
On the Independent Verification of a Punchscan
Election

Richard T. Carback III
Center for Information

Security and Assurance,
University of Maryland,

Balitmore County.
carback1@umbc.edu

Jeremy Clark
School of Information

Technology and Engineering,
University of Ottawa.

jclar037@site.uottawa.ca

Aleks Essex
School of Information

Technology and Engineering,
University of Ottawa.

aesse083@site.uottawa.ca

Stefan Popoveniuc
Department of

Computer Science,
George Washington University.

poste@gwu.edu

Abstract— Punchscan is a cryptographic voting system provid-
ing full transparency throughout the entire election process: a
mandatory pre-election public audit, a mandatory post-election
public audit, and the ability for a voter to check the correct
printing and recorded marks on a paper receipt she keeps. Even
though a voter can verify that her vote is counted as she cast it,
the ballot receipt does not contain enough information to show
someone else how she voted.

These unique properties produce a system with a voluntary
and universally available process that establishes an overwhelm-
ingly high statistical degree of confidence in the integrity of the
outcome—in other words, they allow for unparalleled indepen-
dent verification of election results. These ideas are new and
have the potential to radically change the way we think about
and build the voting systems of the future.

I. INTRODUCTION

Punchscan is an open-source voting system, the results
of which are verifiable by voters and independent observers
through an election audit—a voluntary and universally avail-
able process that establishes an overwhelmingly high statis-
tical degree of confidence in the integrity of the outcome.
Engaging voters and observers more centrally in the election
process through independent verification, observability and
transparency is the motivation behind the development of
the Punchscan voting system. At the same time this system
was developed around the recognition that the secret-ballot,
and in turn voter privacy, remains a fundamental requirement
in modern voting systems. Engineering a voting system that
offers voters the ability to “see their vote count,” while at
the same time protecting against improper influence was an
enormous design challenge, and Punchscan represents the
current state-of-the-art in the field of voting systems research.

Unlike conventional electronic voting systems, the judicious
use of cryptography alleviates the concern over the strict use of
trusted hardware and software components. The polling place
hardware/software never encounters a voter’s unencrypted
vote. The entire process leaves an end-to-end audit trail that
allows voters to independently verify for themselves that their
ballot was correctly included in the tally, and that the tally
was performed correctly. Additionally by design, audits can be
performed throughout the election making Punchscan highly
effective at preventing deliberate cheating or software errors

that might necessitate a re-vote.
Unlike other cryptographic voting systems, you don’t need

a degree in abstract algebra to understand how Punchscan
works. The cryptographic clockwork that protects, shuffles
and retrieves the ballots is similar in technique to the “secret
decoder ring” one might encounter in a cereal box. And
because Punchscan does not lean on trusted software, it is
easier to understand than the code running in a modern
electronic voting machine—even if we were allowed to see
it!

We begin with an emphasis on the importance of indepen-
dent verification in voting systems and define what it entails.
We then begin to describe the Punchscan voting system,
beginning with a high-level design view that will give an
overview of the core components and the auditing protocol.
Afterward, we give a more detailed architectural view, de-
scribing the physical hardware and software components, user
roles, and how they work together in the system. Finally, we
demonstrate how Punchscan meets the criterion of end-to-end
(E2E) cryptographic independent verification. This paper is an
introduction to the longer and more comprehensive submission
of Punchscan to the 2007 Vocomp1. Parts of this work may
incorporate text or figures, with permission, from the published
work done in [13], [9], [8], [7].

II. INDEPENDENT VERIFICATION

The independent verification process is Punchscan’s raison
d’tre. The notion of independent verification refers to an indi-
vidual or organization unassociated with the election trustees
that undertakes to perform an audit of election results to verify
the correctness of the final tally. Independent verification (IV)
represents a new paradigm in elections bringing citizen over-
sight to an unreached level in current voting systems. Unlike
conventional optical scan voting systems, the Punchscan audit
is:

• End-to-end (E2E)—the audit is performed on all ballots
not just a small percentage.

• Compulsory—the audit is performed in every race and
not only under exceptional circumstances.

1Available from http://punchscan.org/vocomp



• Available and repeatable—the audit can be performed by
anyone willing to take the time.

• Open specification and open source—the auditing tools
can be self-created. The implementation offered by the
Punchscan team is simply offered for convince, and it
is open source and documented for easy scrutiny and
verification.

• Software/hardware independent—the auditing is math-
ematical and does not depended on a specific imple-
mentation, programming language, operating system, or
proprietary computers.

• Easy—while cryptography can be incredibly complex,
Punchscan uses easy to understand encryption functions.

A. The Cost of Independent Verification

For all its benefits, independent verification does comes with
one complexity: ballots must contain unique information and
serial numbers. Because Punchscan adheres to the traditional
principle of the secret ballot, the system must contain addi-
tional privacy enabling and assurance components. Therefore
as we begin examining the Punchscan system, keep in mind
that we are attempting to design a voting system with the
following two properties:

• Integrity of election results through ballot “receipts” and
audits.

• Secrecy of voters’ vote through strong cryptographic
design and distribution of trust.

Intuitively one might expect that integrity of election results
and ballot secrecy are mutually exclusive. However as we will
see, through the use of cryptography and careful design, these
two properties are both simultaneously realizable.

B. Two Important Cryptographic Concepts

Two cryptographic concepts are at the heart of the inde-
pendent verification provided by Punchscan. The first is a
commitment scheme and the second is a cut and choose (CNC)
protocol [5]. In a commitment scheme, Alice has a piece of
information that she wishes to keep secret for a period of
time but wants to prove to Bob that she knows the secret now.
A commitment scheme allows Alice to compute a piece of
data from her secret, called the commitment, that can only
be computed from her secret. She gives the commitment to
Bob and Bob should not be able to work backwards and
recover the secret from the commitment even if he knows the
exact algorithm Alice used for computing the commitment.
When Alice reveals her secret to Bob and claims it is the
same secret she committed to, Bob can take the secret he
is given and compute the commitment for it. If this matches
the commitment he was originally given, he knows that it is
the same secret Alice committed to. For example, Alice may
claim to have made a great scientific discovery but is waiting to
settle some business plans before revealing it. However she is
concerned it may be independently discovered in the meantime
and wants to ensure her recognition of making the original
discovery. She can published a commitment of her discovery

and then later when it is revealed, it can be independently
verified that her discovery matches the commitment.

When the election trustees generate the unique information
that will be contained in each ballot, they commit to it using a
cryptographic one-way function. They also generate the data
necessary to tally the election and this committed to as well.
Though these commitments and the commitment function used
to generate them are made public, the actual information
contained on the ballot remains sealed. This is because the
function is one-way—it is computationally infeasible to de-
termine the information on the sealed ballot given only its
publicly posted commitment. The reason for committing to
this data is to ensure that it is not changed at any point during
or after the election. In lieu of committing to this data, the
election trustees could, for example, change it after the election
to engineer a desired result.

In a cut and choose protocol, Alice makes a claim about a
piece of data and Bob must verify that claim without seeing
the data itself. To verify Alice’s claim, Bob asks Alice to
create many substitutable pieces of data matching her claim
and to individually encrypt them. Bob then chooses one piece
of data to be set aside, and requests the decryption keys for
the remaining cut pieces of data. He checks each one to verify
that they all meet Alice’s claim, and if they do he authorizes
the use of the remaining chosen piece of data. For example,
Alice may claim that a sealed envelope contains a hundred
dollar bill but she does not want Bob to see the serial number
on it. Bob can ask Alice to produce n sealed envelopes, each
with a hundred dollar bill in them. Bob opens all but one
of the envelopes and if they all satisfy Alice’s claim, he is
reasonably sure that the chosen one does as well without
opening it. In order to successfully cheat without being caught,
Alice creates 1 bad piece of data (such as an empty envelope),
and hopes with probability 1/n that Bob will choose that piece
of data to remain unopened. If n is large enough, there is an
overwhelming probability that Alice will get caught if she tries
to cheat.

When we use CNC in Punchscan, Bob is an auditor of
election data and could be a voter or any independent verifier.
The verifier cannot see all of the election data to protect voter
privacy. However the verifier must be assured that this data
has not been changed since it was committed to and that all
the tally operations were performed correctly. To facilitate this
goal, while preserving privacy, half of the data is selected
to be opened for auditing. Furthermore, many functionally
equivalent sets of election data are created and the verifier can
select different halves to be opened in each. This is a notable
difference from the types of CNC protocols described above.
In this construction, a corrupt election trustee will have a 50%
chance to get away with cheating in one set of data (as he must
hide the cheating in one half or the other) but since many sets
are created, he must cheat in the exact same way in each set
for them all to be functionally equivalent and produce the same
final tally. So instead of succeeding with probability 1/n, the
corrupt trustee will only succeed with probability 1/2n, where
n is the number of sets. As n grows, this quickly results in an



even greater probability of being caught. For example, if only
ten independent sets are created and the corrupt trustee cheats
only once, his probability of being caught is over 99.9%.

III. CORE COMPONENTS OF PUNCHSCAN

At its core, Punchscan is a derivative of an earlier unnamed
E2E system proposed by Chaum that used visual cryptography
[4]. Like that system, Punchscan also uses a two-sheet ballot
and an audited mixing of ballots, but both of these components
are substantially less complex in Punchscan.

The key advantage of Punchscan over that system is that the
voter marks a pre-printed ballot instead of trusting a machine
to generate one. The ballot is still split by the voter but it does
not use visual cryptography. We believe the new ballot is an
improvement because the voter verifies that her positions and
letters are correct and need not make an exact comparison
of the position of black pixels on a screen. In a sense, the
Punchscan ballot receipt is human readable even though it
does not reveal information about a voter’s vote.

Instead of a series of tellers performing mix operations,
Punchscan relies on a simple auditable series of ballot/group
operations. These operations use a cryptographically secure
pseudo random number generator (CSPRNG) [12]. As pre-
viously stated, to provide independent verification of these
operations, Punchscan additionally requires an unconditionally
secure bit commitment scheme (USBCS) [11] and a proper
formation of a cut and choose protocol [5]. There are some
trade-offs in losing the tellers, but our tallying function permits
us to achieve the security goals of unconditional integrity and
computational privacy.

We now discuss the Punchscan ballot, the form of the
tallying data (called the Punchboard), and the independent
verification of the correctness of the inputs to the tallying
function and the tallying itself.

A. Ballot

The Punchscan ballot, as illustrated in Figure 1 is created
by combining a top and bottom sheet of paper. The top sheet
has letters or symbols next to candidate names and holes in
it to show letters that are printed on the bottom sheet. The
letters on both sheets are ordered randomly.

To vote, each voter uses a bingo-esque ink dauber to mark
the letter seen on the bottom sheet that is next to the candidate
of her choice on the top sheet. This action creates a mark on
both sheets, because the ink dauber is larger than the hole
through which the letter is viewed. Afterward, either the top
or the bottom sheet is destroyed (as randomly determined by
a poll worker before the voter is issued her ballot), and the
surviving sheet is scanned, publicly posted, and kept by the
voter as a receipt2. As shown in Figure 1, neither half of the
ballot can reveal the original vote by itself. Only the election

2Alternatively, the top sheet of the ballot could consist of a random ordering
of the candidates, and the voter would mark next to the candidate. This change
removes the need for a choice of sheet (forcing the bottom sheet to be the
choice). We do not do this for two reasons: we wish to preserve an ordered
candidate list as may be required by state laws, and the random choice serves
as a cut and choose protocol to check the integrity of the printing process.

Fig. 1. A simple Punchscan ballot showing candidate list, serial numbers
and letters appearing on each respective sheet. The letters on each sheet are
independently randomly ordered. This diagram denotes a vote for “Bob.”

trustees can determine the original intent, and it can only do
so using the publicly committed to election data. The position
marked by the voter is known as the mark position, and in
subsequent diagrams is either 0 for the left mark or 1 for the
right mark. For races with more than two candidates, we would
indicate the choice as 0, 1, ..., or n, with numbering starting
at the leftmost position.

B. Punchboard

In order to determine voter intent, the trustees must know
the letter ordering on the destroyed half of the ballot. This
information is contained in a special data structure which we
refer to as the “Punchboard,” and example of which is shown
in Figure 2. To represent votes or marks in the Punchboard by
candidate order. Thus a 0 in one of the cells of the results table
represents a vote for the first candidate listed on the ballot, a
1 represents the second candidate and so on. We refer to this
as the “canonical ordering;” the ordering of candidate names
as it appears on the ballot.

The Punchboard is used to provide voter privacy and elec-
tion integrity. If we post it as shown in the figure, there is no
privacy in the system, but if it remains secret, we provide no
publicly verifiable integrity to the counting process. In order
to achieve both of these properties, Punchscan uses its own
USBCS to commit to certain data before ballots are printed
for the election, and CNC is used to reveal parts as the election
progresses. This method enforces integrity by making public
certain values as we progress through the election, allowing
anyone interested to check to make sure the public values,
or revealed data, match what election authorities committed
to before the election. The data not made public protects the
privacy of voters.

The first type of commitment, the printing commitment, is
a commitment of each cell for the top and bottom sheets in
the P table. The printing commitment data is revealed when a
ballot is spoiled, or after results are posted when the EA knows
which sheet each voter took as a receipt. Thus, depending on
the sheet chosen to be destroyed, the receipt not only verifies
the positions chosen by the voter but also permits voters to
check on the printing process.



Fig. 2. The Punchboard demonstrating 8 ballots in the simplest election:
a single contest, two-candidate plurality (i.e. “first past the post”) vote. “En-
crypted” votes are displayed on the left side in the P table and “unencrypted”
votes are shown in the R table. The Flip columns contain either a straight
arrow, which leaves the vote position mark alone, or a circular arrow which
flips a 0 to 1 and a 1 to 0. The top and bottom sheet columns considered
together should match the Flip 1 and Flip 2 columns considered together such
that 0 corresponds to the first candidate in the R table and 1 the second.

The second type of commitment is a D-row commitment,
which encompasses both flips in the D table and the cor-
responding permutations. This data is released only when a
ballot is spoiled. Revealing this data can check on both the
printing process and serve as an integrity check to make
sure the flip columns correspond to the top and bottom sheet
columns in the table.

The last kind of commitment, the mix commitment, consists
of each of the entire flip columns (i.e. Flip 1 and the permu-
tation to the P table or Flip 2 and the permutation to the R
table). After results are posted the auditor chooses which of
the two commitments for each D table to reveal. This is an
explicit CNC operation, and allows us to verify that the table
was filled out correctly by the EA, but does not permit us to
determine what rows or votes in the P table corresponded to
what rows or votes in the R table.

It is important to note that all of the data in the Punchboard
is deterministically generated by a secret master key. No one
trustee has access to the shared key, however they each own a
share of it. If a predetermine threshold of trustees enter there
shares (in the form of passphrases), the master key can be
generated and used to recreate the Punchboard exactly as it
was the first time. For this reason, the Punchboard does not
need to be created and stored in memory somewhere. It is
recreated by the trustees each time the data it contains is
needed for some procedure within the election and is never
stored in non-volatile memory.

IV. INDEPENDENT VERIFICATION IN PUNCHSCAN

Let us reiterate that independent verification is the ultimate
purpose of Punchscan and E2E systems in general. Punch-
scan realizes independent verification through four verification
mechanisms:

1) Audit Challenge Geneartion

2) Pre-Election Audit
3) Receipt Checking
4) Post-Election Audit
As we will discuss, the election trustees will “publish”

(i.e. make publicaly available) selected pieces of information
about the Punchboard that will be used for the purposes of
independent verification. This published information does not
allow anyone to link voters to votes, but does offer a high
statistical assurance that the election results are legitimate.

A. Audit Challenge

We begin by discussing the notion of an audit challenge.
To preserve ballot secrecy, we cannot open up the entire
Punchboard to be audited. However the Punchboard has been
modularly designed such that pieces of it can be revealed
without compromising ballot secrecy. Which subset of the
Punchboard is to be revealed is decided by the audit challenge
generator. This could simply be candidates each requesting
ballots to be audited, however we have implemented our
audited challenge generator to be such that no one will know
a priori which selections will be made. The audit challenge
generator performs the following:

• Pre-Election Challenge: Given the total number of bal-
lots in the election, randomly select serial numbers of
half the ballots to be published and audited.

• Post-Electon Challenge: Given the serial numbers of the
ballot receipts, for a given ballot select either the left or
right half of the decryption table to be published and
audited.

If the election trustees do not know a priori which ballots
will be checked, they faces a high probability of getting
caught if they publishes false commitments. The ballots to
be selected for the audit should not be guessable with any
advantage over a random guess at the time the commitments
are published. Additionally the challenges themselves must
be verifiable after the challenges are made. On first blush it
would seem we would require some form of a true random
process, like the rolling of dice, to perform these challenges.
However unless you trust the dice and are personally available
to witness them being rolled, you cannot be fully satisfied
process was not manipulated to ensure a particular outcome.
Instead an audit challenge generator can be created using high-
entropy stock market data to produce fair, observable, and in-
dependently verifiable challenges. Provided that a sufficiently
large stock portfolio is used with sufficiently volatile stocks,
and a sufficient period of time is allowed to elapse between
the publishing of the commitments and the generation of the
selection, this method has been found secure [7].

B. Pre-Election Audit

The pre-election audit ensures proper construction of the
Punchboard. During the pre-election audit, half the ballots
generated by the trustees are selected to be examined. These
ballots are unsealed (and spoiled) and checked to ensure they
are properly formed and that they match their commitments.



Given a fair (i.e. randomly chosen) selection, we can be
satisfied that the remaining sealed ballots are properly formed.

Fig. 3. Pre-Election Audit

C. Post-Election Audit

During the post-election audit, for each ballot cast in the
election, one half of its decryption transformation (either
left or right) is unsealed, published and checked to ensure
it correctly performs its half of the decryption. The left
partial-decryption step corresponds to the decryption of the
ballot receipt to the partially decrypted result. Conversely the
right partial-decryption step corresponds to decryption of the
partially decrypted result to the result (i.e. vote). Again, given
a fair (i.e. randomly chosen) selection, we can be satisfied that
the remaining sealed half of the decryption is valid.

Fig. 4. Post-Election Audit

D. Receipt Check

The receipt check is the process by which the voter verifies
that the information contained on their paper ballot receipt
matches the information that was used in decryption/tally.
The receipt check needs to be easy and available to voters
to promote their participation in the process. It is however not
mandatory for the voter to perform this step, and even a high
degree of confidence in the election results can still be obtained
with a relatively small number of checks. Additionally since
the receipt does not contain information about how you voted,
you can share this information with others, and allow them to
perform this verification step on your behalf.

Fig. 5. Online Receipt Check

Therefore receipt information can be published freely, for
example in a newspaper. We have chosen instead to implement
the receipt check as an online solution. The voter visits the
election website and types in the serial number appearing on
their ballot receipt. A diagram of their ballot is displayed

Fig. 6. The publicly available information about the Punchboard after the
election and before the post-election audit. When voters check their receipts
online, they are essentially ensuring that the revealed values in the P table
are correct.

Fig. 7. A final version of the Punchboard after the post election audit showing
the left side of each row being selected for auditing.

allowing the voter to verify that what they hold in their hand
matches what was used in the decryption/tally.

Posting Results. When the election results are posted,
election trustees enter their passphrases to regenerate the
Punchboard data. They reveal the data on the Punchboard that
corresponds to the information on the sheet that each voter
took home as a receipt. Each voter is able to verify that her
ballot was included with the correct marks for the final tally,
that her receipt matches the revealed data, and that it was well-
formed. Any independent verifier is able to verify that revealed
data matches what was committed to before the election. An
illustration of the information made public at this stage of the
election is shown in Figure 6.

Post-Election Audit. The post-election audit ensures,
among other things, that the counting process was executed
properly while maintaining voter privacy. For each published
D tables, either the two columns to the left or to the right
of the intermediate column is revealed. In the original version
of Punchscan, this was performed for the entire column, as
illustrated in Figure 7 and Figure 8. However, the newest
version of Punchscan allows the right or left half to be



Fig. 8. A final version of the Punchboard after the post election audit showing
the right side of each row being selected for auditing.

independently opened for each individual row in the D ta-
ble. Either way, this enables independent verification that
the marked positions match the intermediary values, or that
the intermediary values match the final results. Because the
election trustees do not know which half of each row in the
D table will be selected before they produce the election
results (recall this selection is made through random stock
data), improperly publishing a result in either column would
result in an overwhelming probability of being caught through
this cut and choose protocol.

V. SYSTEM COMPONENTS

This section will cover the components of the system that
are not people and are necessary at an architectural level.
Specifically, this does not include independent or unconnected
things like the ballot clipboard that is discussed later.

A. Web Server

A web server or group of Web Servers serves as the
communications hub for all election parties. It is used to post
receipts and Punchboard data. Independent verifiers can also
use the web server to submit challenge and audit requests. The
election trustees may respond to these requests by updating the
copy of the partial Punchboard stored on the server(s). While
this server contains important election data, its corruption (via
hardware failure or malicious attack) does not imply voter
privacy or election integrity has been violated. All data can be
regenerated by the election trustees, and the election protocol
can continue when the web server is reestablished in the case
of a denial-of-service attack. However, since news that the
web server has been compromised might adversely affect voter
confidence, it is still important to keep the server properly
secured and maintained.

As the central communications hub for election participants,
the web server performs many important functions. When
voters enter the Ballot ID from their receipt, the server’s Web
Application Software accesses mark and ballot configuration
data from the public Punchboard to render a virtual copy of
the receipt. Voters can inspect this virtual copy to ensure it

is identical to their paper receipt. Independent verifiers can
download all public election data, including the Punchboard,
from the server in an open data format for automated process-
ing or manual inspection. At the appropriate times, the server
will accept challenges and audit requests as generated by the
random stock data. In response, the election trustees must be
able to log onto the web server to securely upload updated
election data. Only election trustees require authenticated
access to the server; all other users may remain anonymous.
All data and software on the web server are public, therefore
there is no risk a malicious user could obtain sensitive data.

B. Trusted/Diskless Workstation

While the web server is a public and marginally expendable
computer, election trustees require a special, high-security
Trusted Workstation with which they can process important
election data with verified software. The workstation has
no need of a hard drive and therefore should contain no
information or programs when it is not in use. The Workstation
also has no network interface or modem. Election trustees
supply an operating system, programs and election data on
removable media that is posted online for anyone to check
before or after an election, and program output is stored on
recordable media before the workstation is powered down. The
Punchboard ensures the integrity of election, so the reason for
the high-security of the workstation is to protect voter privacy.

A simple USB key may serve as a removable and recordable
storage medium. Any such device can adequately supply
and store data, as long as it features a write-protect switch
to optionally prohibit the deletion or alteration of data or
programs. Implementations may employ CD or DVD media
and a combination of read-only and recordable disc drives to
accomplish the same task.

Since the Diskless Workstation is the only computer to
process election data in unencrypted form, a high threshold
is set on its security and integrity. Its hardware configuration
limits its ability to store or transmit sensitive information, and
its Verified Trusted Software should faithfully process all data
according to the descriptions earlier in the chapter.

All source code for the Workstation’s operating system
and user applications are open and published on the Web
Server along with any derivatives, including compiled binaries
and optical disk images. All published code and binary data
are accompanied by their public hash value and the steps
necessary to reconstruct any derivative from the original source
code. This allows anyone to use publicly available tools to
examine, build, test and verify the software to be run on the
Diskless Workstation.

C. Printer

Since Punchscan is a hybrid paper/electronic voting system,
separate hardware is necessary to manage and process paper
ballots and receipts. Paper ballots can be printed with an
ordinary inkjet Printer, although for large elections this task
may be delegated to an industrial printing firm. The Printer



must be trusted to print each ballot as directed by the Punch-
board’s print table. Printing distribution strategies can be used
to minimize the impact of a violation of that trust.

D. Scanner

Within the polling place, voters mark their ballot and
separate its pages. One page is destroyed by a cross-cut paper
Shredder with a battery backup. Shredded ballot pages are
properly disposed of using standard procedures for handling
sensitive documents. The remaining page is scanned using
an optical scanner with battery backup attached to a com-
puter workstation. The workstation includes software to detect
marks made by the voter and a screen to allow for corrections
and final confirmation. Once verified, the vote is encoded in
an XML file as a list of marks on a specified ballot page. The
file is transmitted to the web server or stored on removable
storage for later hand delivery. The scanner must be properly
calibrated to recognize all possible valid marks on each ballot.
This can be done using software algorithms or by calibrating
the scanner with a sample ballot with all positions marked.

E. Ballot Authoring

One final software program is needed to specify key ballot
parameters. The election trustees uses any program to author
the ballots, with special graphical elements that are recognized
by an automated application. The program outputs a standard
file containing this information, which is transmitted to the
web server for public examination. Once all errors have been
detected and corrected, the file is locked to prevent further
editing.

VI. USER ROLES

There are a few defined roles that users play in the system,
but anyone, if they choose to do so, can play the role of an
idependant verifier by looking at publicly provided data and
verifying its correctness. We now present and describe the four
roles of election trustees, poll worker, voter, and indepedent
verifier.

A. Election Trustees

The election trustees are responsible for administrating
and running the election. As a group they are trusted to
handle all election data, including the Punchboard, in both
its encrypted and unencrypted forms. It is essential that the
election machinery distribute access to sensitive data across a
super-majority of trustees (typically with competing interests
or political affiliations), such that no minority of colluding
trustees could ever view the unencrypted secret election data.

B. Poll Worker

Poll workers are the volunteers and other election officials
that are responsible for the proper operation of each polling
place. We think of the election trustees as actually a small
group (no more than 5 or 10 people). Poll workers themselves
have various roles from manning tables, to passing out ballots,
to directing what polling places printers send their ballots.

Fig. 9. An architecture diagram of the Punchscan System. The web server
acts as a central, transparent repository for all election data. Not shown on
this diagram is “everyone”; anyone can check receipts or download election
data from the webserver. Note that in the version of Punchscan described
here, the “auditor” is an algorithm that uses random stock data to generate
the selections and not a person.

C. Voter

Voters contribute to any election system by casting ballots.
Because Punchscan is an independently verifiable system, vot-
ers may also play an additional role as independent verifiers.
They are encouraged to use a website to verify that the receipt
they hold in their hand matches what was counted in the tally.

D. Independent Verifiers

Independent verifiers perform audit checks on the revealed
election data. Any interested observer can examine this data
to verify the election proceeded without irregularities or tam-
pering.

VII. SYSTEM ARCHITECTURE

An illustration of our system architecture is shown in
Figure 93. As can be seen, the web server acts as a central
repository for all election data, with the election officials
responsible for populating the vast majority of that data
(except for votes and audit challenges). The auditing algorithm
provides the challenges (choosing random numbers, effectively
using stock data), but independent verifiers must check the
proper generation of the challenges and the correct disclosure
of the data. Not shown is that Punchscan relies on a small
number of voters to verify their receipts with the web server.
This is not indicated on the diagram because anyone can
check ballots (through voters giving copies of their receipts to
organizations or election observers), and the web server should
not make a distinction between an independent verifier and a
voter. We also see the printer and diskless workstation, the
two components that are trusted with privacy and interacted
with exclusively by the election officials.

3This diagram was created from graphical elements that are found in [9].
They were created by Kevin Fisher.



VIII. E2E: END-TO-END CRYPTOGRAPHIC INDEPENDENT
VERIFICATION

In 2005, the American Election Assistance Commission
(EAC) released a set of voluntary voting system guidelines
[1] that includes a description of what they refer to as “End to
End Cryptographic Independent Verification” (E2E) systems.
According to the EAC, typical distinguishing features of an
E2E voting system are as follows:

• A paper receipt is issued to the voter that contains
information that permits the voter to verify that her
choices were recorded correctly. The information does
not permit the voter to reveal her selections to a third
party.

• The voter has the option to check that her ballot selections
were included in the election count, e.g., by checking a
web site of values that should match the information on
the voter’s paper receipt.

• Such a system may provide an assurance not only that her
ballot choices were correctly recorded (cast-as-intended),
but that those selections were included in the election
count (counted-as-cast).

A. Punchscan in the scope of E2E

Punchscan has been designed to be an E2E voting system.
Most of the system components you have read about in the
preceding sections have been developed to realize the E2E
criteria. The EAC found that the range of proposed E2E
systems have points of commonality, and they attempted to
summarize these in a list of properties. Here we present some
of them and briefly explain how Punchscan does or does
not exhibit their properties. Note that this is not a list of
requirements for a system to be classified as E2E but rather a
preliminary sketch of the typical properties of these systems.

Property 1: Voters’ ballot selections are encrypted for later
counting by designated trustees.

A Punchscan ballot consists of two pages. The top page
contains a list of contests and candidates with set of randomly
ordered symbols beside the candidate names. There are holes
in the top sheet that display a corresponding (but indepen-
dently and randomly ordered) set of symbols. To vote on a
Punchscan ballot, the voter observes the symbol appearing
beside their chosen candidate’s name, and locates the matching
symbol in the holes. The voter then marks that hole with an
implement such as a bingo-style dauber. The implement is
sized slightly larger than the hole such that the ink mark will
be made on both sheets. One of these sheets is destroyed in a
cross-cut paper shredder. The remaining sheet represents the
voter’s receipt and is now “encrypted.” 4 Only the threshold
number of trustees (aka the election authority) have the ability
to reconstruct the information contained on the destroyed
sheet.

4Since both sheets contain random but independent orderings of the
symbols, possessing only one of the sheets does not give you information
about the corresponding symbol on the other sheet.

Property 2: Voting will produce a receipt that would enable
the voter to verify that their ballot selections were recorded
correctly and counted in the election.

Punchscan uses a robust audit procedure, including a pro-
cess by which a voter can visit the election website and look up
their ballot using the serial number contained on their receipt
and verify what they hold in their hand matches what was
recorded by election authority.

Property 3: The receipt preserves voter privacy by not con-
taining any information that can be used to show the voter’s
selections.

Because one of the sheets is shredded, and assuming that
the ordering of symbols contained on that page were uniformly
random and independent from the page that was retained (aka
the receipt), then no information about the destroyed sheet is
contained on the retained sheet, and therefore the vote cannot
be guessed with any advantage.

Property 4: No one designated trustee is able to decrypt the
records; decryption of the records is performed by a process
that involves multiple designated trustees.

Punchscan employs a threshold based password scheme
whereby a pre-designated number of trustees must correctly
enter their passwords before the records can be reconstructed.

Property 5: End to end systems store backup records of voter
ballot selections that can be used in contingencies such as
damage or loss of its counted records.

Punchscan in its original form relies on voter receipts
to reconstruct an election should the counted records be
destroyed. However an implementation of Punchscan used in
a case study [8] expanded the originally proposed system to
include a paper-based backup of the ballot receipts.

Property 6: The backup records contain unique identifiers that
correspond to unique identifiers in its counted records, and the
backup records are digitally signed so that they can be verified
for their authenticity and integrity in audits.

The backup ballot receipts contained a serial number which
matched the serial number of the ballot. While the ballot
receipts themselves were digitally signed, the paper backups
were not as it was agreed that the backup records were very
unlikely to be needed. Should they have been used, they would
have been published and thus their integrity would be ensured
through voter verification. In future elections, consideration
will be given to digitally signing the backups as well as the
receipts.

Property 7: The documentation includes extensive discussion
of how cryptographic keys are to be generated, distributed,
managed, used, certified, and destroyed.

The source code for all the software used by Punchscan
is open source and can be examined by anyone. Furthermore,
the Punchscan team has attempted to document the underlying



cryptography of the system through papers, presentations, and
other documentation available from the Punchscan website 5.

Property 8: Vote capture stations used in end to end systems
must meet all the security, usability, and accessibility require-
ments.

The security of the vote capture station in a Punchscan
election is similar to that of a paper ballot voting station. Two
additional security measures are taken: one is to lock the ballot
to a clipboard and the second is to ensure a high-integrity paper
shredder.

Property 9: Reliability, usability, and accessibility require-
ments for printers in other voting systems apply as well to
receipt printers used in end to end systems.

At pennies a ballot, Punchscan is low-cost, open source,
and can be run on commodity hardware. Punchscan can be
easily implemented with inexpensive off-the-shelf equipment.
However Punchscan is hardware independent and could be
adapted to use proprietary voting-dedicated equipment if it
proved more reliable.

Property 10: Systems for verifying that voter ballot selections
were recorded properly and counted are implemented in a
robust secure manner.

Punchscan allows the voter to verify the proper scanning of
their ballot at the polling station before it is cast, in addition
to their ability to check the receipt online. The security of
the Punchscan tallying process is dependent on well-studied
cryptographic primitives [13] and no implementation vulnera-
bilities have been discovered to date.

IX. CONCLUDING REMARKS

Facilitating the end-to-end independent verification of elec-
tion results is the primary goal of the Punchscan voting system.
To this end, it is open standard and open-source. Since it draws
its integrity from mathematics and not computer security,
the polling stations computers can be off-the-shelf and based
on closed-source operating systems without compromising
the election integrity. This unconditional integrity is enforced
through pre and post-election auditing of election data, and by
allowing voters to keep a receipt they can check against the
published election data. The privacy of the voters is preserved
as the receipts do not contain any information about how they
casted their vote [6]. The ultimate goal of this effort is a voting
system with the potential to enrich the quality of democracy
in this and other countries around the world.

REFERENCES

[1] Voting system performance guidelines. 2005 Voluntary Voting System
Guidelines, Volume 1, United States Election Assistance Commission,
Version 1.0, 2005.

[2] Brennan Center Task Force on Voting System Security (Lawrence Nor-
den, Chair). The Machinery of Democracy: Protecting Elections in an
Electronic World. Brennan Center For Justice, 2006.

5http://punchscan.org

[3] J. Buechler, T. Earnet, and B. Smith. Voting System Usability: Optical
Scan, Zoomable, Punchscan. UMBC CMSC 691/491V – Electronic Voting
by Alan T. Sherman, May 2007.

[4] D. Chaum. Secret-Ballot Receipts: True Voter-Verifiable Elections. IEEE
Security and Privacy, IEEE Computer Society, 02.1, Los Alamitos, CA,
USA, 2004, 38–47.

[5] D. Chaum, C. Crepeau, and I. Damgard. Multiparty unconditionally
secure protocols. Proceedings of the twentieth annual ACM Symposium
on Theory of Computing, 1988.

[6] J. Clark, A. Essex, and C. Adams. On the security of ballot receipts in
E2E voting systems. Proceedings of Workshop on Trustworthy Elections
2007.

[7] J. Clark, A. Essex, and C. Adams. Secure and observable auditing of
electronic voting systems using stock indices. IEEE Canadian Conference
on Electrical and Computer Engineering (CCECE) 2007.

[8] A. Essex, J. Clark, R. Carback, and S. Popoveniuc. Punchscan in practice:
an E2E election case study. Proceedings of Workshop on Trustworthy
Elections 2007.

[9] K. Fisher, R. Carback and A.T. Sherman. Punchscan: introduction and
system definition of a high-integrity election system. Proceedings of
Workshop on Trustworthy Elections 2006.

[10] D.W. Jones. Chain voting. Workshop on Developing an Analysis of
Threats to Voting Systems, National Institute of Standards and Technology,
2005.

[11] A. Kent. Unconditionally secure bit commitment. Physical review letters,
American Physical Society, 83.7, 1999.

[12] A. Menezes, P. van Oorschot, S. Vanstone. Handbook of applied
cryptography. CRC Press, Boca Raton, 1997.

[13] S. Popoveniuc and B. Hosp. An introduction to Punchscan. Proceedings
of Workshop on Trustworthy Elections 2006.

[14] S Popoveniuc and J. Stanton. Undervote and Pattern Voting: vulnerability
and a mitigation technique. Proceedings of Workshop on Trustworthy
Elections 2007.

[15] S. Reiss. The Wired 40. Wired, 14.07, July 2006.
[16] J. Saltzer and M. Schroeder. The protection of information in computer

systems. Proceedings of the IEEE, 63:9, 1975.
[17] RFR-002: VoComp Evaluation Criteria. Voting System Performance Rat-

ing Organization. July, 2007. Available online: http://www.vspr.org/rfr-
docs/vocompe.pdf


