIX Association.

[43] D. Grawrock. Dynamics of a Trusted Platform: A building block approach. 2009.

[44] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William

Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W.

Felten. Lest we remember: cold-boot attacks on encryption keys. Commun. ACM,

52(5):91–98, 2009.

[45] B. Harris, D. Allen, and L. Alexander. Black box voting: Ballot tampering in the 21st

century. Talion Pub., 2004.

[46] Paul S. Herrnson, Richard G. Niemi, Michael J. Hanmer, Benjamin B. Bederson,

Patrick G. Conrad, and Michael W. Traugott. Voting technology: The not-so-simple

act of casting a ballot. Brookings Institution Press, 2008.

157

http://www.gdc4s.com/highassurance
http://www.lvrj.com/news/vote-allegations-keep-authorities-busy-106505448.html
http://www.lvrj.com/news/vote-allegations-keep-authorities-busy-106505448.html

[47] G.J. Holzmann. The model checker SPIN. Software Engineering, IEEE Transactions

on, 23(5):279–295, 2002.

[48] P. Hudak, S. Peyton Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel, M.M. Guzmán,

K. Hammond, J. Hughes, T. Johnsson, et al. Report on the programming language

Haskell: a non-strict, purely functional language version 1.2. ACM Sigplan Notices,

27(5):1–164, 1992.

[49] H. Hursti. Diebold TSX evaluation: Critical security issues with Diebold TSx

Black Box Voting. Available at http://www.bbvdocs.org/reports/

VVBreportIIunredacted.pdf, 2006. Last accessed March 15, 2008.

[50] IBM Corporation. The Trusted Computing Software Stack (TrouSerS) software li-

brary. Available at http://trousers.cvs.sourceforge.net/viewvc/

trousers/, 2008. Last accessed June 23, 2010.

[51] IBM Corporation. The IBM 4758 PCI cryptographic coprocessor. Avail-

able at http://www-03.ibm.com/security/cryptocards/pcicc/

overview.shtml, 2010. Last accessed November 3, 2010.

[52] IBM Corporation. Software TPM emulator. Available at http://ibmswtpm.

sourceforge.net/, 2010. Last accessed June 23, 2010.

[53] D.W. Jones. A brief illustrated history of voting. University of Iowa Department

of Computer Science. Available at http://www.cs.uiowa.edu/˜jones/

voting/pictures/, 2003.

[54] Andreu Riera Jorba, Jos Antonio, Ortega Ruiz, and Paul Brown. Advanced security

to enable trustworthy electronic voting. In In Proceedings of the 3rd European

conference on e-Government, pages 377–384, 2003.

158

http://www.bbvdocs.org/reports/VVBreportIIunredacted.pdf
http://www.bbvdocs.org/reports/VVBreportIIunredacted.pdf
http://trousers.cvs.sourceforge.net/viewvc/trousers/
http://trousers.cvs.sourceforge.net/viewvc/trousers/
http://www-03.ibm.com/security/cryptocards/pcicc/overview.shtml
http://www-03.ibm.com/security/cryptocards/pcicc/overview.shtml
http://ibmswtpm.sourceforge.net/
http://ibmswtpm.sourceforge.net/
http://www.cs.uiowa.edu/~jones/voting/pictures/
http://www.cs.uiowa.edu/~jones/voting/pictures/

[55] J. Kelsey. Strategies for software attacks on voting machines. In NIST Workshop

on Threats to Voting Systems, 2005. Available at http://vote.nist.gov/

threats/papers/strategies_for_software_attacks.pdf.

[56] J. Kelsey, A. Regenscheid, T. Moran, and D. Chaum. Attacking Paper-Based E2E

Voting Systems. Towards Trustworthy Elections, pages 370–387, 2010.

[57] T. Kohno, A. Broido, and KC Claffy. Remote physical device fingerprinting. IEEE

Transactions on Dependable and Secure Computing, pages 93–108, 2005.

[58] Tadayoshi Kohno, Adam Stubblefield, Aviel D. Rubin, and Dan S. Wallach. Analysis

of an electronic voting system. IEEE Symposium on Security and Privacy, page 27,

2004.

[59] Mirosaw Kutyowski and Filip Zagrski. Verifiable internet voting solving secure

platform problem. In Atsuko Miyaji, Hiroaki Kikuchi, and Kai Rannenberg, editors,

Advances in Information and Computer Security, volume 4752 of Lecture Notes in

Computer Science, pages 199–213. Springer Berlin / Heidelberg, 2007. 10.1007/978-

3-540-75651-4%5F14.

[60] Peter A. Loscocco, Perry W. Wilson, J. Aaron Pendergrass, and C. Durward Mc-

Donell. Linux kernel integrity measurement using contextual inspection. In STC ’07:

Proceedings of the 2007 ACM workshop on Scalable trusted computing, pages 21–29,

New York, NY, USA, 2007. ACM.

[61] J.M. Miller and J.A. Krosnick. The impact of candidate name order on election

outcomes. Public Opinion Quarterly, 62(3):291, 1998.

159

http://vote.nist.gov/threats/papers/strategies_for_software_attacks.pdf
http://vote.nist.gov/threats/papers/strategies_for_software_attacks.pdf

[62] National Security Agency / Central Security Service. The high assurance platform pro-

gram. Available at http://www.nsa.gov/ia/programs/h_a_p/index.

shtml, 2010. Last accessed June 23, 2010.

[63] C. A. Neff. Practical high certainty intent verification for encrypted votes, 2004.

[64] Landon Curt Noll, Robert G. Mende, and Sanjeev Sisodiya. Method for seeding a

pseudo-random number generator with a cryptographic hash of a digitization of a

chaotic system. US Patent, Mar 1998. 5,732,138.

[65] L.D. Norden and Brennan Center for Justice. The machinery of democracy: Voting

system security, accessibility, usability, and cost. Brennan Center for Justice at NYU

School of Law, 2006.

[66] L.D. Norden and E. Lazarus. The Machinery of Democracy: Protecting Elections in

an Electronic World. Brennan Center for Justice at NYU School of Law, New York,

NY, 2007.

[67] Nathanael Paul and Andrew S. Tanenbaum. Trustworthy voting: From machine to

system. Computer, 42(5):23–29, 2009.

[68] S. Pearson and B. Balacheff. Trusted computing platforms: TCPA technology in

context. Prentice Hall PTR, 2003.

[69] Stefan Popoveniuc and Ben Hosp. An introduction to punchscan. In Proceedings of

the 2006 IAVoSS Workshop on Trustworthy Elections, 2006.

[70] Stefan Popoveniuc, John Kelsey, and Andrew Regenscheid. Performance require-

ments for end-to-end verifiable elections. In EVT/WOTE’10: Proceedings of the

160

http://www.nsa.gov/ia/programs/h_a_p/index.shtml
http://www.nsa.gov/ia/programs/h_a_p/index.shtml

Electronic Voting Technology Workshop/Workshop on Trustworthy Elections, page 16,

Berkeley, CA, USA, 2010. USENIX Association/IAVoSS/ACCURATE.

[71] RABA Innovative Solution Cell. Trusted agent report: Diebold AccuVote-TS

voting system. State of Maryland General Assembly, Department of Legislative

Services, 2004. Available at http://www.raba.com/press/TA_Report_

AccuVote.pdf. Last accessed March 15, 2008.

[72] Jordan Robertson. Security chip that does encryption in pcs hacked. USA Today,

Feb 8, 2010. Available at http://usat.ly/9gdlNR. Last accessed October 25,

2010.

[73] Thomas Rössler, Herbert Leitold, and Reinhard Posch. E-voting: A scalable approach

using xml and hardware security modules. e-Technology, e-Commerce, and e-Services,

IEEE International Conference on, 0:480–485, 2005.

[74] Joanna Rutkowska. Introducing blue pill. Available at

http://theinvisiblethings.blogspot.com/2006/06/

introducing-blue-pill.html. Last accessed February, 2009.

[75] Mark Ryan. Introduction to the TPM. Available at http://www.cs.bham.

ac.uk/˜mdr/research/projects/09-TrustedComputing, 2008. Last

accessed June 23, 2010.

[76] A.R. Sadeghi, M. Selhorst, C. Stüble, C. Wachsmann, and M. Winandy. TCG inside?:

a note on TPM specification compliance. In STC ’06: Proceedings of the first ACM

Workshop on Scalable Trusted Computing, pages 47–56. ACM, 2006.

161

http://www.raba.com/press/TA_Report_AccuVote.pdf
http://www.raba.com/press/TA_Report_AccuVote.pdf
http://usat.ly/9gdlNR
http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html
http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html
http://www.cs.bham.ac.uk/~mdr/research/projects/09-TrustedComputing
http://www.cs.bham.ac.uk/~mdr/research/projects/09-TrustedComputing

[77] SAIC Corporation. Risk assessment report: Diebold Accuvote-TS voting system

and processes (unredacted). Available at http://www.brad-blog.com/?p=

3731, 2003. Last accessed Mar 15, 2008.

[78] D. Sandler, K. Derr, and D.S. Wallach. VoteBox: a tamper-evident, verifiable elec-

tronic voting system. In Proceedings of the 17th conference on Security symposium,

pages 349–364. USENIX Association, 2008.

[79] Daniel R. Sandler, Kyle Derr, and Dan S. Wallach. VoteBox: a tamper-evident,

verifiable electronic voting system. In Proceedings of the 17th Usenix Security

Symposium, 2008.

[80] Luis F. G. Sarmenta, Marten van Dijk, Charles W. O’Donnell, Jonathan Rhodes, and

Srinivas Devadas. Virtual monotonic counters and count-limited objects using a TPM

without a trusted OS. In STC ’06: Proceedings of the first ACM workshop on Scalable

trusted computing, pages 27–42, New York, NY, USA, 2006. ACM.

[81] Scantegrity. The Scantegrity website. Available at http://www.scantegrity.

org, 2010. Last accessed November 3, 2010.

[82] Science Applications International Corporation. Risk assessment report: Diebold

AccuVote-TS voting system and processes (unredacted). Available at http://www.

brad-blog.com/?p=3731. Last accessed March 15, 2008.

[83] Seagate Corporation. DriveTrust technology: A technical overview. Avail-

able at http://www.seagate.com/docs/pdf/whitepaper/TP564_

DriveTrust_Oct06.pdf. Last accessed February, 2009.

[84] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pioneer:

verifying code integrity and enforcing untampered code execution on legacy systems.

162

http://www.brad-blog.com/?p=3731
http://www.brad-blog.com/?p=3731
http://www.scantegrity.org
http://www.scantegrity.org
http://www.brad-blog.com/?p=3731
http://www.brad-blog.com/?p=3731
http://www.seagate.com/docs/pdf/whitepaper/TP564_DriveTrust_Oct06.pdf
http://www.seagate.com/docs/pdf/whitepaper/TP564_DriveTrust_Oct06.pdf

In Proceedings of the twentieth ACM symposium on Operating systems principles,

page 16. ACM, 2005.

[85] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. SWATT: SoftWare-based

ATTestation for embedded devices. In Security and Privacy, 2004. Proceedings. 2004

IEEE Symposium on, pages 272–282. IEEE, 2004.

[86] P. Sevinç, M. Strasser, and D. Basin. Securing the distribution and storage of secrets

with trusted platform modules. Information Security Theory and Practices. Smart

Cards, Mobile and Ubiquitous Computing Systems, pages 53–66, 2007.

[87] Michael I. Shamos. Paper v. electronic voting records-an assessment. In Proceedings

of the 14th ACM Conference on Computers, Freedom and Privacy, 2004.

[88] Michael I. Shamos. Voting as an Engineering Problem. BRIDGE-WASHINGTON-

NATIONAL ACADEMY OF ENGINEERING-, 37(2):35, 2007.

[89] Alan T. Sherman. Election Tracker: A new tool for greater election transparency. In

The First University Voting Systems Competition (VoComp), 2007. Rump session

talk.

[90] Alan T. Sherman, Richard Carback, David Chaum, Jeremy Clark, Aleksander Essex,

Paul S. Herrnson, Travis Mayberry, Stefan Popoveniuc, Ronald L. Rivest, Emily

Shen, Bimal Sinha, and Poorvi L. Vora. Scantegrity Mock Election at Takoma Park

(summary). In Workshop on End-to-End Voting Systems, Washington, DC, USA,

October 2009. National Institute of Standards and Technology.

[91] Alan T. Sherman, Richard Carback, David Chaum, Jeremy Clark, Aleksander Essex,

Paul S. Herrnson, Travis Mayberry, Stefan Popoveniuc, Ronald L. Rivest, Emily

163

Shen, Bimal Sinha, and Poorvi L. Vora. Scantegrity Mock Election at Takoma Park.

In EVOTE2010: The 4th International Conference on Electronic Voting, Bregenz,

Austria, July 2010. E-Voting.CC.

[92] A.T. Sherman, A. Gangopadhyay, S.H. Holden, G. Karabatis, A.G. Koru, C.M. Law,

D.F. Norris, J. Pinkston, A. Sears, and D. Zhang. An examination of vote verification

technologies: Findings and experiences from the Maryland Study. In Proceedings of

the USENIX/Accurate Electronic Voting Technology Workshop 2006 on Electronic

Voting Technology Workshop, page 10. USENIX Association, 2006.

[93] A. Silberschatz, HF Korth, and S. Sudarshan. Database System Concepts (2005).

New York: McGraw-Hill, 2005.

[94] G.J. Simmons. Contemporary cryptology: The science of information integrity. IEEE

press, 1992.

[95] Mario Strasser. A software-based TPM emulator for Linux. Department of Computer

Science, Swiss Federal Institute of Technology, Zurich, 2004.

[96] Mario Strasser, Heiko Stamer, and Jesus Molina. Software-based TPM emulator

(software). Available at http://tpm-emulator.berlios.de/, 2010. Last

accessed June 23, 2010.

[97] Trusted Computing Group. TCG TPM specification version 1.2, revision 103. Avail-

able at https://www.trustedcomputinggroup.org/specs/TPM, 2008.

Last accessed on Mar 15, 2008.

[98] Trusted Computing Group. The TCG Software Stack. Available at http://www.

trustedcomputinggroup.org/developers/software_stack, 2009.

Last accessed Sep 1, 2009.

164

http://tpm-emulator.berlios.de/
https://www.trustedcomputinggroup.org/specs/TPM
http://www.trustedcomputinggroup.org/developers/software_stack
http://www.trustedcomputinggroup.org/developers/software_stack

[99] United States Election Assistance Commission. The 2005 Voluntary Voting Sys-

tem Guidelines. http://www.eac.gov/testing_and_certification/

2005_vvsg.aspx, December 2005.

[100] J.N. Wand, K.W. Shotts, J.S. Sekhon, W.R. Mebane, JR, M.C. Herron, and H.E.

Brady. The butterfly did it: The aberrant vote for Buchanan in Palm Beach County,

Florida. American Political Science Review, 95(04):793–810, 2002.

[101] Ka-Ping Yee. Building reliable voting machine software. PhD thesis, University

of California at Berkeley, Berkeley, CA, USA, 2007. Adviser-Wagner, David and

Advisor-Hearst, Marti.

165

http://www.eac.gov/testing_and_certification/2005_vvsg.aspx
http://www.eac.gov/testing_and_certification/2005_vvsg.aspx

	Introduction
	Research Overview and Contributions
	Combining End-To-End Voting with Trustworthy Computing
	Reducing the Trust Base for Electronic Voting Using TPMs
	A Human Attestation Protocol---Bootstrapping Trust Using TPMs
	Trustworthy Receipt Printers for the Scantegrity Election System

	Merit and Broad Impact
	Collaboration and Authorship
	Organization

	Background
	Voting Overview
	Goals and Requirements
	Architecture
	Types of System

	Voting System Risks
	Cryptographic Security
	Cryptography Primer
	Trusted Platform Modules (TPMs)
	Timing
	Security Analysis

	Adversary Model
	Adversary Capabilities
	Attack Classes
	Data and Presentation Manipulation
	Privacy
	Procedural
	Discreditation

	Attack Techniques
	Software Attacks
	Other Attacks

	Assumptions
	Security Assumptions
	Trusted Roles

	Attack Mitigation
	Attacks Not Countered

	Combining End-To-End Voting With Trustworthy Computing for Greater Trust, Privacy, Accessibility and Usability
	Introduction
	E2E Gaps in Voting System Attributes
	Enhancing Scantegrity
	Software Components of Scantegrity
	Incorporating Trustworthy Computing

	Benefits and Problems
	Conclusions

	TPM Meets DRE: Reducing the Trust Base for Electronic Voting using Trusted Platform Modules
	Introduction
	Previous and Related Work
	Architecture
	System Elements
	Security Assumptions
	System Roles

	Protocol
	Detailed Description
	Protocol Actors
	Protocol Parts
	Protocol and Implementation Enhancements

	Security Arguments
	Countered Attacks
	Attacks Not Countered

	Benefits and Limitations
	Future Work
	Conclusions

	A Human Attestation Protocol for Trustworthy Electronic Voting: Bootstrapping Trust Using TPMs, Smart Cards, Timings, and Scratch-Off Codes
	Introduction
	Previous and Related Work
	Threat Model
	Attestation Protocol
	System Overview
	Component Assumptions
	Protocol

	Protocol and Security Analysis
	Countered Attacks
	Timing Analysis
	Attacks Not Countered

	Alternative Protocols
	Flat Files
	Physical Authentication

	Future Work
	Conclusions

	On trustworthy receipt printers in the Scantegrity election system
	IntroductionThis is joint work and appears in both Richard Carback's and Russell Fink's dissertation with committee and graduate school approval.
	Related Work
	Requirements
	Functional System Requirements
	Security Goals

	Design
	Image Duplicator
	Receipt Printer Attestation Protocol
	Marked Sense Translator
	Policy and Procedures
	Requirements Traceability

	Security Analysis
	Threat Model
	Assumptions
	Manipulation Attacks
	Identification Attacks
	Disruption and Discreditation Attacks

	Discussion
	Comparison of the Designs
	Design Tradeoffs and Other Considerations

	Extensions
	Design
	Choosing A Design
	Concerns and Benefits

	Conclusions

	Conclusions

