

APPROVAL SHEET

Title of Thesis: Security Innovations in the Punchscan Voting System

Name of Candidate: Richard T. Carback III
Master of Science, 2008

Thesis and Abstract Approved:
Alan T. Sherman
Associate Professor
Department of Computer Science and
Electrical Engineering

Date Approved:
April 18th, 2008

Curriculum Vitae

Name: Richard T. Carback III.

Permanent Address: 2819 Manoff Rd, Halethorpe, MD 21227.

Degree and date to be conferred: Master of Science, August 2007.

Date of Birth: March 27, 1983.

Place of Birth: Baltimore, Maryland.

Secondary Education: Chesapeake High School, Pasadena, Maryland, 2001.

Collegiate institutions attended:

University of Maryland Baltimore County,
Master of Science, Computer Science, 2008.
Bachelor of Science, Computer Science, 2005.

Major: Computer Science.

Minor: None.

Professional publications:

• David Chaum, Richard Carback, Jeremy Clark, Aleksander Essex, Stefan
Popoveniuc, Ronald L. Rivest, Peter Y.A. Ryan, Emily Shen, and Alan T. Sherman.
Scantegrity II: End-to-End Verifiability for Optical Scan Election Systems using
Invisible Ink Confirmation Codes. Submitted to USENIX EVT 2008.

• Russell A. Fink, Alan T. Sherman, and Richard Carback. TPM Meets DRE:
Reducing the Trust Base for Electronic Voting using Trusted Platform Modules.
Submitted to USENIX EVT 2008.

• David Chaum, Aleksander Essex, Richard Carback, Jeremy Clark, Stefan
Popoveniuc, Alan T. Sherman, and Poorvi Vora. Scantegrity: End-to- end voter
verifiable optical-scan voting. Accepted for publication in IEEE Security and
Privacy, volume May/June, 2008.

• Stefan Popoveniuc, Jeremy Clark, Richard Carback, and Aleksander Essex.
Securing optical-scan voting. Presented at Dagstuhl. To be published in Towards
Trustworthy Election Systems in the Lecture Notes in Computer Science series by
Spinger-Verlag, date unknown.

• Richard T. Carback, Jeremy Clark, Aleksander Essex, and Stefan Popoveniuc. On
the Independent Verification of a Punchscan Election. 2007. In Online Proceedings
of the 2007 University Voting Systems Competition (VoComp 2007).

• Richard T. Carback, Jeremy Clark, Aleksander Essex, and Stefan Popoveniuc. On
the Independent Verification of a Punchscan Election. 2007. In Online Proceedings
of the 2007 University Voting Systems Competition (VoComp 2007).

• Richard T. Carback, Stefan Popoveniuc, Alan T. Sherman, and David Chaum.
Punchscan with Independent Ballot Sheets: Simplifying Ballot Printing and
Distribution with Independently Selected Ballot Halves. 2007, In Preproceedings of
the 2007 IAVoSS Workshop on Trustworthy Elections (WOTE 2007).

• Aleksander Essex, Jeremy Clark, Richard T. Carback, and Stefan Popoveniuc.
Punchscan in Practice: An E2E Election Case Study. 2007, In Preproceedings of the
2007 IAVoSS Workshop on Trustworthy Elections (WOTE 2007).

• Kevin Fisher, Richard T. Carback, and Alan T. Sherman. Punchscan: Introduction
and System Definition of a High-Integrity Election System. 2006, In Preproceedings
of the 2006 IAVoSS Workshop on Trustworthy Elections (WOTE 2006).

Professional positions held:

• University of Maryland, Baltimore County. Summer Research Assistant for Cyber
Defense Lab Cyber Defense Exercises Project under Dr. Alan T. Sherman.. (June
2006 – Present).

• University of Maryland, Baltimore County. Teaching Assistant for CMSC 201, 202,
421, 644/444, 687/487, 601. (August 2005 – Present).

• The Retriever Weekly Student Newspaper. Technology Manager and Webmaster
(February 2002 – May 2005).

• L-3 Communications Government Services, Inc. Software Engineer for Integrated
Base Defense Security System Contractor Logistics Support Group (IBDSS CLS).
(August 2003 – August 2005).

• EER Systems. Software Engineer for Maintenance Mentoring System (MMS) and
Tactical Automated Security System Contractor Logistics Support Program (TASS
CLS) (June 1999 – August 2003.

ABSTRACT

Title of Thesis: Security Innovations in the Punchscan Voting System
Richard T. Carback III, Master of Science, 2007

Thesis directed by: Alan T. Sherman, Associate Professor
Department of Computer Science and Electrical Engineering

Punchscan is a so-called end-to-end (E2E) voting system that uses cryptographic tech-

niques to give each voter or observer an unprecedented degree of confidence in voting re-

sults while preserving the secret ballot. It is unique because it uses a special dual-layer

paper ballot that permits each voter to make choices in secret, preventing a machine or

person from learning or changing the choices on the ballot at the polling place.

Unfortunately, while Punchscan provides significant integrity properties it does not

prevent choices from being discovered if someone sees the ballot before the voter, or if

a central workstation is compromised. We propose two improvements that mitigate these

privacy problems:

1. We design a trusted workstation that distributes trust across multiple trustees. Each

trustee brings a separate read-only copy of approved election software and compares

it to copies brought by other trustees. Chosen at random after all copies are ver-

ified by each trustee, the software manages a secret sharing scheme that prevents

any trustee from performing election functions without a minimum number of other

trustees present.

2. Currently, Punchscan can print only ballot layers together. We modify it to treat each

ballot layer separately, allowing each to be combined independently by a voter in

the voting booth. This permits more efficient distribution strategies that protect voter

privacy.

Keywords. Punchscan, voting system security, optical scan, end-to-end cryptographic

audit trail.

Security Innovations in the Punchscan Voting System

by

Richard T. Carback III

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment

of the requirements for the degree of
Master of Science

2008

c© Copyright Richard T. Carback III 2008

To my family: I would have never gone this far without their advice and enouragement.

ii

ACKNOWLEDGMENTS

Alan Sherman, my advisor, provided significant helpful advice and feedback. He

found funding to keep me working at UMBC over the summers. Most importantly, conver-

sations with him have given me invaluable insights to almost everything I can imagine—

from what it takes to be a successful researcher to long term investment strategies. Over

the course of writing this document, my writing style and strategy has improved so much

that I do not even recognize some documents that I have written anymore, and I owe this

improvement to his persistence.

David Chaum, my long distance mentor and collaborator from California, is an end-

less source of ideas and the creator of the Punchscan system. He is the source of the

implementation strategy behind the independent ballot sheets modification to Punchscan

by suggesting that the decryption process need only decrypt the discarded sheet to work.

He also certified the validity of my user contributed secret sharing system being a new idea,

and provided useful feedback on the software validation technique.

Aleksander Essex, Jeremy Clark, Stefan Popoveniuc, Ben Hosp, and Jeremy Robin,

who are my other long distance collaborators, were a highly available resource for me to

consult and were instrumental in testing the software I built during the course of this re-

search. Without Aleksander, Stefan, and Jeremy Clark, I do not believe the Punchscan

project could have gone on to win VoComp. Aleksander and Jeremy created a verification

program, and Stefan created all of the scanning and cryptographic software in Punchscan.

All of them were instrumental to the student election our project carried out at the Univer-

sity of Ottawa.

Kevin Fisher and John Krautheim, my lab mates, provided helpful discussions when

I had problems. Kevin Fisher, who was an early collaborator to the Punchscan project,

iii

worked with me to create a concrete conceptualization of what the Punchscan system would

look like if it were implemented and used in a real election in the months following David’s

first talk about it at UMBC. He also first talked about the idea to treat the ballot sheets in

Punchscan independently.

I received support over the summer to work on security lab exercises through the

Department of Defense Information Assurance Scholarship Program (DoD IASP). UMBC

supported me with a teaching assistantship during the school year, and my experiences as

a teaching assistant have made me a better student, teacher, and researcher. NSF supported

the VoComp competition, which I competed in with Jeremy, Aleksander, and Stefan.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF FIGURES . ix

LIST OF TABLES . xiv

LIST OF ABBREVIATIONS . xv

Chapter 1 INTRODUCTION . 1

1.1 Motivation . 2

1.2 Overview of Thesis . 2

Chapter 2 BACKGROUND . 4

2.1 Voting System Goals . 4

2.1.1 Integrity . 5

2.1.2 Coercion Resistance . 9

2.1.3 Verifiability . 10

2.1.4 Other Goals . 11

2.2 Building Blocks of Secure Voting . 13

v

2.2.1 Basic Cryptographic Tools . 13

2.2.2 Homomorphic Encryption . 14

2.2.3 Mixing . 14

2.2.4 Blind Signatures . 17

2.2.5 Commitment . 18

2.2.6 Secret Sharing . 18

2.2.7 Cut and Choose Protocols . 20

2.2.8 Software Attestation or Validation 21

2.3 Related Work . 22

2.3.1 MarkPledge . 23

2.3.2 SureVote . 24

2.3.3 Prêt à Voter . 26

Chapter 3 OVERVIEW OF THE PUNCHSCAN VOTING SYSTEM . . 27

3.1 Voter Experience . 27

3.2 System Architecture . 29

3.2.1 Web Server . 31

3.2.2 Trusted/Diskless Workstation . 32

3.2.3 Printer . 32

3.2.4 Scanner . 32

3.2.5 Ballot Authoring . 33

3.3 User Roles . 33

3.3.1 Election Authority . 33

3.3.2 Poll Worker . 34

3.3.3 Voter . 34

3.3.4 Auditor . 34

vi

3.4 Core Components . 35

3.5 Digitizing the Ballot . 36

3.5.1 Punchboard . 38

3.5.2 Auditing . 40

3.6 Security Notes . 45

Chapter 4 A TRUSTED WORKSTATION BETWEEN MUTUALLY DIS-

TRUSTING PARTIES . 46

4.1 Requirements . 47

4.1.1 Alternatives to the Trusted Workstation 49

4.2 Assumptions . 51

4.3 Architecture . 52

4.3.1 Bootable Operating System . 53

4.3.2 Software Tasks . 53

4.4 Software Validation . 55

4.5 User Contributed Secret Sharing . 55

4.5.1 Using Other Secret Sharing Schemes 57

4.6 Analysis . 58

4.6.1 Defeating the Secret Sharing . 58

4.6.2 Defeating the Software Validation 59

4.7 Discussion . 59

Chapter 5 INDEPENDENT BALLOT SHEETS 61

5.1 PageScan . 63

5.1.1 The PageScan Protocol . 63

5.1.2 Breaking Ballot Privacy in the PageScan PageBoard 66

vii

5.2 The Independent Ballot Sheet Punchboard 66

5.3 Analysis . 70

5.3.1 Privacy . 70

5.3.2 Reliability and Logistical Properties 71

5.3.3 Printing . 73

5.3.4 Usability . 74

5.3.5 Other Properties . 74

5.4 IBS in Context . 74

Chapter 6 CONCLUSION . 76

6.1 Summary . 76

6.2 Discussion . 77

6.3 Open Problems . 77

6.4 Final Thoughts . 78

Appendix A HOW TO BUILD A CUSTOM LINUX LIVECD 79

REFERENCES . 84

viii

LIST OF FIGURES

2.1 The Butterfly Ballot. In the 2000 Palm Beach County Florida election, a

voter who punched the second hole in the presidential race voted for Pat

Buchanan rather than Al Gore, who was likely her intended choice. 7

2.2 Hanging Chads. From left to right: the pregnant, hanging, and dimpled

chads that arise when punchcard machines are improperly maintained on

election day. Only chads detached from the paper are counted by the punch-

card machine. 8

2.3 Mixnet. Each of the four nodes in this example Chaumian mixnet partially

decrypt input messages, applies a random permutation to the order of the

messages, and sends them to the next node in the mixnet. Messages are

created for input to the mixnet by successively encrypting the message with

the public key of each node in reverse order to hide the source of each

message from an observer. 15

2.4 Mixnet with Randomized Partial Checking (RPC). Mixnets with RPC

operate in the same manner as a normal mixnet. However, after mixing is

done it reveals part of the data. The second and fourth messages in this

illustration are checked or audited, and this choice cascades through the

mixnet, as the three other messages not chosen for the first node are chosen

to be audited for the second node. 17

ix

2.5 Visual Cryptography. An example of visual cryptography. Pixels are

grouped to produce partially white and black spaces when the two sheets

are overlayed. When the sheets are separated, both sheets appear to be

partially white to the human eye. Destroying one sheet makes it impossible

to determine what was shown on both sheets without reconstructing the

destroyed sheet. 25

3.1 The Punchscan Ballot. On top, a marked ballot. On the top corner the

serial number is listed twice, once on each sheet. In the center, the ordered

candidate list, and to the left a random ordering of symbols (A or B in this

case). Below the candidate list, printed on the bottom sheet, is another

independent ordering of the same symbols. Underneath we see that both

sheets are marked after the top and bottom sheets have been separated. A

top or bottom sheet by itself does not reveal any useful information about

how the voter has voted. 28

3.2 Punchscan Architecture. An architecture diagram of the Punchscan Sys-

tem. The web server acts as a central, transparent repository for all election

data. Everyone can check that the data is correct. 30

3.3 Possible Ballot Combinations. All possible combinations of a two-

candidate ballot. Notice that while there are 4 combinations, only 2 of

them are unique when combined with a vote position. 37

x

3.4 The Unredacted Punchboard. Coded votes are displayed on the left side

in the Print (P) table and uncoded, canonical votes are in the Results (R)

table. The Flip columns in the Decode (D) table contain either a straight

arrow, which leaves the vote position mark alone, or a circular arrow which

flips a 0 to 1 and a 1 to 0. The top and bottom sheet columns considered

together should match the Flip 1 and Flip 2 columns considered together

such that 0 corresponds to the first candidate in the R table and 1 the second. 38

3.5 Pre-Election Punchboard. The punchboard as published before any au-

diting. Each cell in the P table is committed to using a USBCS. Each Flip

column in the D table, and the rows in the P and R tables it corresponds

too are also committed. 40

3.6 Post-Election Punchboard. The Punchboard after results are posted. The

committed data for the receipts are revealed, and voters can check the

Punchboard to ensure their vote made it to the final tally. 42

3.7 Post-Election Audited Punchboard. A final version of the Punchboard

after the post election audit. In this version, the auditor chooses the left

side of the D table and the Trustees reveals it. Now, we can see how the

Vote Position column corresponds to the Intermediate Position column and

verify that every Vote was accurately recorded in the Intermediate Position

Column. 43

xi

3.8 Alternative Post-Election Audited Punchboard. A final version of the

Punchboard after the post election audit. In this version, the auditor

chooses the right side of the D table and the Trustees reveals it. Now,

we can see how the Intermediate Position column corresponds to the Real

Vote column and verify that every Vote was accurately recorded from the

Intermediate to the Real Vote column. 44

5.1 IBS Ballot. Ballot sheets in the IBS punchboard do not have the same

serial numbers and can be combined arbitrarily. 62

5.2 Complete PageBoard. An unredacted form of the PageBoard which illus-

trates the computations performed by the Trustee Workstation to decode a

ballot in which two sheets of different serial numbers were arbitrarily com-

bined. The column of the discarded sheet lists the mark position, it is then

process through the table and the intermediary result is published next to

the receipt sheet. 64

5.3 Audited PageBoard. The audited punchboard is what is shown to the pub-

lic after auditors make their selections to reveal parts of the ballot decoding

process. 65

5.4 Pre-Election. The Punchboard after the pre-election audit. The data in

half of the rows are posted so the public can verify that the Punchboard is

well-formed. 66

xii

5.5 Results. The Punchboard after results are posted. Half of the Mark, Inter-

mediate, and Results columns are populated to give unaudited results of the

election. Note that sheet 003 was paired with sheet 005, and the number 5

appears in the paired top column. Likewise, sheet 008 was paired with top

sheet 001, and it appears in 8’s paired sheet column. 68

5.6 Post-Election Audit. The Punchboard after the post-election audit. Data

to the left or right of the Intermediate Position of the Decrypt table are

revealed to audit the results of the election. 69

xiii

LIST OF TABLES

4.1 Format of UCSS passwd file. E is the encryption function, H is the hash

function, and c is the public constant. 56

xiv

LIST OF ABBREVIATIONS

1. CNC. Cut and choose protocol, see 2.2.7.

2. CSPRNG. Cryptographically Secure Pseudo Random Number Generator.

3. DRE. Direct Recording Electronic voting system.

4. E2E. Systems that support end-to-end cryptographic independent verification, see

2.3.

5. EA. Election Authority. A small, trusted group of election officials.

6. EAC. Election Assistance Commission.

7. IBS. Independent Ballot Sheets, a modification of the original Punchscan voting sys-

tem.

8. ITA. Independent Testing Authority. An organization that verifies software does

what it claims to do and provides an independently packaged version of the tested

software.

9. PAV. The Prêt à Voter voting system.

10. SSS. Secret Sharing Scheme, see 2.2.6.

11. UCSS. User Contributed Secret Sharing.

12. USBCS. Unconditionally Secure Bit Commitment Scheme.

xv

Chapter 1

INTRODUCTION

Punchscan is a novel voting system that lets each voter use a special paper ballot. The

voter can take home part of this special paper ballot, and use it to verify that her choices

were properly received by making sure it appears on an official record posted by election

officials. By itself, the piece of the ballot that the voter takes home, an encrypted privacy-

preserving receipt, does not contain enough information to identify any choices made on

the ballot and this prevents a voter from proving to others how she voted.

After all receipts have been posted to the public record, a small group of election

officials, the election trustees, must meet to decrypt the receipts. Anyone can be involved

with a mandatory audit mechanism that ensures that all votes are counted properly. Through

the privacy-preserving receipt and audit process Punchscan offers unprecedented levels of

integrity, privacy, and transparency throughout the election process.

By contrast, the direct recording electronic (DRE) and optical scan systems used in

today’s U.S. elections do not provide a receipt or a mandatory audit process. Instead, they

provide audit logs and an optional a paper record, but these records can be modified without

physical, procedural, and software enforced security protections.

Punchscan is an ambitious system with a design and set of requirements that are the

first of their kind. Thus, there are many things that we can learn from the study of this

1

system. During the course of refining and developing Punchscan, we created a specialized

trusted workstation and expanded Punchscan to support what we call independent ballot

sheets, making it more flexible to deploy in a real environment.

1.1 Motivation

In December 2005, David Chaum presented the Punchscan ballot and counting proto-

col at UMBC, but he did not specify how it might be implemented in practice. The protocol

made a number of assumptions—such as the presence of a trusted workstation, a trusted

printer, a binding commitment scheme, a public bulletin board system, paper folding and

printing systems, etc—that needed to be addressed for practical use of the system.

During the course of the development and implementation of Punchscan, we found

two issues for which there were no obvious solutions: reliance on trusted components for

some properties and unspecified key management. In our work, we investigated these is-

sues and provided solutions that prevent compromise of the properties attained by the orig-

inal protocol. We presented Punchscan at the intercollegiate voting systems competition

(VoComp) and won first place [22] among the competing voting systems.

1.2 Overview of Thesis

Chapter 2 provides necessary background information and an overview of voting sys-

tems related to Punchscan. Chapter 3 is a detailed overview of the Punchscan voting sys-

tem.

Chapter 4 outlines the requirements and proposes an architecture for Punchscan’s

trusted workstation This workstation is trusted with masking ballot id numbers from the

final results in a punchscan election, because it must generate the secret encryption key

necessary to generate and decrypt the ballots and perform the actions that decrypt the bal-

2

lots. We propose a workstation that addresses the general problem of multiple users trusting

the integrity and privacy of computations done on one machine.

Our workstation design presents a protocol for multiparty initialization of a computer

and a secret sharing system that generates its secret from user contributed entropy. The

multiparty initialization routine involves each user bringing their own copy of software to

check every other user’s copy. The secret sharing system lets each user contribute entropy

to a master key which is stored in a way that allows a subset of members to decrypt it when

all members are not present.

Chapter 5 presents an improved modification of Punchscan that permits the two sheet

ballot to be printed at different printers and combined at the polling place. It also provides

an overview of a similar modification and explains a flaw that breaks its privacy.

This modification does not inherently protect privacy, but makes it easier to do so

procedurally. It also improves reliability of the system, relaxing printing and storage re-

quirements that would be necessary to achieve the same level of privacy in the original

system. .

Chapter 6 ends the document with discussion of open problems and final thoughts.

Appendix A lists directions for how to create a custom Linux LiveCD using the Ubuntu

linux distribution.

3

Chapter 2

BACKGROUND

Voting systems are typically large, complex systems and certain technical design de-

cisions are often mired in political issues. These characteristics make them hard to under-

stand and properly conceptualize. In this chapter, we put voting systems into context by

discussing their goals, some of the cryptographic tools available to build them, and some

of the systems available.

2.1 Voting System Goals

The goal behind any “good” voting system is to produce an accurate result that inspires

the confidence of voters. Producing an accurate results sounds like common sense, but

this goal is vastly oversimplified – what exactly does ”accurately” mean, and how is that

accomplished? Others have tried to put this into context with witty anecdotes:

The purpose of voting is not to convince the winner that he or she has won,

but to convince the losers that they have lost. 1

However, just because the losers are convinced they lost does not exempt them or

their supporters from claiming fraud and questioning the legitimacy of the winner. Our

1The earliest writing of this anecdote, by Jeremy Bowers, can be found here: http://www.jerf.
org/iri/post/2441

4

ideal voting system prevents false claims of foul play by providing significant proof if it

exists. Such a system may not prevent a coup, but the system will not give it legitimacy

that it would otherwise enjoy.

There is not yet a standard set of properties or goals that voting systems must meet

because our ideal system is ambiguous, but we focused on integrity, coercion resistance,

and verifiability in our development of Punchscan. These three goals stem from the philos-

ophy that Punchscan should be as transparent and accurate as possible while maintaining

the secret ballot. There are many other possible voting goals, these goals include: usabil-

ity, accessibility, ease of administration, cost, scalability, reliability, recoverability. The

following sections talk about each of these goals.

2.1.1 Integrity

Integrity in a voting system means that votes are counted as intended and it can be

split into three different sub-properties: cast as intended, recorded as cast, and tallied as

recorded. This split represents three different phases of the transfer of intention from the

voter to the counting authority: a voter’s expression of her intention, the recording of that

intention to an official record that should be immutable, and the counting of that record.

The first detailed mention of this split can be found in [42].

Notice that the counting step and intention step are always necessary in a voting sys-

tem, or we could not produce election results. We need to count, and in order to do that we

must know the intention of each voter. Also, observe that dropping the intermediate step

can cause problems. Suppose we count as we receive intention without a separate record

for each voter. If we make mistakes there is no way to go back to a record to correct our

count. Therefore, these three properties are necessary, but not sufficient, goals for any vot-

ing system. The focus should be on how well a system accomplishes these goals, and not

that it simply achieves them.

5

Cast as Intended Cast as intended represents the ability of the voter to transfer her

intentions properly into the system, and cast her vote as she intended it to be cast. This

could be a direct recording by putting pen to paper, or by using a device like a touch screen

system which purports to record your intention for you.

We limit this property to mean that a voter can properly transfer her intention, and not

necessarily that she succeed in doing so in real world conditions. An example of a system

in which cast as intended is not possible would not always list all of the candidates in each

race.

While all systems in use can be said to achieve this property, how well they support it

is a matter of usability. For example, examine the butterfly ballot shown in Figure 2.1. It

was used in the 2000 presidential election in Florida, and is said to have cost Al Gore the

U.S. presidency [19] due to voters inability to cast their votes as intended.

Recorded as Cast When a vote is recorded as cast a device or medium used by each

voter has properly recorded her intention to an official record, and this record has made it

to the counting authority. This property can encompass a conversion from analog to digital

representation, if that conversion is not an aggregation (i.e. there is no counting).

A system that weakly supports this property will faithfully record a vote as cast by the

voter and will provide a mechanism for delivering it to the counting authority. The caveat

with this goal is that many systems are incapable of verifiably adhering to this property,

which is discussed in Section 2.1.3.

Again, if judged on a sliding scale metric, there are many systems that would not sat-

isfy this property very well. There are also numerous problems with automated counting of

paper records where votes are not counted, and this would be a recorded as cast problem.

Most notable is the “hanging chad” [31], as illustrated in Figure 2.2. In this situation, prop-

erly maintained equipment would have prevented the problems, but built up wastepaper in

6

FIG. 2.1. The Butterfly Ballot. In the 2000 Palm Beach County Florida election, a voter
who punched the second hole in the presidential race voted for Pat Buchanan rather than
Al Gore, who was likely her intended choice.

7

FIG. 2.2. Hanging Chads. From left to right: the pregnant, hanging, and dimpled chads
that arise when punchcard machines are improperly maintained on election day. Only chads
detached from the paper are counted by the punchcard machine.3

the machines and other failures caused by lack of maintenance caused them not to properly

record each voter’s intentions.

Counted as Recorded Counted as recorded means that from the official record,

the counting authority is able to provide an accurate aggregation of the data. The counting

authority can be a group of volunteers or machines, or a mix of both. The key properties are

that the record is immutable and the counting is accurate. To accomplish these properties

may require redundant counting by several imperfect entities to verify a proper total.

As is the case with the other two integrity goals, some systems may achieve this goal

better than others. The biggest concern is how easily the record can be violated. This is a

problem in most systems. Paper can be altered to invalidate votes, replaced, or destroyed

and digital storage is, in general, easily manipulated.

Digital Recording Electronic (DRE) devices and their memory cards have consistently

been shown not to support even basic protection mechanisms on their records properly

[35, 46, 49, 28, 9, 23]. This problem is particularly problematic as they typically store only

aggregate counts, and not full ballots for each voter. So, some counting is done on the

machine, and totals from the machine are added with those from the other machines. The

8

memory cards are also easily misplaced [36].

Many DREs try to combat these problems with redundant storage, but there is no

reason why redundant storage that can be manipulated by the same processor would solve

these issues. One solution to this problem is to have independent redundant storage devices

[51], but outside of an investigation, it is not clear how voting officials should or would

deal with mismatches on these independent storage devices.

2.1.2 Coercion Resistance

Coercion resistance, otherwise known as voter privacy or receipt-freeness [43], is the

inability of someone other than the voter to know how she voted. It is meant to protect each

voter from the sometimes powerful outside influence of a spouse, boss, political leader, or

other individual who seeks to gain legitimate political power by threat of force or other

undesirable consequences for the voter. It is the key concept behind the secret ballot when

it was introduced in the United States in Massachusetts in the late 1800s [48, 27].

Unfortunately, given an entity with enough power to control all aspects of the process,

no voting system in existence fully meets this property, and it might be impossible [29].

Ultimately, the voter must transfer her intention to voting officials, and it is not possible to

guarantee that she cannot be watched during this transfer. Election officials could set up

monitoring that the voter cannot detect, or a coercer could force the voter to use recording

technology that the election officials could not detect.

Future technologies may make this situation even more bleak, and it is important to

take into account the capabilities of a voter or attacker. If we assume that a voter could have

some sort of undetectable futuristic ocular implant that allows an outsider to see what she

saw, how could we reasonably protect against such a thing without assuming a similarly

futuristic device is available to combat this threat?

Thus, it is debateable how strong we should make our privacy property so that it is

9

a useful, attainable goal. At a minimum, we should expect to be reasonably protected

from third party thugs that are not involved with the voting process, which appears to be

what current systems try to accomplish. After that, the degree to which an insider must

be involved to violate a voter’s privacy and where we should set the threshhold is unclear

because so much of a voting systems privacy depends on the environment in which it is

used.

2.1.3 Verifiability

Verifiability is an added constraint on the properties we have discussed so far which

many systems fail to achieve. For example, when we say that the recorded as cast property

is verifiable, we mean that someone can check or audit to make sure that the property is

working as the system is being used.

The question of who, how, and when is important when discussing the verifiability of

any property. Recall that cast as intended means a voter is able to transfer her intentions

to the system properly. This property should only be verifiable by the voter in the voting

booth, because, if this property were verifiable at all times, the system could not be coercion

resistant.

The proper recording and transmission of that vote to the counting authority is some-

thing that is also desireable to be verifiable by the voter, but this is where many systems do

not succeed. Likewise, we would want everyone to be able to verify the counting process,

but that is not typically available with current DRE and optical scan technology.

There is a careful relationship between verifiability in voting systems and coercion

resistance. If certain properties or operations are verifiable, then we may lose coercion

resistance. The goal should be to make things as verifiable as possible without losing

coercion resistance.

10

2.1.4 Other Goals

Public systems are costly and meant to last for as long as possible, and if a failure

occurs, there is a relatively ample time and opportunity to fix the problem or replace the

system. Requirements for a voting system are unique in that it is a large scale system

intended for use by the public for a short time that has no tolerance for failure and must be

carried out with limited funds. An election is rerun only if there is catastrophic failure and

a serious threat of open revolt. It needs a higher level of assurance than other systems.

With this in mind, we list other goals that voting systems should strive to maintain.

These goals are not unique to voting systems, but the nature of a voting system makes these

goals stand out:

1. Useability and Accessibility. The useability and accessibility requirements for a

voting system are the most extreme of any system. Voters are not required to read a

manual or be familiar with an interface, and they may have any number of disabilities.

Directions at the polling place must be minimal. The system must be intuitive, and it

should cater to voters with vision, hearing, and dexterity problems.

2. Ease of Administration. Elections are run by an army of volunteers. Often, the only

requirement of a volunteer is that he or she should be able to read and write in the

native language. Like accessibility, these requirements put the threshhold for ease of

managing the system at an extreme level relative to other systems where professionals

can be paid to operate and maintain the system. Administering the system should be

obvious enough that volunteers are able to setup, operate, and close the polls with

minimal technical knowledge.

3. Cost and Durability. Voting systems are typically used over the course of several

days every other year, and it is hard to justify an expensive system. The system

11

should be as cheap as possible, and the equipment should be built to last as long as

possible.

4. Scalability. The system should scale in several different ways. The first of which

is that it should scale with the number of voters. The number of voters supported

should grow as more equipment is added, and the counting processes should still

finish in a reasonable amount of time after the election is complete. This timeliness

requirement should also be true for the number of candidates per race and number of

races per ballot. Last, the system should not have technical limitations preventing it

from implementing election rules.

5. Reliability. It must be more reliable and resistant to disruption than the power grid,

and any voting system must support a way to continue operation without power.

Barring natural disaster or violent military actions that keep voters away from the

polls, the system must work.

6. Recoverability. There should be ways to recover as best as is possible from catas-

trophic failures. In many cases this is a matter of redundancy and procedures (e.g.

constantly publish the current count of votes each time period). The difficulty here is

that you wish to achieve recoverability without drastically affecting the privacy, the

rest of the system, or putting a lot of responsibility on volunteers.

There may be goals a voting system should meet that are not listed here, but these

represent the requirements that are unique in a voting system. While public systems may

nominally share many goals with voting systems, voting systems are unique in that they

should have integrity, coercion resistance, and verifiability.

12

2.2 Building Blocks of Secure Voting

Below, we outline the types of existing technologies and ideas that are useful for a

voting environment. These comprise a diverse set of tools with various security properties.

Punchscan does not use all of these ideas, but we discuss them for completeness.

2.2.1 Basic Cryptographic Tools

Secure communication and authentication are often important in voting system proto-

cols. The following basic cryptographic tools are essential:

1. Encryption. Encryption uses a secret to encode a message so that only the intended

recipient with corresponding secret can read the message. It can be symmetric or

asymmetric. In symmetric encryption, both the sender and recipient of the message

share the same secret value. In an asymmetric encryption system, the sender uses a

public code to lock the data, and the recipient uses a secret code to unlock it. This

is similar to the recipient giving the sender an opened padlock. The sender uses the

padlock to lock the message in a box, and the recipient unlocks it with the key.

2. Hashing. A cryptographic hash function takes a message of any length and produces

an output message of fixed length. The output message from a hash function is com-

putationally infeasible to reproduce without the original message. Another message

with the same hash is also computationally infeasible to reproduce, and may not be

possible.

3. Digital Signatures. A digital signature uses encryption and hashing to prove the

identity of the sender of a message.

Many of the technologies described later in this section will make use of the properties

these cryptographic tools provide. For further explanation of these cryptographic tools, we

13

direct the reader to [53].

2.2.2 Homomorphic Encryption

Homomorphic encryption is a cryptographic system which permits the ciphertexts to

be added together to produce a summation that, when decrypted, produces a sum of the

plaintexts. Suppose we have an encryption function E, decryption function D, key k, and

numerical plaintexts p1, p2, then:

Dk(Ek(p1 + p2)) = Dk(Ek(p1) + Ek(p2)) (2.1)

For our purposes, it is not necessary that the ciphertext be the same for both encryp-

tions, only that the decryptions always produce the same result. Also, homomorphic sys-

tems are typically Public-Key systems [39], which provides an advantage as generating the

ciphertext can be done by a third party without giving them information that might de-

crypt other ciphertexts. Examples of cryptosystems with this property are Paillier [44] and

ElGamal [21].

2.2.3 Mixing

Introduced by Chaum [13], a mixnet decrypts a set of messages such that no one

individual is able to determine the sources of the messages. This is analogous to voting in

which paper slips are put into a box and it is shaken, effectively mixing the ballots so that

people cannot trace ballot papers back to voters. Such mixing systems are more useful if

they are robust or verifiable [41, 15], meaning they can permit an observer to verify that

messages were not added, deleted, or modified by the system.

A mixnet comprises a series of nodes which partially decrypt input messages and

apply a random permutation to the order of the messages it received before sending them

14

FIG. 2.3. Mixnet. Each of the four nodes in this example chaumian mixnet partially
decrypt input messages, applies a random permutation to the order of the messages, and
sends them to the next node in the mixnet. Messages are created for input to the mixnet by
successively encrypting the message with the public key of each node in reverse order to
hide the source of each message from an observer.

15

to the next node in the mixnet. To create the messages, the sender uses the public key, p,

of each node and successively encrypts the message in reverse order. For example, with a

mixnet of four nodes as in Figure 2.3 above, the mixnet encryption, ME, of each message,

m, would be:

ME(m) = Ep1(Ep2(Ep3(Ep4(m)))) (2.2)

The mixnet performs the decryption operation with the private key, k, of each node:

m = Dk1(Dk2(Dk3(Dk4(ME(m))))) (2.3)

What we have shown so far is known as a chaumian or decryption mixnet, and any

asymmetric encryption algorithm can be used in a decryption mixnet. The minimum re-

quirement of an algorithm to create a mixnet are that the inputs be untraceable to (or differ-

ent from) the output at each node. For example, reencryption mixnets differ from chaumian

mixnets by partially decrypting and reencrypting each message for the next node. These

mixnets can tolerate the failure of a threshhold of nodes, and each node will produce a

unique output even with the same input.

To make a mixnet robust, or verifiable, a technique such as Randomized Partial Check-

ing (RPC) [30] can be used. In RPC and other techniques, parts, but not all, of the mixing

and decryption of the mixnet are published after they were performed such that an observer

can have a high confidence that messages were not changed during the mixing process. In

Figure 2.4 shows RPC in action.

Note that verifying a mixnet through RPC or another method can reduce the untrace-

ability that the mixnet provides. For example, in the mixnet without RPC, only one node

needed to keep its operations secret in order to maintain privacy. In the RPC version, two

nodes are needed. We can fix this situation by having each node perform two mixes.

16

FIG. 2.4. Mixnet with Randomized Partial Checking (RPC). Mixnets with RPC operate
in the same manner as a normal mixnet. However, after mixing is done it reveals part of
the data. The second and fourth messages in this illustration are checked or audited, and
this choice cascades through the mixnet, as the three other messages not chosen for the first
node are chosen to be audited for the next node.

2.2.4 Blind Signatures

Also introduced by Chaum [14], blind signatures allow a signing authority to sign an

encrypted message without knowing the contents of the message. The decrypted message

can later be publicly verified with the signature. This is analogous to putting a message

and a piece of carbon paper inside an envelope, and having the signing authority sign the

envelope. We can check that it was signed by the signing authority both before and after

we open the envelope (due to the carbon paper). These signatures have been used in voting

protocols where voters generate their ballots with a voting server’s public key and have

the signing authority sign them with the private key of a separate registration server before

anonymously submitting them to the counting authority [26].

17

2.2.5 Commitment

A commitment [10] allows a message to be released later, but prevents the sender from

modifying the message after send the commitment. Such schemes can be unconditionally

secure or unconditionally secret. An unconditionally secure bit commitment means that

the message is impossible to change, and that it is computationally infeasible to determine

the contents of the message without the original message. By contrast, the unconditionally

secret commitment makes the message computationally infeasible to change, but impossi-

ble to determine, with certainty, the content of the message. Commitment has been used in

verifiable secret sharing [18], verifiable mixing [45], and cut and choose proofs [16].

2.2.6 Secret Sharing

Secret sharing schemes (SSS) are schemes in which one individual, the dealer, shares

a secret with a group of participants such that certain sets of participants can recover the

secret while other sets cannot. In a perfect SSS, any combination of the sets of participants

who are unable to recover the secret cannot ascertain any more information about the secret

than an outsider.

Threshold versions of these schemes—where all that is needed to recover the secret is

any k out of n of the group of participants—were first introduced independently by Blakley

[8] and Shamir [50] in 1979. Since then there has been a significant amount of research in

the field. We briefly explain Blakley and Shamir’s schemes below.

Shamir Secret Sharing Shamir’s scheme [50] is based on the fact that k coordinates

on a graph (x, y) will uniquely define a polynomial of the degree k− 1. That is, two points

define a line, three define a parabola, four define a cubic curve, and so on. Once a secret is

generated by the dealer, he can generate a curve that intersects on the y-axis of the graph

with n coordinates on the curve to give to each participant. Any k of those participants are

18

then able to regenerate the curve using polynomial interpolation in order to find the point

at which it intercepts the y-axis, the dealer’s secret. In order to avoid dealing with complex

fractions the curves generated by the dealer are over a finite field.

Blakley Secret Sharing In Blakley’s scheme [8], the dealer picks a point and creates

a set of n n-dimensional hyperplanes whose intersection contains that point. The dealer

then distributes the information to define each hyperplane to the participants and a specific

coordinate to look at after the group determines the intersection points of the plane.

While it does not look like it, this scheme is similar to Shamir’s scheme when you

realize that two non-parallel lines intersect at a point, three non-parallel planes intersect at

a point, and so on. Note that you cannot encode a secret using all coordinates, because a

participant would know if the secret were located on his plane. Shamir’s scheme is more

space efficient than Blakley’s, because Blakley’s requires that each share be k times larger

than the secret, whereas Shamir’s scheme has shares that are the same size as the secret (all

x coordinates in Shamir’s scheme can be known to all participants).

Verifiable or Anti-Cheater Secret Sharing In some SSS, users may introduce in-

correct shares to prevent proper decryption of the key without detection and possibly other

unknown reasons. It works by adding additional information that allows participants to ver-

ify their shares are consistent. This is typically in the form of public parameters or values,

which are used to compute something with the share that each participant makes public that

should match a given value once added all together. Chor et al. [18] were first to propose

such systems.

19

2.2.7 Cut and Choose Protocols

The most important tool used in Punchscan is the cryptographic principle of cut and

choose (CNC) [16]. A classic CNC protocol involves two participants: Alice who makes a

claim about a piece of data, and Bob who will attempt to verify that claim without seeing

the data. To verify Alice’s claim, Bob asks Alice to create many substitutable data blocks

and to encrypt them. Bob then chooses the data block to use, and Alice gives Bob the

decryption keys for the remaining cut data blocks to check that they meet Alice’s claim.

For example, Alice may claim that a sealed envelope contains a hundred dollar bill but she

does not want Bob to see the serial number on it. Bob can ask Alice to produce n sealed

envelopes, each with a hundred dollar bill in them. Bob opens all but one of the envelopes

and if they all satisfy Alice’s claim, he is reasonably sure that the chosen one does as well

without opening it. In order to cheat successfully without being caught, Alice creates one

bad data block, and hopes, with probability 1/n that Bob will choose it. If the number of

blocks, n, is large enough, there is an overwhelming probability that Alice will get caught

if she tries to cheat.

When we use CNC in voting, Bob is an auditor of election data. The reason Bob

cannot know the contents of the data block is to protect voter privacy, but we wish simulta-

neously to permit a transparent audit that can be checked by the public. By allowing Bob

to choose some of the data to audit, we can achieve both goals. A notable difference in

Punchscan from the types of CNC protocols described above is that our CNC constructions

give Alice a 50% chance to cheat but she must make that choice many times over. So in-

stead of succeeding with probability 1/n, she succeeds with 1/2n. As n grows, this quickly

results in an even greater probability of being caught, even when she merely tries to change

one vote.

20

2.2.8 Software Attestation or Validation

We define software validation to be the process by which a user ensures that they are

running the software they intend to run. As it is unreasonable to expect a user to evaluate

source code and generate a binary executable, this definition assumes that there is some

trusted third party (in our case, an independent testing authority (ITA)) that will perform

these functions, and that everything is publicly posted so that any willing individual can

check that the binary was well-formed.

This problem is similar to the problem of software distribution over the internet dis-

cussed by Rubin [47]. He proposed Bellcore’s Trusted Software Integrity System (Betsi),

in which authors could uniquely register themselves, and any software they wish to dis-

tribute could be issued a certificate containing, among other information, a cryptographic

hash of the software. Even if the author’s site were compromised users could be sure they

were running the author’s software by checking the certificate and the hash of the file they

downloaded.

Unfortunately a system like this never caught on. But, as can easily be seen today, use

of cryptographic hash functions has become a common practice when performing software

installation [3, 7, 4]. This practice is not much better than an integrity check when the soft-

ware is downloaded from the author’s website because an attacker changing the software

could easily change the hash. However, there are now a significant number of mirrors and

download sites which host many applications, and many authors host their software only

on these sites. With the existence of these much larger targets, an author’s site is unlikely to

be compromised, so retrieving the hash from the authors site to check downloaded software

gives the user a reasonable level of assurance.

Cryptographic hash functions have also been used in systems like Tripwire [34], which

detect unauthorized changes to sensitive files in an operating system. In this case they are

21

very effective in determining if tampering has taken place, since the user has a record of

the hash values of each file.

2.3 Related Work

The American Election Assistance Commission (EAC) has released several sets of

voluntary voting system guidelines [20]. These guidelines include a description of “End

to End Cryptographic Independent Verification” (E2E) systems. According to the most

current guidelines released by the EAC in 2005, E2E voting systems have the following

properties:

1. They record voters ballot selections at electronic voting machines and encrypt the

records of votes for later counting by designated trustees.

2. They produce a receipt that can be used by the voter in a process defined by voting

officials that would enable the voter to verify that the voter’s ballot selections were

recorded correctly and counted in the election. The receipt preserves voter privacy

by not containing any information that can be used to show the voter’s selections.

3. No one designated trustee is able to decrypt the records; decryption of the records is

performed by a process that involves multiple designated trustees.

4. The process used to verify that ballot selections were recorded correctly and counted

preserves voter privacy by not revealing any information that can be used to identify

the voter’s selections.

5. End to end systems store backup records of voter ballot selections that can be used

in contingencies such as damage or loss of its counted records.

22

6. The backup records contain unique identifiers that correspond to unique identifiers

in its counted records, and the backup records are digitally signed so that they can be

verified for their authenticity and integrity in audits.

As it is paper-based, Punchscan meets all but the first property as described by the

EAC. It is among a number of other systems with similar properties. We describe the more

recent and well-known E2E systems in the following sections.

2.3.1 MarkPledge

VoteHere’s MarkPledge was developed by Neff [40, 52]. It uses a DRE or a device

that connects to a DRE to produce an encrypted ballot receipt that can be decrypted through

a mixnet. MarkPledge provides the only voter-verifiable receipt that does not rely on in-

formation being destroyed by each voter before it is publicly posted, but requires a specific

protocol that must by followed by the voter and involved matching short strings of charac-

ters.

The MarkPledge protocol can be described as follows:

1. Voter enters a voting booth, a privacy preserving environment, and uses a token that

activates the machine for voting.

2. Voter tells the machine her choice.

3. Machine creates an encrypted ballot representing the voter’s choice and sends a

unique ballot serial number, and the encrypted ballot to the printer.

4. Voter tells the machine a random string that acts as a challenge to reveal part of the

encrypted ballot.

5. Machine prints the challenge and the response to the commitment, which is also filled

with dummy data to protect voter privacy.

23

6. If the voter OK’s the choice, the machine posts the encrypted ballot and the voter can

take the printed receipt.

The encrypted ballot and the challenge are specific to MarkPledge. For each candidate

on the ballot, a row of pairs of 1-bit strings is created. If the voter chose that candidate,

each pair is 1, 1 or 0, 0. If the candidate was not chosen, each pair is either 1, 0 or 0, 1. Also

included on the encrypted ballot is a row of pledge bits. Each bit is 0 or 1, corresponding

to the pair in the chosen row.

When a voter makes her challenge, the left or right half of each chosen pair is re-

vealed, and the voter can later check to make sure the receipt was well formed by using the

public key to recompute and compare the encrypted ciphertext on the receipt. Anonymity

is preserved because the machine will also open half of the rest of the pairs corresponding

to the pledges.

The openings and challenges, from the voter’s perspective, can be represented by

strings of characters. This representation makes the system more practical for a voter to

use. To verify the receipt, a voter must use a trusted computer that can perform the en-

cryption options. Variations of the encrypted ballot can support ranked voting and other

methods.

2.3.2 SureVote

SureVote is David Chaum’s first proposed E2E voting system [11, 15, 12] that uses

visual cryptography [38]. It uses a DRE with special printer to print an overlay of two

transparent sheets and see a printout of their choice. By destroying one of the sheets, a

voter can encrypt her choice because neither sheet has enough information to reconstruct

the original message.

Figure 2.5 shows an illustration of visual cryptography. SureVote prints out both

24

FIG. 2.5. Visual Cryptography. An example of visual cryptography. Pixels are grouped
to produce partially white and black spaces when the two sheets are overlayed. When the
sheets are separated, both sheets appear to be partially white to the human eye. Destroy-
ing one sheet makes it impossible to determine what was shown on both sheets without
reconstructing the destroyed sheet.5

25

sheets overlayed, and the voter must separate and destroy one of she sheets, keeping the sur-

viving receipt as a receipt. The surviving sheet and separate encryptions for the sheets are

publicly posted. SureVote uses a mixnet to reconstruct the content of the destroyed sheet.

Proper construction of the sheets are verified by opening the encryption of the receipt sheet.

The chief disadvantages of SureVote and MarkPledge are that they require more ran-

dom bits to represent the choice of the voter than are needed. This makes them vulnerable

to subliminal channel attacks which could secretly reveal voter choices on a large scale as

shown by Karlof et al. [32]. Karlof et al. also argued that the protocol voters must follow

in MarkPledge may confuse voters, and showed that voter’s may not notice subtle changes

in the protocol that would compromise integrity of the system.

2.3.3 Prêt à Voter

In 2005, Ryan and Chaum proposed Prêt à Voter as an improvement of SureVote using

a preprinted ballot [17]. In it, candidate names are printed in a vertical random permutation

and an encryption of the candidate list, called the onion, is printed at the bottom of the

ballot. A voter votes by marking next to the desired candidate on the list and destroying

the candidate list (the left half). The surviving part of the ballot with marked positions (the

right half) is scanned and taken home by the voter to be checked online.

The position and the onion are used in a mixnet to decrypt the Prêt à Voter ballot. The

onion is small, and could also be a hash of the encrypted list, limiting the ability to embed

a subliminal channel into the printed ballot. Some of the ballots created the system must

be spoiled and audited in order to check that the ballots are being printed correctly.

Punchscan is a close relative of Prêt à Voter but has several key differences. Punchscan

does not use a mixnet. The structure created is very similar to one but allows for much faster

computation of results. The Punchscan ballot does not have an onion, and uses a different

format from Prêt à Voter.

26

Chapter 3

OVERVIEW OF THE PUNCHSCAN VOTING SYSTEM

Punchscan is an end-toend (E2E) cryptographic voting system that provides a high

level of transparency throughout the entire election process. It uses privacy-preserving

receipts to create an immutable public record. A mandatory auditing of encrypted data

ensures with an overwhelmingly high statistical degree of confidence that this public record

is decrypted properly by elections officials.

We begin the overview of Punchscan by explaining the voter experience, followed by

an explanation of the system architecture in Section 3.2. Section 3.4 explains the specifics

of the counting and auditing mechanisms in Punchscan. Portions of these sections are

derived with permission from the co-authors in [25, 45]. The security problems that we are

addressing in Punchscan are explained in Section 3.6.

3.1 Voter Experience

The Punchscan ballot, as illustrated in Figure 3.1 is created by combining a top and

bottom sheet of paper. The top sheet has letters or symbols next to candidate names and

holes in it to show letters that are printed on the bottom sheet. The letters on both sheets

are ordered randomly.

To vote, each voter uses a bingo dauber to mark the letter seen on the bottom sheet

27

FIG. 3.1. The Punchscan Ballot. On top, a marked ballot. On the top corner the serial
number is listed twice, once on each sheet. In the center, the ordered candidate list, and to
the left a random ordering of symbols (A or B in this case). Below the candidate list, printed
on the bottom sheet, is another independent ordering of the same symbols. Underneath we
see that both sheets are marked after the top and bottom sheets have been separated. A top
or bottom sheet by itself does not reveal any useful information about how the voter has
voted.

28

that is next to the candidate of her choice on the top sheet. This action creates a mark on

both sheets, because the bingo dauber is larger than the hole through which the letter is

viewed. Afterward, the voter destroys either the top or the bottom sheet, and the surviving

sheet is scanned, publicly posted, and kept by the voter as a receipt.1 The choice of which

sheet is destroyed is determined at random before the voter views the ballot. This choice

can be made in a variety of ways, for example, we could have a jar with an equal number

of tokens with “top” and “bottom” written on them, that are then chosen by or in front of

the voter.

As shown in Figure 3.1, neither half of the ballot can reveal the original vote by itself.

Only the Trustees can determine the original intent, and it does so using the Punchboard

explained in Section 3.5.1.

3.2 System Architecture

The Punchscan Architecture is illustrated in Figure 3.2. A web server acts as the

central repository for all election data. The Trustees use a trusted workstation to create

the ballot images, generate the election data, and create commitments to the generated

election data that are posted on the webserver. Later, the election data is challenged by

an Auditor, and the trustees must post the information necessary to reveal the commitment

data. Anyone can verify the proper disclosure of the challenged data.

Trustees also use a printer to print the Punchscan ballot images and send them to

polling places to give to each Voter on election day. Each voter receives a privacy preserv-

ing ballot receipt after voting, and is able to verify that the receipt is posted on the web

1Alternatively, the top sheet of the ballot could consist of a random ordering of the candidates, and the
voter would mark next to the candidate as is done in PAV. This change removes the need for a choice of
sheet (forcing the bottom sheet to be the choice). This modification is discouraged for two reasons: we wish
to preserve an ordered candidate list as may be required by state laws, and the random choice serves as an
automatic CNC audit, as it is defined in Section 2.2.7, to check the integrity of the printing process.

29

FIG. 3.2. Punchscan Architecture. An architecture diagram of the Punchscan System.
The web server acts as a central, transparent repository for all election data. Everyone can
check that the data is correct.

30

server. Everyone can check a ballot, view the results, and verify the audit data posted on

the webserver.

3.2.1 Web Server

A Web Server or group of Web Servers serves as the communications hub for all

election parties. It is used to post receipts and Punchboard data. Auditors also use the Web

Server to submit challenge and audit requests. The Trustees respond to these requests by

updating the copy of the Punchboard stored on the server(s). While this server contains

important election data, its corruption via hardware failure or malicious attack does not

imply voter privacy or election integrity has been violated. All data can be regenerated or

uploaded from backups at any point by Election Authorities, and the election protocol can

continue when the Web Server is reestablished. However, since news that the Web Server

has been compromised might adversely affect voter confidence, it is still important to keep

the server properly secured and maintained.

As the central communications hub for election participants, the Web Server performs

many important functions. When voters enter the Ballot ID from their receipt, the server’s

Web Application Software accesses mark and ballot configuration data from the public

Punchboard to render a virtual copy of the receipt. Voters can inspect this virtual copy to

ensure it is identical to their paper receipt. Observers can download all public election data,

including the Punchboard, from the server in an open data format for automated processing

or manual inspection. At the appropriate times, the server will accept challenges and audit

requests from authenticated election Auditors. In response, Election Officials must be able

to log onto the Web Server to upload updated election data securely. Only Auditors and

Election Officials require authenticated access to the server; all other users may remain

anonymous. All data and software on the Web Server are public, therefore there is no risk

a malicious user could obtain sensitive data.

31

3.2.2 Trusted/Diskless Workstation

While the Web Server is a public and marginally expendable computer, Election Au-

thorities require a special, high-security Trusted Workstation with which they can process

important election data with verified software. The workstation has no need of a hard drive

and therefore should contain no information or programs when it is not in use. The Work-

station also has no network interface or modem. Election Officials supply an operating

system, programs and election data on removable media that is posted online for anyone to

check before or after an election, and program output is stored on recordable media before

the workstation is powered down. The Punchboard ensures the integrity of election, so the

reason for the high-security of the workstation is to protect voter privacy. This component

is discussed in detail in Chapter 4.

3.2.3 Printer

Since Punchscan is a hybrid paper/electronic voting system, separate hardware is nec-

essary to manage and process paper ballots and receipts. Paper ballots can be printed with

an ordinary inkjet Printer, although for large elections this task may be delegated to an

industrial printing firm. The Printer must be audited to ensure that each ballot is printed

correcty. The printer is trusted with keeping the information printed on the ballots secret.

Printing distribution strategies can be used to minimize the impact of a violation of the trust

placed in the printer.

3.2.4 Scanner

Within the polling place, each voter marks her ballot and separates its pages. One

page is destroyed by a cross-cut paper Shredder with a battery backup. Shredded ballot

pages are properly disposed of using standard procedures for handling sensitive documents.

32

The remaining page is scanned using an optical Scanner with battery backup attached to

a computer workstation. The workstation includes software to detect marks made by the

Voter and a screen to allow for corrections and final confirmation. Once verified, the vote

is encoded in a digital format as a list of marks on a specified ballot page. The file is

transmitted to the Web Server or stored on removable storage for later hand delivery. The

Scanner must be properly calibrated to recognize all possible valid marks on each ballot.

This calibration can be done using software algorithms or by calibrating the Scanner with

a sample ballot with all positions marked.

3.2.5 Ballot Authoring

One final software program is needed to specify key ballot parameters. The Trustees

use any program to author the ballots, with special graphical elements that are recognized

by an automated application. The program outputs a standard file containing this informa-

tion, which is transmitted to the Web Server for public examination. Once all errors have

been detected and corrected, the file is locked to prevent further editing.

3.3 User Roles

There are a few defined roles that users play in the system, but anyone, if they choose

to do so, can play the role of observer by looking at publicly provided data and verifying

their correctness. We now present and describe the four roles of Election Authority, Poll

Worker, Voter, and Auditor.

3.3.1 Election Authority

The Election Authority, which includes the election trustees, is responsible for admin-

istrating and running the election. As a group they are trusted to handle all election data,

33

including the Punchboard, in both its encrypted and unencrypted forms. It is essential that

the election machinery distribute access to sensitive data across a majority of trustees (e.g.

5 of 7), such no that trustee could ever view the unencrypted secret election data by himself.

3.3.2 Poll Worker

A poll worker is the volunteer or other election official who is responsible for the

proper operation of each polling place. Poll Workers perform various roles such as manning

tables, and passing out ballots.

3.3.3 Voter

Voters contribute to any election system by casting ballots. Because Punchscan is

an E2E system voters may also play an additional role as independent auditors. They are

encouraged to use a website to verify that the receipt they hold in their hand matches what

was counted in the tally.

3.3.4 Auditor

Auditors form the basis of the independent verification, and perform audit checks on

Punchboard data. Auditors along with any interested observers can examine E2E data to

verify the election proceeded without irregularities or tampering. Obviously, it is impor-

tant that the Auditors remain independent from the Trustees since collusion between these

groups could violate election integrity and voter privacy. Any observer can view audit data

and verify its correctness; auditors are different because they are tasked with making the

random choices required by the system.

34

3.4 Core Components

At its core, Punchscan is a derivative of SureVote, an earlier E2E system (as described

in section 2.3) proposed by Chaum that used visual cryptography [15]. Like SureVote,

Punchscan uses a two-sheet ballot and a cryptographically assured decryption process, but

both of these components are redesigned to be substantially less complex in Punchscan.

The key advantage of Punchscan over SureVote is that the voter marks a pre-printed

ballot instead of trusting a machine to generate one. The ballot is still split by the voter but

Punchscan does not use visual cryptography. The new ballot is an improvement because

the voter verifies that her positions and letters are correct and need not make an exact

comparison of the position of black pixels on a screen. In a sense, the Punchscan ballot

receipt is human readable even though it does not reveal information about choices on the

receipt. It can also be used to provide a receipt for mail-in ballots.

Instead of a series of tellers, as defined in Section 2.2.3, performing mix operations,

Punchscan relies on a simple auditable system with a function similar to a mixnet using

two cryptographic primitives: a cryptographically secure pseudo random number genera-

tor (CSPRNG) [37] and an unconditionally secure bit commitment scheme (USBCS) [33].

There are some trade-offs in losing the tellers, but the mix still permits us to achieve the

security goals of unconditional integrity and computational privacy as described in Sec-

tion 2.2.5.

Now, we discuss the ballot, our mixnet-like system, the Punchboard, and give an

overview of the auditing process to verify that the inputs to the mix net are an accurate

representation of the votes cast in a Punchscan election.

35

3.5 Digitizing the Ballot

The position marked by the voter is known as the mark position, and in subsequent

diagrams is either 0 for the left mark or 1 for the right mark. For races with more than two

candidates, we would indicate the choice as 0, 1, ..., or n, with numbering starting at the

leftmost position.

In implementation, the ballot could be represented as a full permutation or by a cyclic

shift. The cyclic shift uses modulo arithmetic, and the vote position can be added to the two

cyclic shifts in order to determine who is chosen. In the simple case, one bit may be used

for both candidate orderings on each ballot sheet (0 for AB and 1 for BA). Representing

arbitrary permutations requires more information. As shown in Figure 3.3, we can create

four combinations of different ballot types.

In cyclic shifting when adding (mod 2) the sheets together, adding the mark position

produces the final vote. More specifically, if both the top and bottom are 0 or 1 (0 + 0 = 0

and 1+1 = 0), then the 0 position chooses the first candidate, and 1 chooses the second, and

if the top and bottom differ (1+0 = 1 and 0+1 = 0), then 0 chooses the second candidate,

and 1 chooses the first (just as it is seen by the voter in Figure 3.1). This generalizes to N

candidates with mod N arithmetic.

In the cyclic case the Punchboard merely takes as input the position and performs

cyclic operations to turn the ballot back into canonical form (where the shift turns to 0),

and the number left over was the choice made by the voter. A consequence of cyclic shifting

is that it can reveal information in elections where multiple choices are being made, such as

in m out of n elections or ranking methods like instant runoff voting, because the spacing

between the candidate lists ane the choices would indicate certain unique voting choices.

If we use a permutation, the Punchboard performs operations that reverse the ballot

permutation, and the position is changed during this process. In the current implementation

36

FIG. 3.3. Possible Ballot Combinations. All possible combinations of a two-candidate
ballot. Notice that while there are 4 combinations, only 2 of them are unique when com-
bined with a vote position.

37

FIG. 3.4. The Unredacted Punchboard. Coded votes are displayed on the left side in the
Print (P) table and uncoded, canonical votes are in the Results (R) table. The Flip columns
in the Decode (D) table contain either a straight arrow, which leaves the vote position mark
alone, or a circular arrow which flips a 0 to 1 and a 1 to 0. The top and bottom sheet columns
considered together should match the Flip 1 and Flip 2 columns considered together such
that 0 corresponds to the first candidate in the R table and 1 the second.

it does not matter what sheet is taken as a receipt, as it is the combination of both receipts

that is proved by the Punchboard, and not the individual sheets.

3.5.1 Punchboard

In order to determine voter intent, the Trustees must know the letter ordering on at least

the destroyed half of the ballot, and this information is available through the Punchboard,

shown in Figure 3.4. To interpret the results, candidate order is associated with a marked

position in the Results (R) table Thus, a 0 position in the R table represents a vote for the

first candidate listed on the ballot (Coke).

38

We use the Punchboard to provide voter privacy and election integrity. If we post

it as shown in Figure 3.4, there is no privacy in the system, but if it remains secret, we

provide no publicly verifiable integrity to the counting process. In order to achieve both of

these properties, Punchscan uses its own USBCS to commit to certain data before ballots

are printed for the election, and CNC is used to reveal parts as the election progresses.

The Punchboard performs an operation, reveals an intermediate result, and then performs

a second operation to reveal a final result. Either the intermediate operation or the final

operation is revealed, and this method enforces integrity by making public certain values

as we progress through the election after they have been committed too by the Trustees,

allowing anyone interested to check to make sure the public values, or revealed data, match

what election authorities committed to before the election. The data not made public protect

the privacy of voters.

In Figure 3.5, the boxes covering the table cells represent committed data using the

USBCS. While the commitment function is the same, the data put into it and the functions

of certain commitments can be split into three types, each corresponding to a different CNC

operation.

The first type of commitment, the printing commitment, is a commitment of each cell

for the top and bottom sheets in the P table. The printing commitment data are revealed

when a ballot is spoiled, or after results are posted when the Trustees knows which sheet

each voter took as a receipt. Thus, depending on the sheet chosen to be destroyed, the

receipt not only verifies the positions chosen by the voter but also permits voters to check

on the printing process.

The second type of commitment is a D-row commitment, which encompasses both

flips in the D table and the corresponding permutations. The data for a ballot is released

only when it is spoiled. Revealing the data checks on both the printing process and serves

as an integrity check to make sure the flip columns correspond to the top and bottom sheet

39

FIG. 3.5. Pre-Election Punchboard. The punchboard as published before any auditing.
Each cell in the P table is committed to using a USBCS. Each Flip column in the D table,
and the rows in the P and R tables it corresponds too are also committed.

columns in the table.

The last kind of commitment, the mix commitment, consists of each of the entire flip

columns (i.e. Flip 1 and the permutation to the P table or Flip 2 and the permutation to the

R table). After results are posted the auditor chooses which of the two commitments for

each D table to reveal. This choice is a CNC operation, and allows anyone to verify that the

table was filled out correctly by the Trustees, but prevents anyone from determining what

rows or votes in the P table corresponded to what rows or votes in the R table.

3.5.2 Auditing

There are three types of audits: pre-election, results posting, and post-election. Be-

cause a malicious person does not know what data will be chosen by the auditors, any

40

malicious action taken has a high risk of being caught. Thus, it is important that the

Trustees commit to the election data before the auditors perform any actions, because prior

knowledge of intended auditor actions would let the Trustees or the attackers know what

malicious actions they could take without being detected.

Pre-Election Audit. The pre-election audit ensures proper construction of the Punch-

board. After the Trustees first publish the Punchboard, Auditors choose half of the rows in

the P table at random and the Trustees publish the contents of those rows. The published

rows are checked with their commitments to ensure that they are well-formed, they are

then discarded and the remaining rows are used to print the sheets that make up each ballot

used in the election. A sufficient number of the printed ballots should also be audited and

spoiled in the same way to check on the printing process. This audit makes half of the rows

unusable, so the Trustees must generate more than twice as many rows as the number of

needed ballots.

Posting Results. When results are posted, the Trustees populate the Vote Position,

Intermediate Position, and Real Vote columns of the tables. They additionally reveal the

sheet that each voter took home as a receipt. Each voter is able to verify that her ballot was

included with the correct marks in the final tally, that her receipt matches the revealed data,

and that it was well-formed. Everyone is able to verify that revealed data matches what

was committed to before the election. An illustration of the Punchboard after the results

are posted is shown in Figure 3.6.

Post-Election Audit. The post-election audit ensures that the counting process was

executed properly while maintaining voter privacy. For each published D table, auditors

choose the two columns left or right of the Intermediate Position column and the Trustees

reveals that data. That way, everyone can then check that the marked positions match the

intermediary values, or that the intermediary values match the final results. Because the

Trustees or attackers did not know what half of each D table would be selected before they

41

FIG. 3.6. Post-Election Punchboard. The Punchboard after results are posted. The com-
mitted data for the receipts are revealed, and voters can check the Punchboard to ensure
their vote made it to the final tally.

populate the Intermediate Position and Real Vote columns, improperly publishing a result

in either column would result in an overwhelming probability of being caught. Illustrations

of both column choices are given in Figure 3.7 and Figure 3.8.

Alternate Audit Instead of the entire column, the columns on each row could be

individually chosen. This may be undesireable as it reduces the privacy set by half. That

is, there become two distinct groups of ballots: those who’s left column was opened, and

those whose right column was opened, and we can group the results into these two sets.

Recount or Reaudit If some impropriety is found in the auditing process, the Post-

election audit can be rerun by producing new D tables, publishing the results, and having

the auditors pick from the new tables. It is not possible to rerun the first two audits, because

42

FIG. 3.7. Post-Election Audited Punchboard. A final version of the Punchboard after
the post election audit. In this version, the auditor chooses the left side of the D table and
the Trustees reveals it. Now, we can see how the Vote Position column corresponds to the
Intermediate Position column and verify that every Vote was accurately recorded in the
Intermediate Position Column.

43

FIG. 3.8. Alternative Post-Election Audited Punchboard. A final version of the Punch-
board after the post election audit. In this version, the auditor chooses the right side of the
D table and the Trustees reveals it. Now, we can see how the Intermediate Position column
corresponds to the Real Vote column and verify that every Vote was accurately recorded
from the Intermediate to the Real Vote column.

44

they are integrity checks on the printed ballots and voted positions. Because of the counting

protocol, any counting mistakes can be detected in the same way as before.

3.6 Security Notes

Kevin Fisher conducted the first security analysis of Punchscan [24]. His analysis

indicated three security concerns:

1. Mark Coercion. While the ballots in Punchscan are coercion resistant, an attacker

can take advantage of the positional mark information to carry out some attacks on

the system.

2. Trust in Third-Party Printers. A third-party printer could potentially reveal infor-

mation necessary to decrypt ballots outside of the decryption process.

3. Ballot Assurance. Punchscan does not provide protection against forgery of bal-

lots. A voter can detect if her vote is not counted or is misprinted, but she does not

necessarily know if the ballot she recieves is a valid ballot.

45

Chapter 4

A TRUSTED WORKSTATION BETWEEN MUTUALLY

DISTRUSTING PARTIES

Election trustees use a special workstation in the Punchscan system to calculate elec-

tion results and respond to audit inquiries. It is trusted in the sense that it protects the

confidentiality of the data, that is, the link between a posted ballot receipt and its corre-

sponding decryption in the results table. The confidentiality here is closely related to voter

privacy, and it is important in the Punchscan system. Since the workstation is the only

computer responsible for this privacy, a high threshold is set on its security.

The meaning of trusted in this setting is different from the traditional meaning where

it might also mean to be trusted with integrity of the data. The integrity of the data the

workstation sees is guaranteed by the auditing processes in the system.

Also, this is not a system where all adversaries are supposed to be prevented from

using the system. On the contrary, the trustees who use the system are expected to have

adversarial relationships (i.e. be members of different political parties). The trusted work-

station they use can be thought of as the referee they all agree to trust to make correct

decisions and enforce certain rules. From this unusual situation stems a unique set of re-

quirements.

In this chapter we outline the requirements and propose an architecture for Punch-

46

scan’s trusted workstation. To meet our requirements, we introduce a threshhold secret

sharing scheme (SSS) we call user contributed secret sharing (UCSS) and a software vali-

dation routine.

The software validation routine requires that each election trustee bring his own read-

only copy of the software. Each copy is chosen at random to carry out a validation process

that verifies that all copies are identical. Also, UCSS lets each user contribute entropy to a

master key which is stored in a way that allows a subset of members to decrypt it when all

members are not present.

In the following section we discuss the requirements of the trusted workstation and

give our proposed architecture. Afterwards, we consider alternative approaches to the cho-

sen trusted workstation approach. In the final section we analyze our design and discuss

alternative choices we could make when building the system.

4.1 Requirements

The trusted workstation is used by a group of users collectively known as the Election

Authority (EA). Each member of this group, an election trustee, should be able to have

confidence that the software running on the workstation is the correct software that was

published online before the election. If each trustee can be sure the software used is the

correct software, he can enforce other actions (such as not storing or transmitting the secret

key) that maintain security in the system.

The trustees should be able to use the system only if enough show up after the system

is initially configured, and the number required to be present should be set by the EA

at the beginning of the election. The workstation should be able to generate and protect

cryptographic keys in the system. No number of trustees under the threshhold should be

able to retrieve the keys.

47

The trusted workstation should not permanently store or transmit secret information.

Its hardware should only contain video, memory, BIOS, CPU, and support for basic input

devices (i.e. keyboard, mouse). Its ability to store and transmit data should be limited to

interfacing with a physical external source that must be plugged into the workstation.

The software itself should be deterministic. This requirement is twofold — we can

check a suspicious workstation by performing the same computation on a different work-

station and catastrophic data loss should not be a problem if the EA can meet and reperform

calculations with the software on a different workstation.

All source code for the Workstation’s operating system and user applications should

be open and published along with any derivatives, including compiled binaries and disk

images. All published code and binary data should be accompanied by a public hash value

and the steps necessary to reconstruct any derivative from the original source code. This

requirement allows anyone, including trustees or their representatives, to use publicly avail-

able tools to examine, build, test and verify the software to be run on the Trusted Worksta-

tion.

To our knowledge, our requirement for a group of untrusted users to validate that the

expected software is running on a machine is unique. It follows that if the system can meet

this requirement then it should be able to enforce any software-based restrictions necessary.

The threshhold requirement is also unique because, while normal systems must au-

thenticate users before operation, the workstation must authenticate a group of users, gen-

erate a cryptographic key, and also prevent any group of users smaller than the threshold

from retrieving that key. The system lacks persistent storage, and no assumption is made

that one trustee will not be able to read data on external storage when the workstation is

not in operation. The situation is similar to secret sharing as explained in 2.2.6 except that

there is no dealer to split up a preexisting key, and all the would-be recipients of the shares

are at the same place at the same time. The workstation also prevents each trustee from

48

learning the key after reconstructing it.

To handle these two unique requirements we developed a software validation routine

and a secret sharing system based on entropy given to the system by the trustees. In the

next section, we discuss our assumptions when building the system.

4.1.1 Alternatives to the Trusted Workstation

Punchscan could use a verifiable mixnet instead of the Punchboard. As explained in

2.2.3 a verifiable mixnet uses a series of nodes known as tellers that permute messages and

post partial results of message decryption until the final node posts plaintext versions of

the original messages. The Punchboard in Punchscan acts similarly to a 1-node verifiable

mixnet, except that it does not use an asymmetric cipher to create the input messages.

Instead of a workstation shared by all election trustees, each trustee would use his own

workstation that he trusts in a mixnet-based system. The integrity in such a system is also

maintained by the auditing processes, and the privacy is maintained because only one of the

trustees must remain honest to prevent privacy leakage in the system. Mixnet workstations

used by the trustees do not need to be protected from their users, but the workstations must

still be secured in the traditional way.

Punchscan does not use a mixnet because it uses printed ballots. Printed ballots require

a precomputation step before the election that leaves the last teller in the mixnet with all the

information required to decode receipts posted to the bulletin board. This information is

then handed over to a printer who can also decode the receipts. Any mixnet that uses printed

ballots has this problem, so the privacy is no better than what is achieved by Punchscan.

We explore this problem further in the next chapter.

There are additional reasons why Punchscan does not use a mixnet:

1. Speed. The Punchboard is similar in practice to having only 1 mixnet teller. So,

49

in that sense it will always be faster. If a teller is created that is faster than the

Punchboard, we could swap it in, and 1 teller would be faster than several. Again,

there is no reason to use more than one teller, because the last teller provides the

privacy in a system with printed ballots.

2. Communications Requirements. The tellers need to communicate with each other,

and, depending on implementation, possibly with the polling places. In practice

this communication would require an Internet connection. The Punchscan system

is off-line in the sense that data are hand-carried to a special room, operations are

performed on a closed system, and then hand-carried back out. While the same thing

can be done with a mixnet architecture, it would introduce significant overhead.

3. Reliability and Recoverability. If one teller refuses to perform their operations

faithfully, the system ceases to work.

4. Trusted Hardware/Software. Having multiple tellers can help with the trusted hard-

ware and software problem, but it is not as effective as it appears. One security

assumption in the teller model is the reliance on different teller implementations.

However, due to software complexity and certification requirements, it is likely that

the implementations would be homogeneous. If an attacker can simply do the same

thing to all tellers, it does not greatly increase cost as might be expected.

Note that a mixnet that does not use printed ballots must use a computer located at

the polling site that will encrypt the choices of each voter by using a public key and will

print out a receipt of the encryption that is posted online. This computer would know the

choices of each voter that uses it, could print information on the receipt that indicated those

choices, may not encrypt the receipt properly, and may communicate with a third party in

another way. Using a printed ballot reduces the number of machines trusted with privacy

50

to the trusted workstation and the printers. The printed ballots enable an audit to detect that

they were printed correctly, but must be procedurally protected.

These differences coincide with the prevailing view that it is the responsibility of

the EA to protect the identity of each voter. Note that the EA already is responsible for

protecting privacy in existing systems: For paper based systems, the election authority is

charged with protecting the paper ballots, all of which contain identifying marks (finger

prints, write-ins, etc). For both paper based and digital systems, we expect the EA to keep

cameras and other recording devices out of the polling area.

4.2 Assumptions

We assume that all hardware used is benign. This assumption can be enforced by

nondeterministically choosing which computer to use: assuming a list of computer stores

within 50 miles of the EA. The EA will randomly choose what store and machine from that

store to use, bring it back to the EA, and (optionally) destroy that machine after it is used.

This assumption is more difficult in an implementation that does not use commercial of

the shelf (COTS) computers. In that situation, we assume that members of the EA or their

delegates have ample time to inspect the device for a malicious of hardware or a malicious

bios and are able to correct such problems before use.

We assume that a majority, or the threshhold set by the EA, of trustees are honest.

This assumption follows from our threshhold requirement. If a majority of the trustees

are dishonest, then they can release information to decode receipts. We also assume that

trustees do not trust each other.

We minimize our assumptions on the EA’s ability to protect the system and the data

coming into and out of the system. We assume that the EA is able to transfer ballot in-

formation confidentially to the printer and delete it appropriately, but we do not assume

51

that any storage necessary between meetings of the EA can also be kept confidential. The

difference here is subtle. In the first assumption, two election officials of opposing inter-

ests are able to prevent each other from leaking information. By contrast, in the second

assumption, storage needed between meetings might be stored in a lock or safe, and may

not be always be guarded such that all individuals are prevented from accessing the data

until the next meeting. Thus, the more general assumption is that the EA will be able to

protect data for short periods of time, but not longer than for one day.

These assumptions are important in the realization of our architecture. In the next

section, we discuss the architecture of our system.

4.3 Architecture

There are two major components of our trusted workstation: a bootable operating

system on write-protected storage, and software to be run on the system that enforces the

threshhold requirement. Running the system on write-protected media is necessary for

the system to support validation. Each trustee needs to know that the correct software is

running, so our proposed solution is that each trustee separately use the data made publicly

available to load it onto bootable media independently and bring it with them to be checked

at the trustee meeting. Once there, they can compare the media to make sure they have all

brought the correct software, and randomly choose which copy to use.

The next section explains the properties of the bootable operating system. After that,

we discuss the responsibilities of the software and its five major tasks: Software Validation,

Key Generation, User Contributed Secret Sharing (UCSS), Management of Public/Private

Data, and Creation of a Signed Audit Log.

52

4.3.1 Bootable Operating System

The bootable operating system must be able to run the software and must be able

to detect video hardware on any computer on which it is run. It cannot save any settings,

because it must run off of a write-protected storage device. A modified LiveCD distribution

as described in A could be used for this purpose.

Unfortunately, such a solution creates problems for software validation. Trustees need

to check each copy of the software with their own copy. This process requires a CD drive

for each trustee, or that the software check all the other trustees software one CD at a time.

Additionally, different CD writing software might create small changes on the disks. Thus,

we propose usage of a USB drive with a write-protect switch. We prefer USB drives in

favor of recordable CDs for several other reasons:

1. USB drives are reusable, so they have less impact on development and testing.

2. USB drives give us flexibility to allow other drives to be used for output produced by

the core engine and an audit log.

3. USB drives are generally faster than CD ROM drives, and there is no worry of the

drive spinning down during use.

4. Most computers come with multiple USB ports; this is not the case with CD ROM

drives.

4.3.2 Software Tasks

The software runs automatically after the operating system boots and user interface is

loaded. After loading, it will perform operations in the following order:

1. Software Validation

53

(a) Request all removable media to be tested be inserted

(b) Hash and compare all removable media, report results

2. Request Public/Private Data Storage Locations

3. User Contributed Secret Sharing

(a) Gather Usernames/Passphrases

(b) Generate or Retrieve Necessary Public/Private and/or Secret Keys

(c) Save Public/Private and Secret Key Data, if necessary

4. Run Trusted Process

(a) Ensure required data exists for selected operation

(b) Run the appropriate piece of the Core Engine.

(c) Save data to preselected Public/Private Data Storage Locations

5. Sign Audit Log with Retrieved Private Key and save it to the Public storage location.

If Step 3 is not successful, it is impossible to perform election calculations, and im-

possible to produce a signed audit log. Software verification is performed multiple times,

but will only be reported once on the signed audit log because verification requires that the

computer be booted from different copies of the software. Last, if there are problems in any

of the sub-steps, the software should allow the users to repeat that step from the beginning.

While most of these steps are self-explanatory, there are two steps that stand out: 1

and 3. Software validation is the process we designed for trustees to verify that they have

all brought the same software with them to the meeting. User Contributed Secret Sharing

(UCSS) is a secret sharing system we developed to all trustees to bring their own entropy

with them to create and share a master key with a threshholding ability for later access of

that key. We describe each of these core contributions in the next two sections.

54

4.4 Software Validation

In order to perform the software validation participants will perform the following

actions:

1. Switch all of their disks to read-only.

2. Pick a participant’s media that has not yet been booted from and boot from it.

3. Plug in and hash all the other participant’s disks, verifying that all the hashes are

correct.

4. Return to Step 2 until there are no unbooted participant disks.

Unless all of the software is corrupt or the validation is compromised, this process

ensures that any malicious software is discovered before any protected operations are per-

formed or any sensitive data is entered into the system. If the software is found to be

corrupt, that trustee should have the option of getting a new copy or choosing to trust the

copy of another trustee.

4.5 User Contributed Secret Sharing

The UCSS step will produce or retrieve the public/private key pair and a secret key

that the engine software needs. The ”share” that each trustee brings with him is a user-

name/passphrase combination. All participants must be available the first time they meet.

Each subsequent time, if all the participants are present, the software will rerun the key

generation step. If the necessary threshhold is present, it will perform key retrieval (secret

sharing). The software determines which to use based on how many participants enter their

shares.

55

EH(user1,pass1)(c)
EH(user2,pass2)(c)
EH(user3,pass3)(c)
EH(user4,pass4)(c)
EH(user5,pass5)(c)
...

Table 4.1. Format of UCSS passwd file. E is the encryption function, H is the hash
function, and c is the public constant.

Entering Shares. Each of the participants enters a username and passphrase. If this

is not the first time they have met, each username and passphrase is checked against a

passphrase database. The passphrase database is an encryption of a public constant with

a key generated by a hash of their usernames and passphrases concatenated together. If

this check fails, an error is recorded in the audit log and that username and passphrase pair

are not included in any secret sharing or key generation. If this is the first time the group

has met, the public constant is encrypted using the hash of each username and passphrase

concatenated together. Before moving on to key generation, the software will save this file

in the Private storage directory chosen by the participants.

Key Generation and Retrieval. If all participants were present and their usernames

and passphrases are correct, or if this is the first time the group has met, then we perform

key generation as follows: All usernames are concatenated together, and all passphrases

are concatenated together, then the concatenation of usernames and passphrases are con-

catenated together. This value is then hashed, and the output of the hash is the secret key

which will be used by the engine. This value is also used to seed a Pseudo Random Number

Generator (PRNG) which is used to generate a Public/Private key pair. As an example, for

56

five users u1, ..., u5 with passphrases p1, ..., p5 and the hash function H , the secret key S is:

S = H(u1u2u3u4u5, p1p2p3p4p5) (4.1)

To store the keys, the software needs a threshold k set by the users. This value rep-

resents the difference between the number of participants n and the number needed to

regenerate a key S. We then encrypt our private key with our secret key. Finally, for each

subset of participants of size n − k, we hash the usernames and passphrases, and use that

to encrypt the master key. All of these encrypted keys are stored in a document describ-

ing what participants’ shares were used to encrypt that version of the key. To retrieve the

key, we determine what participants entered keys by their order in the passphrase file, de-

crypt the corresponding encrypted key from the file storing all possible encryptions, and

use our decrypted secret key to decrypt the private key. For example, if we have three users

u1, ..., u3 with passphrases p1, ..., p3, a threshhold value of k = 1, an encryption function

E and a hash function H , we will have the following encryptions of the secret key S:

EH(u1u2,p1p2)(S) (4.2)

EH(u1u3,p1p3)(S) (4.3)

EH(u2u3,p2p3)(S) (4.4)

4.5.1 Using Other Secret Sharing Schemes

Because the software validation protocol gives assurance that the correct software is

running, we could potentially use the validation scheme with any secret sharing scheme

such as those discussed in 2.2.6. To maintain the user contributed nature of the system, we

could use entropy provided by the trustees as the secret to be shared by any secret sharing

scheme, or as a seed to the random number generator that creates the shared secret.

57

If we used another secret sharing scheme, the only change from the trustee perspective

would be that each trustee would bring recordable media to the first meeting in order to

record his share of the secret. He is then responsible for keeping that media safe and

bringing it to subsequent meetings.

One way to help keep shares from being stolen from trustees might be to use each

trustee’s passphrase information to encrypt the share on his media. However, if left unen-

crypted, simply producing enough of the shares would be enough to perform operations,

and no passphrase would be necessary during subsequent meetings.

The advantage of an alternate scheme are space efficiency. As we discuss in 4.6, our

scheme is simple to implement, but it requires much more storage than other secret sharing

schemes. Our scheme also has a significant advantage because it needs no physical token,

which could be lost or stolen in a traditional secret sharing scheme.

4.6 Analysis

The software validation protocol in tandem with the secret sharing scheme offer sig-

nificant protection of the underlying Punchscan voting system. Defeating them requires a

high level of technical sophistication.

4.6.1 Defeating the Secret Sharing

The security of the secret sharing scheme relies on the ability of each trustee to keep

his passphrase a secret and the properties of the cryptographic functions used in the system.

If enough of the trustees cannot keep their passphrase secret the scheme can be defeated.

Likewise, if one of the cryptographic functions has a defect, it may also allow an attacker

who gains access to the storage device to defeat the system.

The most significant weakness with regard to the cryptographic functions is that the

58

constant value must be known. This knowledge allows an attacker to perform known plain-

text known ciphertext attack on the encryption function. If an attacker succeeds at this

attack, he will know H(username, passphrase) and must additionally break the hash

function to reveal the passphrase. To completely defeat the system, he must perform this

attack on the minimum threshhold number of stored pass phrases required by the system.

Alternatively, an attacker may brute force attack the system. Using a secure hash and

encryption function like this scheme only introduces a linear amount of extra work over

using a cryptographic hash only. The scheme does, however, protect against weaknesses

that may be present in the hash function because the output of the hash function is not

shown to the attacker.

Using an alternate secret sharing scheme as explained in 4.5.1 would avoid these prob-

lems but would create others. It would rely on the ability of a trustee to protect a physical

device, and the data represented on that device could be copied without knowledge of the

trustee. Encrypting with the original trustee password would be sufficient protection from

this threat.

4.6.2 Defeating the Software Validation

The software validation could be defeated by a slight of hand magician or special

hardware. We minimize the impact by permitting situations in which the hardware used

can be chosen at random, and each trustee handles his own media brought to the meeting.

Additional procedural safeguards could be used by the EA.

4.7 Discussion

Unfortunately, the software validation strategy can be rather tedious and slow, espe-

cially if there are a lot of participants, but there are ways that it could be sped up:

59

1. A ”fast check” mode, in which a statistically significant portion of the drive (instead

of the entire drive) is randomly tested to ensure a certain probability of finding a bad

byte.

2. Faster USB drives or improved bus speed.

3. Hardware support for machines with multiple processors or other hardware that pro-

vides performance enhancements.

4. A compact linux distribution. We could reduce the size of our bootable USB drives

to between 50 and 100 megabytes, making the validation process very fast.

The secret sharing scheme is far from space efficient requiring
(

n
n−k

)
copies of the

key, but it does allow us to achieve the following properties:

1. It is a threshold secret sharing scheme.

2. We can detect which participant was cheating, not just that cheating has taken place.

3. Each participant brings his own share and contributes to the key generation process.

4. The keys are regenerateable if the drive containing the encrypted passphrase file and

other data are lost or one less than the threshold value of participants is unable or

unwilling to produce their share.

5. Only one storage device needs to be utilized by the participants to depend on key

retrieval, if necessary. Most schemes would require k of the users to bring their

storage devices, we only require that they remember a username and passphrase.

60

Chapter 5

INDEPENDENT BALLOT SHEETS

In Punchscan [5, 25, 45], any entity with access to both ballot sheets can violate voter

privacy by recording the serial number and the permutations on each sheet. Inspired by

the concept of a binary weapon,1 we explore the idea to create a Punchscan ballot in the

polling place by separately combining independently printed ballot halves, each with a

separate serial number, with the hope of reducing required trust in the printers and thereby

enhancing ballot privacy.

We present a strategy that prints top and bottom ballot sheets at printers in different

geographic locations and keeps them separate until each voter selects, or is given, an arbi-

trary top and bottom sheet. Then, the voter combines the sheets to vote. An Independent

Ballot Sheet (IBS) ballot is illustrated in Figure 5.1.

Traditional Punchscan ballot sheets can be printed separately, but polling places must

match the serial numbers on the top and bottom sheets when they give the sheets to each

voter. Instead of printers, the workers who combine the sheets become the entity capable of

violating voter privacy, because they must match up the serial numbers on the top and bot-

tom sheets. This matching process also adds other forms of overhead: the separate printers

should print and package the sheets in the same order, election officials must coordinate

1In a binary chemical weapon, two chemicals are separately stored, each safe by itself. Only when com-
bined do these two ingredients form a dangerous substance.

61

FIG. 5.1. IBS Ballot. Ballot sheets in the IBS punchboard do not have the same serial
numbers and can be combined arbitrarily.

62

with the printers to make sure the top set and bottom set of sheets are sent to the same

polling place, and extra manpower is required to combine the sheets.

In both systems, after marking a two-sheet ballot, the voter destroys one of the sheets.

In Punchscan IBS, the serial number of the destroyed sheet is copied onto the surviving

sheet. For ballot privacy, in both systems it is important that an adversary cannot determine

the random permutations on the destroyed sheet.

If each ballot sheet is packaged such that serial numbers are shown without revealing

the contents of the sheet, then the privacy properties of Punchscan IBS with separate print-

ers and traditional Punchscan with separate printers are similar, but Punchscan IBS offers

greater simplicity and flexibility in printing and distributing ballots. Punchscan IBS also

has a greater resistance to disruption than what can be accomplished in the original system.

Mistakes in shipping do not necessarily cause problems in IBS, so long as there are some

top and bottom sheets available. Additionally, in the event of a ballot shortage, poll workers

can create more valid Punchscan ballots using a copier machine.

5.1 PageScan

Fisher [24] was the first to explore changing the Punchscan system to support combin-

ing top and bottom sheets with independently chosen serial numbers with his proposal of

PageScan. We found PageScan to have a ballot privacy flaw and some inefficiencies when

compared with IBS. IBS can be thought of as an improved continuation of Fisher’s work,

and this section explains PageScan to give the reader better understanding of IBS.

5.1.1 The PageScan Protocol

PageScan uses a similar structure to the Punchboard which Fisher calls the PageBoard.

The complete, unredacted form of the PageBoard in shown in Figure 5.2. The format of

63

FIG. 5.2. Complete PageBoard. An unredacted form of the PageBoard which illustrates
the computations performed by the Trustee Workstation to decode a ballot in which two
sheets of different serial numbers were arbitrarily combined. The column of the discarded
sheet lists the mark position, it is then process through the table and the intermediary result
is published next to the receipt sheet.

the PageBoard is similar to that of the Punchboard, with the exception that the top sheets

and bottom sheets of the ballot each share their own table, and the ID number each sheet is

paired with is entered into the bottom column for the top sheet table, and the top column

for the bottom sheet table. The operations and auditing processes of the PageBoard are also

very similar to those of the Punchboard.

Processing of a ballot through the PageBoard works as follows:

1. The ID number of the discarded sheet is copied to the receipt sheet and the relation-

ship between the two sheets is placed into the system.

2. The marked position is entered into the Mark column in the row of the discarded

sheet for each ballot.

3. The values entered into the Mark column are then processed through the Decode

table and published in the 1/2 column in the Results table.

64

FIG. 5.3. Audited PageBoard. The audited punchboard is what is shown to the public
after auditors make their selections to reveal parts of the ballot decoding process.

4. The values in the 1/2 column in the Results table are copied to the 1/2 column in the

Print table in the row corresponding to the receipt sheet.

5. The values in the 1/2 column of the Print table are processed through the Decode

table a second time and Results are calculated.

Auditing in the PageBoard works the same way as it did in the Punchboard as de-

scribed in Chapter 3. After results are posted, auditors make their selections between the

left or right halves of the Decode table for each row, and the operation performed is re-

vealed, then anyone can check to make sure the operation performed matches the result

posted in either the intermediate or results columns. The PageBoard is only different in

that ballots are processed twice through the table, and the 1/2 column serves as a result

column for auditing the first time through the table.

65

FIG. 5.4. Pre-Election. The Punchboard after the pre-election audit. The data in half of
the rows are posted so the public can verify that the Punchboard is well-formed.

5.1.2 Breaking Ballot Privacy in the PageScan PageBoard

The problem with ballot privacy in PageScan is that the receipt reveals all information

necessary to decode it via the table. Thus, by publishing the 1/2 result next to the receipts,

we can combine these two pieces of information and the ID of the discarded sheet in order

to determine the vote on that receipt.

In order to fix this problem, The decryption should be done in the opposite way by

posting the marks next to the receipt row, decrypting, and posting the result next to the

discarded sheet. Observe, however, that decryption of the receipt is unnecessary. Alter-

natively, we can combine receipt information and the mark position together and include

it while decoding the discarded sheet. This action is similar to what is done in the IBS

punchboard.

5.2 The Independent Ballot Sheet Punchboard

We now present a modification of Punchscan to support Independent Ballot Sheets

(IBS) and show that our method allows us to maintain auditing and integrity properties that

66

are at least as strong as those in traditional Punchscan. Our modification does not change

the way people vote, but it does require the sheets to be combined in the polling booth and

that the serial number of the destroyed sheet be recorded onto the receipt. It also changes

the way the Punchboard is structured and used, and the meaning of its tables.

In the original system, both the Print and Decrypt tables had combined sheets repre-

sented in each row, but now each row represents a single half-sheet. The structure of the

Punchboard Decrypt (D) and Results (R) tables remain the same, but the Print (P) table

changes and the number of rows in all of the tables are doubled. The new P table has 4

columns. The first column, P1, records letter order on either a top or bottom sheet. P2

records the position marked by the voter after if that sheet is taken by the voter as a receipt.

P3 records the sheet that the current sheet was paired with when it was used. P4 records

the mark position after the value in the receipt, P1, is removed from the recorded mark

position, P2.

To generate the Punchboard, let n be the number of ballots that will be available for

voters. The election authority (EA) then generates 2n virtual top pages and 2n virtual

bottom pages and puts them in the P table. For simplicity, we will assume the top pages

are in the first rows of the P table (positions 1 to 2n, therefore having serial numbers

from 1 to 2n) and the bottom pages are in last rows (positions 2n + 1 to 4n, therefore

having serial numbers from 2n + 1 to 4n). The EA creates a D table where each row will

correspond to a row in P . Therefore half of the rows in D will correspond to top pages and

the other half to bottom pages. The EA commits to the rows that this creates, just as in the

previous punchboard. The rows in D are then shuffled and the commitments to the rows

are published.

Pre-Election Audit. Figure 5.4 illustrates the pre-election audit. In the pre-election

audit, the auditors choose n top sheets and n bottom sheets from the P table. The election

authority opens the rows in P and the corresponding rows in D. Anyone can check the

67

FIG. 5.5. Results. The Punchboard after results are posted. Half of the Mark, Interme-
diate, and Results columns are populated to give unaudited results of the election. Note
that sheet 003 was paired with sheet 005, and the number 5 appears in the paired top col-
umn. Likewise, sheet 008 was paired with top sheet 001, and it appears in 8’s paired sheet
column.

commitments and the fact that P1 = D2⊕D4 (⊕ meaning the commutative composition

operation), i.e. that the value to be printed matches the sum of the two inversions. This

slightly altered process produces the same result as before, with half of the possible number

of ballots being discarded to verify that the Punchboard is well-formed.

Posting Results. At this point, the ballot pages are printed and any top page can be

combined with any bottom page. The voting procedure is the same as before. In addition

to the voter marks and the serial number, the receipt must also contain the serial number

of the sheet it was paired with that has been destroyed. We could do this by not destroying

the serial number of the destroyed sheet, or by copying the serial number to the receipt and

signing it for authenticity.

Now we have a correspondence between the receipt P1 and the sheet it was paired

with, P3. The receipt the voter took home is revealed by P1, and the discarded sheet serial

number is P3. P4 represents the ballot only taking the destroyed sheet into account. That

is, P4 = P2⊕ P1 for each row in P with a populated P2. For example, if the mark is left

68

FIG. 5.6. Post-Election Audit. The Punchboard after the post-election audit. Data to the
left or right of the Intermediate Position of the Decrypt table are revealed to audit the results
of the election.

and the receipt is an inverting page, the P4 column contains a right mark. Once the receipts

are published, anyone can compute P4, as illustrated in Figure 5.5. Also during this time,

the EA computes D3 and R, filling in the Intermediary and Results values. Note that when

counting, D1 now points to the value in P3, not P1 as in the pre-election audit.

As before, each voter is able to verify her ballot is included in the tally and is well-

formed, and everyone is able to verify that P4 was computed correctly and that the revealed

data match commitments.

Post-Election Audit. Figure 5.6 illustrates the post-election audit. The figure shows

selected row halves of either the two columns left or right of D3 being posted. In the actual

method, where multiple D tables are published, the entire columns to the left or right are

posted. The post-election audit remains virtually unchanged from the original scheme. The

major difference is that the audits reveal information that is not necessarily needed to verify

integrity of the system because that information is revealed in the results phase when receipt

values are posted. This information is denoted by the blank mark in the intermediate and

results cells in the tables.

69

5.3 Analysis

The primary innovation of IBS is that it enables complete ballot information to be

stored in separate places until the voter combines the two sheets to vote. It accomplishes

this without requiring tracking of a corresponding sheet by election officials, and offers

several advantages and disadvantages.

5.3.1 Privacy

In the original system pages are printed and stored in the same location. If an attacker

gains access to the ballots he can violate voter privacy as he can access both sheets of the

ballot. The separation of the ballot sheets until the voter combines them in IBS means

an attacker must intercept both sets of sheets to violate privacy. If he intercepts only one

set, he has a 50% chance of violating privacy, and this offers a privacy advantage over the

original system.

With special packaging and tracking of the sheets, the original system could poten-

tially use independent printers as IBS does. In this case, our modification has a similar

effect on voter privacy as the original system. To see the differences, consider the follow-

ing three cases:

1. Punchscan with 1 printer.

2. Punchscan with 2 printers.

3. IBS with 2 printers.

In Case 1, ballot sheets are created, printed, and stored together. If any of these sheets

are compromised, an attacker knows the information on both sheets and can determine the

meaning of marks on any receipt. Cases 2 and 3 offer a distinct advantage. By separately

70

printing the top and bottom sheets, if the voter takes home an uncompromised sheet, the

attack does not succeed. On the other hand, a coercion attack may still work if the victim

is unwilling to risk that the coercer has compromised the correct sheet. Case 3 provides

some extra flexibility over case 2 yielding a marginal advantage, because there is no need

to ensure that matching ballot serial numbers are combined.

5.3.2 Reliability and Logistical Properties

IBS has several rreliabilityand logistical advantages over the original system when

using independent printers. It does not require a packaging where the serial number is

visible but the rest of the sheet is not. Thus, packaging can be done in bulk, and voters,

instead of being given two pre-matched sheets, can pull a sheet out of two separate piles of

ballots.

Election officials may easily arrange for different printers to print various top or bot-

tom sheets. The more printers used, the less likely an attacker will be able to conduct a

targeted attack because he will not be able to ensure that the target voter will receive and

choose to destroy a ballot sheet that they have compromised. Additionally, IBS does not

require election officials to predetermine what serial numbers are sent to specific polling

places, only that they specify how many sheets and of what type to send.

Shipments of ballots do not need to be labeled with what serial numbers are contained

in the shipment. Likewise, mistakes in shipping do not necessarily cause a disruption. A

polling place sent incorrect serial numbers or missing some sheets of a certain type can

continue to operate as long as they have sheets of both types available.

Creating New Ballots On Demand One possibility of IBS is that it can enable poll

workers to create new ballots with a copier machine, but use of this ability can drastically

affect the privacy of the system. In the original system, if the number of voters exceeds the

71

number of available ballots poll workers must contact nearby polling places or the election

trustees to get more ballots. This situation can potentially turn into a denial of service

problem because extra ballots may not be available, it may take too much time to deliver

the extra ballots, or new ballots may need to be created in an additional meeting of the

election trustees.

To create new ballots, poll workers will choose groupings of i public and j private

sheets. The public sheets will become receipts, and the private sheets will be destroyed.

For each of the j private sheets, election officials make a copy of each public sheet and pair

it with a copy of the private sheet. This process creates i∗ j new ballots, or, in other words,

i ballots for each private sheet. As the copied pages will not have the required drilled holes,

voters must look at the private sheet, and appropriately mark the public sheet.

To count these copied ballots, extra rows must be added to the P , D, and R table

for each unique top and bottom sheet pair. Essentially, they must be copies of the row for

the private sheet that was destroyed. The D table can, optionally, be recomputed which

maintains the privacy set of the system. If rows are simply added without the entire table

being recomputed the hashes must be uniquely keyed for each row. This affects the privacy

set by reducing it to the number of public sheets that were attached to the paired private

sheet in the table.

Unfortunately, this process has significant drawbacks. Most significant is that the

poll workers must violate the privacy of the system and now become a trusted part of

it. Revealing data on one private sheet would violate the privacy of several voters. Poll

workers would also control what sheet is chosen, and a voter would no longer have the

opportunity to observe the selection process as before. The process is also prone to error,

although we think that with proper directions and training, it could be feasibly performed

by team of poll workers.

In a traditional optical scan system, one poll worker can take a ballot and make an

72

unlimited number of copies. Creating new ballots in IBS, while possible, is more compli-

cated than this process and can only create i ∗ j new ballots. However, it is still feasible.

Creating new ballots from a set of 100 top and bottom sheets can create up to 10, 000 new

ballots. By contrast the original system can only provide a traditional optical scan ballot to

handle this problem.

5.3.3 Printing

Punchscan IBS prints on one sheet of paper at a time, creating some challenges and

benefits. In the original system, tolerance for aligning the sheets must be very low to avoid

printing bottom sheet information on the top sheet. Printing the sheets separately eliminates

this possibility. The tolerance is higher in IBS, but using different printers increases the

chance of printing errors that produce unusable ballots. On the bottom sheet, too much

skew can misalign letters from their corresponding top sheet holes.

The need to package each sheet separately increases cost. At the same time, cost is

marginally reduced by not having to fold the sheets as is done in the original system. Also,

feeding one sheet is more reliable than feeding two sheets into the printer.

Again, the traditional system can achieve some of these benefits if it, too, uses inde-

pendent printers, but in IBS it does not matter what order the ballots are printed. This gives

IBS a distinct advantage. In the traditional system, the ballots would have to be printed and

packaged in order. IBS is not disrupted if a printer skips ballots, but the traditional system

would cause some confusion at the polling place when workers tried to match up serial

numbers. This feature also enables printers to purposefully print and ship their sheets at

random.

73

5.3.4 Usability

The ballot sheets must be combined, and the serial number of the destroyed sheet

must be copied over to the receipt. In the original system, the ballot sheets are already

joined and each sheet has the same serial number. If the original system uses independent

printers, then the paired sheets must be combined according to their serial number. IBS

offers a slight advantage in this case, because poll workers and voters do not need to make

sure that the serial numbers match.

Combining the ballots and ttransferringthe serial number to the receipt sheet do cause

additional complexity. We believe that there is no reason it cannot be done in a mechani-

cally robust way. For example, the serial numbers could be perforated such that they could

easily be removed and stapled or glued to the receipt sheet. Combination of the sheets could

be aided with a special clipboard similar to the one currently being used in the Punchscan

system that holds the sheets in place for voting [5].

5.3.5 Other Properties

IBS has two minor properties that are different from the original system. First, it

doubles the number of rows in every table of the original system, and adds two columns.

However, the auditing and privacy properties of the original scheme are maintained.

Second, the change to a single permutation per row of the table closely resembles the

single permutation operations of SureVote [15] and Prêt à Voter [17]. These similarities

show how the Punchboard could be used interchangeably with these systems.

5.4 IBS in Context

IBS enables election officials easily to print the top and bottom sheets separately,

complicating attacks on ballot privacy. By contrast, such a printing strategy is not possible

74

with Prêt à Voter because it has only one sheet.

Other variations to Punchscan might also be worth investigating, including printing

ballots at each polling place and using a three- or four-sheet ballot.

Printing ballots in advance, however, increases reliability and permits voters to daub

their ballots even if all electronic equipment fails on election day. A three-sheet ballot

would enable even greater distribution of printer trust but complicate a system already

considered by some to be moderately complex.

Punchscan IBS exploits Punchscan’s two-sheet ballot to permit distributing trust

among multiple printers more easily than in traditional Punchscan. More field testing is

required to gauge how well voters and election officials will handle this high-integrity vot-

ing system.

75

Chapter 6

CONCLUSION

Punchscan provides many desireable properties for a voting system. However, like

any system, it makes certain assumptions that may require a separate system or security

measures to guarantee. We have outlined these situations and provided novel solutions

to these assumptions in the Punchscan system. Our final discussion summarizes these

contributions and discusses some open problems.

6.1 Summary

This document has established that Punchscan makes two key assumptions that need

to be addressed to ensure adequate system privacy. Most unrealisticly, it does not address

the security around printing and transporting ballots to polling sites. It simply assumes that

these things can be done securely, and we have explained how they can be done through

various procedural protections and by expanding Punchscan to support them. Punchscan

also assumes that election trustees will use a workstation with unique requirements, requir-

ing us to design a novel new system to support it’s requirements. These ideas are more

useful if they can be used outside of the Punchscan system.

76

6.2 Discussion

The trusted workstation provides two simple yet interesting ideas stemming from

the unique requirements of the Punchscan workstation. The software validation routine

presents an acceptable way to validate software on benign hardware. It is hard to imagine

where else such a validation system might be used, but we think it could be useful in digi-

tized gambling applications like a poker dealer. Currently, players must trust such a dealer

to fairly deal out cards, but the software validation routine might make such a system more

acceptable to players and avoid the possibility of a fraudulent dealer.

UCSS is unique in that it is, as far as we know, the first system to do secret sharing

without a dealer. Inherently, such a system requires a trusted workstation, because some-

thing must protect the participants from seeing the generated secret key. This requirement

is fundamentally different from traditional secret sharing, where the key is never seen by the

participants until it has been computed in a group computation. We predict that it could be

useful for seeding a secure random number generator, or for other systems like Punchscan.

As far as we can tell, the IBS modification of Punchscan, in an of itself, is not partic-

ularly applicable to a situation besides voting. However, it does make Punchscan simpler,

and provides a deeper understanding of how and why Punchscan works.

6.3 Open Problems

For all that Punchscan provides, it ignores Registration issues which are a critical part

of any voting system. Without an accurate registration system to authenticate legitimate

voters, election officials cannot prevent multiple voting, ballot stuffing, and other problems.

While any registration system could be used, the protections in Punchscan could facilitate

a registration system with much stronger properties. For example, it would be useful, if a

mistake is found, to have the ability to take votes out of the final tally.

77

It is not clear that Punchscan, or any system, could ever fully avoid the problems it

encounters with ballot printing. This problem is fundamental to cryptography. Each voter

needs to receive the information necessary to hide his or her choices. While using a public

key approach to encrypt votes can avoid this problem, it would be very useful if this could

be accomplished without the help of a machine by using a paper ballot like the one that

Punchscan provides.

The ballot format is unique to Punchscan. It may be too hard for voters to understand

and effectively use. While the format can be changed, this also changes the security prop-

erties and protections of the system. More study is needed to say if this new ballot format

is beneficial to voters.

6.4 Final Thoughts

The acceptance and use of Punchscan, or any system like it, depends on the security,

usability, and completeness of the system. Punchscan still needs some usability improve-

ments, but it offers advantages that seem impossible to many people.

With an improved user interface and a registration system Punchscan would be an

ideal voting system. Punchscan is laying the foundation for a very bright and promising

future, and it will not be long before it or a system based on similar ideas becomes popular.

78

Appendix A

HOW TO BUILD A CUSTOM LINUX LIVECD

N.B. Most of this information is a compilation of [1], [2], and [6].

1. Mount/Load the Kubuntu 6.06 LiveCD.

2. Copy the ”casper” and ”preseed” directories to your working directory.

sudo -s

mkdir livecd

cp -r /media/cdrom/casper livecd/

cp -r /media/cdrom/preseed livecd/

cp /media/cdrom/md5sum.txt livecd/

3. Create a 2 gigabyte ext2 filesystem image and mount it.

sudo dd if=/dev/zero of=ubuntu-fs.ext2 bs=1M count=2147

sudo mke2fs ubuntu-fs.ext2

mkdir ubuntu-fs

mount -o loop ubuntu-fs.ext2 ubuntu-fs

79

4. Mount the squashfs filesystem:

mkdir squash-fs

mount -o loop,ro livecd/casper/filesystem.squashfs squash-fs

5. Copy the data from the compressed system to the 2 gig partition and unmount the

squashfs filesystem.

cp -a squash-fs/. ubuntu-fs/

umount squash-fs

6. Chroot to the directory, remove all unnecessary things (openoffice, games, etc).

cp /etc/resolv.conf ubuntu-fs/etc/

cp /etc/host.conf ubuntu-fs/etc/

mount -t proc -o bind /proc ubuntu-fs/proc

chroot ubuntu-fs /bin/bash

7. Note: steps involving ubuntu package management are not being covered here. Also,

be sure to include the JRE, the PEW, and edit the JRE Security such that the PEW

will run (you may also want to check this by trying to run a meeting.) When finished,

cleanup.

rm ubuntu-fs/etc/resolve.conf

rm ubuntu-fs/etc/host.conf

dd if=/dev/zero of=ubuntu-fs/tmp/tmpfile

rm ubuntu-fs/tmp/tmpfile

80

umount ubuntu-fs/proc

8. Update the filesystem manifest.

chroot ubuntu-fs dpkg-query -W –showformat=’${Package} ${Version}\n’

\

> livecd/casper/filesystem.manifest

9. Create the new squashfs, and update md5sums.

mv livecd/casper/filesystem.squashfs ./filesystem.squashfs.bak

mksquashfs ubuntu-fs livecd/casper/filesystem.squashfs

umount ubuntu-fs

cd livecd

find . -type f -print0 —xargs -0 md5sum — tee md5sum.txt

10. Mount the initrd to get the LiveCD scripts to use your USB Drive.

mkdir initrd.dir

cp livecd/casper/initrd.gz .

gunzip initrd.gz

mount -o loop,rw initrd initrd.dir

11. Edit the file initrd.dir/scripts/casper to go from this:

case $fstype in

vfat—iso9660—udf)

81

To this:

case $fstype in

vfat—iso9660—udf—ext2—ext3)

12. Close and Save the initrd.

umount initrd.dir

gzip -n9 initrd

mv livecd/casper/initrd.gz ./initrd.gz.bak

cp initrd.gz livecd/casper/

13. Shred, zero out, and partition your USB drive with enough space on the first partition

to fit what you’ve created.

shred -n 1 -z -v /dev/sdb

dd if=/dev/zero of=/dev/sdb

fdisk /dev/sdb

mkfs.ext2 /dev/sdb1

mkfs.ext2 /dev/sdb2

...

14. Mount your drive and copy the livecd data over to it.

mount /dev/sdb1 /media/usbdisk

cp -a livecd/* /media/usbdisk

15. Install the bootloader to the usb drive.

82

grub-install –recheck –root-directory=/media/usbdisk /dev/sdb

16. Create /media/usbdisk/boot/grub/menu.lst to look like the following.

title Punchscan Engine Wrapper LiveUSB

root (hd0,0)

kernel /casper/vmlinuz boot=casper ramdisk size=1048576 root=/dev/ram

rw –

initrd /casper/initrd.gz

boot

17. Unmount the drive, and see if it boots. Copy the image to the other drives if it works

without issues.

dd if=/dev/sdb of=/dev/sdc

...

83

REFERENCES

[1] Customizing a (K)Ubuntu 6.04 Linux Live CD. http://www.atworkonline.

it/˜bibe/ubuntu/custom-livecd.htm, November 2006.

[2] Howto Install a Debian GNU/Linux system onto a USB flash thumbdrive.

http://feraga.com/book/export/html/25, November 2006.

[3] HP-UX Secure Shell Installation Directions. http://docs.hp.com/en/

T1471-90028/ch02s02.html, November 2006.

[4] Preventing Trojan Downloads. http://linsec.ca/syshardening/

trojandownloads.php, November 2006.

[5] Punchscan Website. http://www.punchscan.org/, November 2006.

[6] Ubuntu Forum post on getting the LiveCD to boot on a USB drive. http://www.

ubuntuforums.org/showpost.php?p=1221276&postcount=153,

November 2006.

[7] Using MD5 Checksums to Verify Open Office Software. http://www.

openoffice.org/dev_docs/using_md5sums.html, November 2006.

[8] BLAKLEY, G. Safeguarding cryptographic keys. Proceedings of the National Com-

puter Conference 48 (June 1979), 313–317.

[9] BOWEN, D. California Secretary of State Top to Bottom Review. http://www.

sos.ca.gov/elections/elections_vsr.htm, August 2007.

[10] BRASSARD, G., CHAUM, D. L., AND CREPEAU, C. Minimum Disclosure Proofs of

Knowledge. Journal of Computer and System Sciences 37 (1988), 156–189.

84

[11] CHAUM, D. Secret-ballot systems with voter-verifiable integrity. United States Patent

and Trademark Office, 7,210,617, January 2003.

[12] CHAUM, D., VAN DE GRAAF, J., RYAN, P. Y. A., AND VORA, P. L. High Integrity

Elections. Cryptology ePrint Archive, Report 2007/270, 2007. http://eprint.

iacr.org/.

[13] CHAUM, D. L. Untraceable electronic mail, return addresses, and digital

pseudonyms. Commun. ACM 24, 2 (1981), 84–90.

[14] CHAUM, D. L. Blind signatures for untraceable payments. Advances in Cryptology

(1983), 199–203.

[15] CHAUM, D. L. Secret-Ballot Receipts: True Voter-Verifiable Elections. IEEE Secu-

rity and Privacy 02, 1 (2004), 38–47.

[16] CHAUM, D. L., CRÉPEAU, C., AND DAMGARD, I. Multiparty unconditionally se-

cure protocols. In STOC ’88: Proceedings of the twentieth annual ACM symposium

on Theory of computing (New York, NY, USA, 1988), ACM Press, pp. 11–19.

[17] CHAUM, D. L., RYAN, P. Y., AND SCHNEIDER, S. A. A Practical, Voter-verifiable,

Election Scheme. Technical Report Series CS-TR-880, University of Newcastle Upon

Tyne, School of Computer Science, December 2004.

[18] CHOR, B., GOLDWASSER, S., MICALI, S., AND AWERBUCH, B. Verifiable Secret

Sharing and Achieving Simultaneity in the Presence of Faults (Extended Abstract).

In 26th Annual Symposium on Foundations of Computer Science (Portland, Oregon,

21–23 1985), IEEE, pp. 383–395.

[19] CNN.COM. Butterfly ballot cost Gore White House. http://archives.cnn.

com/2001/ALLPOLITICS/03/11/palmbeach.recount/, March 2001.

85

[20] COMMISSION, U. S. E. A. Voluntary Voting System Guidelines. http://eac.

gov/vvsg_intro.htm, December 2005.

[21] ELGAMAL, T. A Public-Key Cryptosystem and a Signature Scheme Based on Dis-

crete Logarithms. IEEE Transactions on Information Theory 31, 4 (1985), 469–472.

[22] ESSEX, A., CLARK, J., CARBACK, R., AND POPOVENIUC, S. The Punchscan vot-

ing system: VoComp competition submission. In Proceedings of the First University

Voting Systems Competition (VoComp) (2007).

[23] FELDMAN, A. J., HALDERMAN, J. A., AND FELTEN, E. W. Security Analysis of

the Diebold AccuVote-TS Voting Machine. http://itpolicy.princeton.

edu/voting/ts-paper.pdf, September 2006.

[24] FISHER, K. Punchscan: Security Analysis of a High Integrity Voting System. Mas-

ter’s thesis, Department of Computer Science and Electrical Engineering, University

of Maryland, Baltimore County, December 2006.

[25] FISHER, K., CARBACK, R. T., AND SHERMAN, A. T. Punchscan: Introduction

and System Definition of a High-Integrity Election System. In Preproceedings of the

2006 IAVoSS Workshop on Trustworthy Elections (WOTE 2006) (Robinson College,

Cambridge, United Kingdom, 2006), International Association for Voting System Sci-

ences.

[26] FUJIOKA, A., OKAMOTO, T., AND OHTA, K. A Practical Secret Voting Scheme

for Large Scale Elections. In ASIACRYPT ’92: Proceedings of the Workshop on the

Theory and Application of Cryptographic Techniques (London, UK, 1993), Springer-

Verlag, pp. 244–251.

[27] FUND, J. How to Steal an Election. City Journal 14, 4 (Autumn 2004).

86

[28] GARDNER, R., YASINSAC, A., BISHOP, M., KOHNO, T., HARTLEY, Z., KERSKI,

J., GAINEY, D., WALEGA, R., HOLLANDER, E., AND GERKE, M. Software Review

and Security Analysis of the Diebold Voting Machine Software. Tech. rep., Security

and Assurance in Information Technology Laboratory, Florida State University, Tal-

lahassee, Florida, July 2007.

[29] HOSP, B., AND VORA, P. L. An Information-Theoretic Model of Voting Systems. In

Preproceedings of the 2006 IAVoSS Workshop on Trustworthy Elections (WOTE 2006)

(Robinson College, Cambridge, United Kingdom, 2006), International Association

for Voting System Sciences.

[30] JAKOBSSON, M., JUELS, A., AND RIVEST, R. Making Mix Nets Robust For Elec-

tronic Voting By Randomized Partial Checking. In Proceedings of the 11th USENIX

Security Symposium (San Francisco, CA, USA, 2002), Usenix Assoc., pp. 339–353.

[31] JONES, D. W. Chad – from waste product to headline. http://www.cs.uiowa.

edu/˜jones/cards/chad.html, January 2002.

[32] KARLOF, C., SASTRY, N., AND WAGNER, D. Cryptographic Voting Protocols:

A Systems Perspective. In Proceedings of the 14th USENIX Security Symposium

(August 2005).

[33] KENT, A. Unconditionally Secure Bit Commitment. Physical Review Letters 83, 7

(August 1999), 1447–1450.

[34] KIM, G. H., AND SPAFFORD, E. H. The design and implementation of tripwire: a

file system integrity checker. In CCS ’94: Proceedings of the 2nd ACM Conference

on Computer and communications security (New York, NY, USA, 1994), ACM Press,

pp. 18–29.

87

[35] KOHNO, T., STUBBLEFIELD, A., RUBIN, A. D., AND WALLACH, D. S. Analysis

of an Electronic Voting System, May 2004.

[36] LERER, L. Whose Polls Are Problematic? Forbes.com (November 2006).

[37] MENEZES, A. J., VAN OORSCHOT, P. C., AND VANSTONE, S. A. Handbook of

Applied Cryptography. No. 0-8493-8523-7. CRC Press, 1996.

[38] NAOR, M., AND SHAMIR, A. Visual Cryptography. Lecture Notes in Computer

Science 950 (1995), 1–12.

[39] NECHVATAL, J. Public-Key Cryptography. National Computer Systems Lab,

Gaithersburg, Maryland, April 1991.

[40] NEFF, C. A. Practical high certainty intent verification for encrypted votes., October

2004.

[41] NEFF, C. A. Verifiable mixing (shuffling) of El-Gamal pairs., October 2004.

[42] NEFF, C. A., AND ADLER, J. Verifiable e-voting. Tech. rep., VoteHere, 2003.

[43] OKAMOTO, T. Receipt-Free Electronic Voting Schemes for Large Scale Elections. In

Proceedings of the 5th International Workshop on Security Protocols (London, UK,

1998), Springer-Verlag, pp. 25–35.

[44] PAILLIER, P. Public-Key Cryptosystems Based on Composite Degree Residuosity

Classes. In EUROCRYPT (1999), pp. 223–238.

[45] POPOVENIUC, S., AND HOSP, B. An Introduction to Punchscan. In Preproceedings

of the 2006 IAVoSS Workshop on Trustworthy Elections (Robinson College, Cam-

bridge, United Kingdom, 2006), International Association for Voting System Sci-

ences.

88

[46] RABA INNOVATIVE SOLUTION CELL, R. Trusted Agent Report Diebold

AccuVote-TS Voting System. http://www.raba.com/press/TA_Report_

AccuVote.pdf, January 2004.

[47] RUBIN, A. Trusted distribution of software over the Internet. Symposium on Network

and Distributed System Security 00 (1995), 47.

[48] SALTMAN, R. G. The History and Politics of Voting Technology: In Quest of Integrity

and Public Confidence. Palgrave Macmillan, January 2006.

[49] SCIENCE APPLICATIONS INTERNATIONAL CORPORATION, S. Risk Assess-

ment Report Diebold AccuVote-TS Voting System and Process. http://www.

verifiedvoting.org/downloads/votingsystemreportfinal.pdf,

September 2003.

[50] SHAMIR, A. How to share a secret. Communications of the ACM 22, 11 (1979),

612–613.

[51] SHERMAN, A. T., GANGOPADHYAY, A., HOLDEN, S. H., KARABATIS, G., KORU,

A. G., LAW, C. M., NORRIS, D. F., PINKSTON, J., SEARS, A., AND ZHANG, D.

An Examination of Vote Verification Technologies: Findings and Experiences from

the Maryland Study, April 2006.

[52] SHERMAN, A. T., GANGOPADHYAY, A., HOLDEN, S. H., KARABATIS, G., KORU,

A. G., LAW, C. M., NORRIS, D. F., PINKSTON, J., SEARS, A., AND ZHANG, D.

An examination of vote verification technologies: Findings and experiences from the

maryland study, April 2006.

[53] STINSON, D. R. Cryptography Theory and Practice, 3 ed. Chapmand & Hall/CRC,

Boca Raton, FL 33487-2742, 2006.

89

REFERENCES

