Reprinted from

Information Processing Lefters 64 (1997) 239-244

An observation on associative one-way functions
in complexity theory
Muhammad Rabi!, Alan T. Sherman *?

Department of Computer Science and Eiecirical Engineering, Universiry of Muryland Baliimore County,
Baltimore, MD 21250, USA

Received 1 August 1997
Communicated by 5.G. Akl




T

Information
Processing
Letter

HSLE.CE

siew,

ELSEVIER

Information Processing Letters 64 {1997) 239-244 S —
el
WD
o An observation on associative one-way functions
mpg.d . .
e in complexity theory
37, USA

Muohammad Rabi’, Alan T. Sherman **

edu Department of Computer Science and Elecirical Engineering, University of Maryland Baltimore County,
Baltimore, MD 21250, USA

Y1 30D,
Received 1 August 1997
Communicated by 8.G. Akl
Abstract

We introduce the notion of associative one-way functions and prove that they exist if and only if P # NP. As evidence
mt@mimuw of their utility, we present two novel protocols that apply strong forms of these functions to achieve secret-key agreement
) of & pape N and digital signamres. © 1997 Published by Elsevier Science B.V.
ting & paper,

Keywords: Associative one-way functions (AOWFs); Computational complexity; Cryptology. Cryptography; Cryptocomplexity;
Cryptographic protocols; Digital signatures; Key-agreement problem; Secrei-key exchange; Theory of computation: Public-key

onditions apply
£ publisher and
5, resale, and ali
OOTH BEE.

A 01923, USA.
ottenham Courl
sermissions and

heir institutions.

sle of part of an

sans, electronic,

of otherwise, of

ntee or endofse-

erypiography

1. Introduction

Two fundamental properties from algebra and cryp-
tography are associativity (of functios application)
and one-wayness (of 2 cryptographic function). By
construction, we prove that functions that satisfy both
of these properties exist if and only ifP # NP

Let M be any message space; for example, a prac-
titioner might choose A = {0, 1}" for some positive
integer n. An associative one-wdy function (AOWE)
on M is any binary function o 1 M % M — A that
is both associative and one-way. Function o is asso-
ciative if, forall x, v,z € M, xo0(yoz) = {xcy)oz.
Intuitively, o is one-way if o is easy 10 compute but
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hard to invert. Throughout we work in a worst-case
complexity-theoretic framework for studying one-way
functions.

The idea of associative one-way functions is due
to Sherman, who proposed the concept in 1984 in
his exploration of relationships among algebraic
and security properties of cryptographic functions
[ 18,10]. Since worst-case models have little to do
with practical cryptology, our existence proof is
mainly of interest in complexity theory. Neverthe-
less, we expect that the intriguing AQOWE concept
will be shown to have many useful applications in
cryptography, possibly in the key-agreement protocol
suggested by Rivest and Sherman in 1984, and in
digital signatures as suggested by ®abi and Sherman
in 1993 [14].

The rest of this paper is organized in four sections.
Section 2 precisely defines the concept of an AOWE.
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Section 3 proves that AOWFs exist if and only if
P # NP. 5Section 4 presents two possible applica-
tions of a strong form of AOWFs - the aforemen-
tioned key-agreement and digital-signature protocols.
Finally, Section 5 surmumnarizes our conclusions and
lists several open problems.

2. ADWFs: Definitions

An associative one-way function (AOWE) is any
binary function that is associative and one-way. In this
section, we precisely define these structured functions.
Using a worst-case model, we say that a one-way func-
tion is any function that can be computed in polyno-
mial time but that cannot be inverted in polynomial
time.

Within our definitions, we shall deal exclusively
with binary functions on the infinite message space
& = {0,1}* of all finite binary strings. Let o :
S xS - & be any such function. We will denote
function application using infix or prefix notation (e.g.
xoy = o(x,y)). Throughout, unless otherwise stated,
all functions are total {e.g. domain(o) = & x &).
Although the definitions are straightforward, there are
some important technicalities (e.g. honesty require-
ment) and subileties (e.g. dealing with inverses and
partial functions). For any strings x,y € S, let |x|
denote the length (i.e. number of characters} of x,
and let x|y denote the concatenation of x and y.

To ensure that the difficulty of inverting an AQWF
not be caused simply by its input being much longer
than its output, we reguire every AOWF to be honest
in the following standard sense. ) ‘

Definition 1. Any binary funcriono : S x §— & is
honest if and only if there exists a polvromial p such
that, for every z € image(o), there exist x,y € &
such that x o y = z and |xf + |¥] < piz]).

Because we do not require that AOWFs be injective
{in fact, we prove they cannot be), we must explain

what it means to invert a non-injective function. By

inverting o we mean: given any z € image(o), find
any x,y € Ssuch that xoy = z.

Definition 2. Any binary function 0 : S x & — S is
one-way if and only if o is honest; o is computable in

polynomial time; and inverting o is not computable in
polynomial time, '

By associativity, we shall always mean associativity
of function application. Since we prove the existence
of partial AGWTFs, we need to extend the usual notion
of associativity to partial functions.

Definition 3. let 0 : §x & — & be any partial
binary function. We say o is associative if and only if
xo{yoz)={xoy)oz Ifoisiotal, we require this
equation to hold for all x, y,z € & Tf o is partal, we
require this equation to hold for all x,y,z € & such
that each of (x,7), (»,2), (x,yoz),and (x 0y, 2)
is an element of domain{o).

Combining Definitions 1-3 yields our definition of
an AOWE

Definition 4. Any binary functiono : § xS — S'is
an AOWF if and oaly if o is both associative and one-
way.

It is easy 1o verify that no AOWF is injective: given
any v,z € 8, if 0: 8 x & -» & is injective, then z o
{yoz)={(z0oy)oz implies that {y,z) and {z,¥)
are preimages of z.

As an example, we note that integer multiplication
over the large odd integers is a plausible AOWF: this
operation is associative and easy t¢ compute, and its
inverse problem - integer splitting — is believed to be
hard.

3. Existence proof

Strengthening a theorem of Selman [17, Propo-
sition 1], we constructively prove that AOW¥Fs ex-
ist if and only f P # NP, Under the hypothesis
P # NP, our main theorem proves the existence of
a partial AOWF. Our construction is based on the
computation tree of any polynomial-time nondeter-
ministic Turing machine that accepts any language
in NP — P. Given any NP-complete problem {e.g.
three coloring), and assuming P # NP, our con-
struction yields a concrete AOWFE. We also show
how certain AOWFs can be lifted to total func-
tions.
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iet A € NP — P be any language, and jet #f be
any NP-machine that accepts A. In his proof, Sel-
man constructs a one-way function as the inverse of
the function compy @ & — &, defined for any x €
S = {0,1}" as follows. f x € A, then comp,,(x)
is any accepting configuration of M on input x; oth-

erwise, comp,,(¥) = L. Intitively, comp;,’ is one- -

way because it is easy to traverse M’s computation
ree upwards but hard to traverse this tree downward.
In particular, it is hard to decide if x € A, To ex-
tend Selman’s Theorem to AOWFs, we modify the
comp function so that its inverse is a binary associa-
tive function. Qur modification is based on the as-
sociativity of the closest common ancestor relation-
ship. ’

Throughout, we assume that each nondeterministic
Turing machine writes its guesses on a separate tape,
so that the instantanecus descriptions of any two com-
putations along different nondeterministic paths are
unique.

Theorem 5. There exists a partial AOWF if and only
if P # NP.

Proof. (Necessity and sufficiency.) {=) Since every
ACWE is a one-way function, the proof follows from
Seiman’s Theorem.

{<=) Assume P # NP. Then there exists some lan-
guage A € NP — P. Let M be any NP-machine that
accepts A, and let Cpy denote the set of all configura-
tions of all computations of M. We will construct a
partial AOWEF as any inverse of the function acompy; :
Car — Ty =% Cpr, which we will now define.

First, for any x € Cyy, define the predicate @4 x) to0
be true if and only if there exist some string w € A and
some configurations v, y; € Cy in the computation
tree of M on input w such that x & {yp,»} and x is
the closest common ancestor of y; and y;. Then, for
any x € Uy, define

(3.7} i @p{x) is true,

A otherwise,

acompy(x) = { (1)

where {yp,¥) is any pair of configurations as de-
scribed in the definition of @ (x). It is possibie that
vy = . The symbol .| means undefined.

Mow, define the partial function f : Cpy X Cayy — O

. to be any inverse of acomp,,. We will prove that f is

honest; f isassociative; f is computable in polynomial
time; and f cannot be inveried in polynomial time.

Claim 1. f is honest.

We must show that there exists some polynomial p
such that, forall x € Cyy, lacompy, (x)] < p{|x]). This
ineguality holds for p being twice the running time
of A. It is true that M runs in polynomial time, and
no configuration can be larger than the time needed 1o
compute it. Thus, f is honest.

Claim 2. [ is associative.

Tet x, v, z be any configurations in Cy such that
each of (x,¥), (», 2}, (%, f(¥,2)), and (f(x,¥).2)
is an element of domain(f}. By the definition
of associativity, we must prove f(x, f(y, z)) =
f{f(x,¥),2); that is, we must prove f{wg, z) =
fx,wy), where wg = f(x,¥) and wy = f(y,2). By
the definition of f, there exists some w € A such that
wy is the closest common ancestor of x and y, and
wy is the closest common ancestor of v and z, along
some computation paths in the computation tree of M
on input w. It follows that f(wp,z) = f{x,w;) since
this configuration is the closest common ancestor of
wy and wy.

Claim 3. [ is computable in polynomial time.

Let (vg,y1) be any configurations in domain{ f}.
Thus, there exists w € A such that w and y; are
configurations along some computation paths in the
computation tree of M on input w. Since A rums in
polynomial time, these paths are at most polynomially
long. By traversing these paths upwards, f(yg, ;) can
be computed in polynomial time as the closest com-
mon ancestor of v and ;. Hence, f is computable in
polynomial time, even though recognizing domain( )
might take longer.

Claim 4. ' is not computable in polynomial time.

To compute f~! is to compuie acompy. Were
acompy polynomial-time computable, we could de-
cide A in polynomial time as follows, Given any input
string b, let x, be any child of the initial configuration
of the computation of M on input . Then b € A if
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and only if acompy (xs) #= L. Since A € P, acompuy
is not computable in polynomial time. [J

The AQWT f constructed in the proof of Theorem 5
is commutative, because the closest common ancesior
relation is cormmutative,

Although recognizing domain{ £} is as hard as rec-
ognizing A, given any AOWF g with domain{g} €
P, it is possible to extend g (o a total AOWF gin a
straightforward fashion. Specifically, let ¢ € Cy be
any string such that (¢, ¢) ¢ domain{g). Then define
F(x. ¥y} =g{x.y) whenever (x,y) € domain(g)}, and
2(x,y) = ¢ otherwise,

Cur theorem relates to previous work in worst-case
cryptocomplexity as follows. In 1979, Brassard [1]
proved that the existence of a one-way function would
imply P ¢ NPMcoNP and thus P # NP, Brassard re-
quired that his one-way function be bijective and that
its image be in coNP. In 1984, Grollmann and Selman
({6} and [17, Proposition 3]) tightened this result
by proving that an injective one-way function exists if
and only if P # UP, where UP {unique P) is the class
of languages that can be accepted in nondetermin-
istic polynomial time with unigue accepting paths.
Dropping the injectivity requirement, Selman [17]
also proved that one-way functions exist if and only if
P # NP. Thus, the existence of an injective one-way
function depends on a stronger (and apparently much
stronger) complexity assumption than does the exis-
tence of a oneg-way function. Since AOWEs cannot be
injective, we began with Selman’s second theorem.

4, Applications

As evidence of the possible utility of AOWEs, we
present two novel protocols that apply AOWFs to
achieve secret-key agreement and digital signatures.
Each of the protocols requires a strong AGWF - one
that is difficult to invert, even if either one of its inputs
is given.

By inverting o given its second argument, we mean
inverting the restricted function o, = o(-, y); that is,
given any ¥ € S and any z € image{s,), find any

3 According 1o Selman [17], the essence of this result was
independendy discovered by Berman in 1977,

x & & such that x o y = z. Inverting o given its first
argument is similarly defined.

The function f constructed in Theorem 5 is not a
strong AOWTF because, given any x, ¥; € { such that
x is in the image of f restricted to second argument y;,
it follows that f{y;,»} = x. Similarly, multiplica-
tien of large odd integers is not strongly one-way. We
conjecturs, however, that strong ACWEs sxist, even
in average-case models of complexity.

4.1, Eey agreement

Secret-key agreement is a fundamenial problem in
communications security that is of significant interest
to practitioners and theorists. In its simplest form, this
problem is for two parties {say, Alice and Bob), io
agree on a secret key & by sending messages back and
forth over an insecure channel which is wiretapped by
a passive eavesdropper (say, Eve)}. The main security
requirement is that Eve must not have more than an
g-advaniage in guessing & listening to the communi-
cations over guessing k without listening to the com-
munications, where & is some small positive real num-
ber {say, £ = 0.01). We present a new solution to this
problem based on the novel paradigm of strong asso-
ciative one-way fanctions.

Throughout, we focus onr unauthenticated-key
agreement. Additional mechanisms are needed if Bob
is to convince himself that he has been communicat-
tng with Alice; ofien these extra mechanisms are easy
to add.

Protocol KAP given below {due to Rivest and Sher-
man) shows how Alice and Bob can agree on a secret
key from the set A = {0, 1}, where n is some posi-
tive integer.

I. Alice generates two random numbers x and y. Alice
keeps x secret and sends y and x o y to Bob.

2. Bob generates a random number 7. Bob keeps z
secret and sends y o 7 back to Alice.

3. Alice computes k4 = xo (yoz) and Bob computes
kg = (xoy)oz. Alice and Bob agree on &k, = kg
as their secret key.

The protocol exploits a strong AOWF o
M x M — M, known to Alice, Bob, and the enemy
Eve. During the protocol, random numnbers x, v, 7 are
selected from the set M. In the last step of the proto-
col, Alice computes herkey ks = xo{yoz)} and Bob
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computes his key &g = (x o y) ¢ z; the associativity
of o ensures that ks = &p.

At the end of the protocol Eve knows y, x o ¥,
and y o z. Por the protocel to be secure, from this
information, Eve must not be able 10 guess the agreed-
upon key xovoz with advaniage. Our assumptions are
that o is a strong AQWF on M = {0, 1}” and that x, 3,
z are chosen independently with uniform distribution
from M.

If BEve could compute x or z, then Eve could com-
pute the key as x o {y o z) or {x oy} o z. This direct
attack is impossible because it would contradict the
assumption that ¢ is a strong AOWF. Thas, the only

way in which KAP could possibly fail is if Eve could .

gompute x o y o z without computing x or z.

One possible attack would be to compute x oy oz
by applying o to some sequence of terms drawn from
the given values y, x o y, and y o z. For example, if
y" =y for some r- 1 applications of o, then Eve could
compute xoyoz = (xoy) oy %o (yoz). Thus, for
KAP to be secure, it must not be true that ¥y = y for
some polynormiaily-bounded r.

The key-agreement problem was introduced in 1976
by Diffie and Hellman [4,5], who referred to it as the
public-key distribution problem. Without any proof of
security, Diffie and Hellman also suggested a solu-
tion based on the difficulty of computing discrete log-
arithms over GF{p). Despite some similarities with
Protocol KAP, the Diffie-Hellman scheme is not based
on an AOWF {[14]. Since 1976, several other ap-
proaches to key agreement have been proposed, many
of which are surveyed by Rueppel and van Qorschot
116]. Also, in 1979, Ingemarsson [§] smudied alge-
braic properties of sets of functions that make up
public-key distribution systems.

Although several approaches to proving the secu-
rity of key-agreement protocols have been tried (e.g.
see Mavrer [ 11,121, Desmedt and Burmester {3}, and
van Oorschot { 131}, no one has proven the security of
the Diffie~-Hellman scheme, even assuming that com-
puting discrete logarithms is infeasible in polynomial
time. We, 100, leave the security of our protocol 1o the
scrutiny of the reader.

Whenever the strong AOWF o is commutative, Pro-
tocol KAP can be generalized 1o enable any & parties
to agree on a secrel key [ 14]. The method is similar 1o
that suggested by Ingemarsson, Tang, and Wong {9]
for the Diffie-Hellman scheme.

Any public-key cryptosysiem can be used to effect
secret-key agreement, but practitioners have sought
solutions that do not require or make available the
additional mechanisms and capabilities of pubhic-key
cryptosystems. Our approach to key agresment offers

. a new cryptographic building block - strong AOWFs.

4.2, Digiwal signotres

Strong AQWFs can also be used 1o sign messages.
To this end, let o : M x M —» A4 be any strong
ACWE, and assume that there is an authenticated pub-
tic directory. Initially, each user {J generates two num-
bers xy,yy € M at random, keeps xy secret, and
places the pair {yy, xy o yy) into the public directory.
To sign any message m € M, the user computes the
signature gy (m) = mo xy. To verify any purported
message-signature pair (m, o} from U, the recipient
retrieves vy and xy o yy from the public directory and
computes o o yy and mo (xy © yy). The recipient ac-
cepts o as a valid signature of m by U if and only if
goyy=mo (xyoyy).

As with many other signature schemes, this scheme
is vulnerable to what Rivest [15} calls existen-
tial forgery: given any valid message-signature pair
(m, oy(m)), it is possible to forge signatures of new
messages of the form m' =z om, forany z € A
Specifically, forge op{m'y =m' oxy = (zom) o xy
by computing op(m’) =z cop{ml =z o (meoxy).
To overcome this difficulty, one should use a public
cryptographically-secure hash function, as suggesied
by Davies and Price [2] and as is typically done in
many signature systems. When using a hash function
Bt M — M, the signer would compute the signa-
ture h(m) o xy and assume that Eve cannot find any
z € M and any intelligible message m’ € M such
that i{m') = z o him).

5. Conclusion and open problems

We have introduced the concept of associative one-
way functions (AOWFs) as an intriguing and useful
new cryplographic paradigm. We proved that partial
AQWFs exist if and only P # NP, and we presented
protocols for applying strong AOWFs to reach unau-
thenticated secret-key agreement and 1o sign docu-
ments,



144

AOWEs illustrate a beneficial synergism that can
ensue when a cryptographic object is endowed witha
combination of algebraic and security properties. To
explore such combinations, AOWFs are & natural place
1o star: because they combine two of the most fun-
damental properties from aigebra and cryptographic
security: associativity and ope-wayness.

We conclude with five open problems.

{1} Do strong ACWFEs exist?

(2} Exhibit a plausible strong AOWE.

{3) Prove (or disprove} that protocol KAF is secure.

{4) What can be said about the distribution of the
agreed-upon key in protocol KAP?* In particu-
lar, is it possible to modify Proiocol KAP to en-
sure that neither Alice nor Bob alone can bias the
distribution of the agreed-upon key?

{5) What other applications do ACWPFs have?

All of these questions would be particularly interesting

to answer in average-case models of complexity, such

as those studied by Impagliazzo and Rudich [71.

Although the security of Protocol KAP remains
open, so does that of the Diffie-Hellman protocol.
Nevertheless, Protocol KAP and our digital signature
method are evidence that AOWFs - and more gen-
erally, functions that combine fundamental algebraic
and security properties — offer elegant schutions to a
variety of practical cryptographic problems.

Acknowledgments

We thank Thomas Cain, Richard Chang, Ronald
Rivest, an Al Selguk for helpful editorial comments.

References

{11 G. Brassard, A note on the complexity of cryptography,
IEEE Trans. Inform. Theory 25 (2) (1979} 232-233.

12} D.W. Davies, W.L. Price, The application of digital signatures
based on publickey cryptosyseems, in: Proc. Sth Internat.
Computer Communications Conf,, 1980, pp. 525-530,

131 Y. Desmedt, M. Burmester, Towards practical ‘proven secure’
authenticated key distribution, in: Proc. 1st ACM Conrf. on
Computer and Communications Security, ACM Press, New
York, 1993, pp. 228-23L :

[4] W. Diffie, M.E. Hellmaa, New directions in cryptography,
IREE Trans. Inform. Theory 22 (6) (1976} 644-854.

4¥or some related work on the Diffie-Hellman scheme, see
Waldvoge! and Massey {19}

M. Rabi. AT Sherman/Information Processing Letters G4 (£997} 239-244

{31 W. Diffic, M.E. Hellman, Privacy and awthentication: An
introduction o cryptography, Proc. IEEE 67 (3) {19793
397-427.

{61 J. Groliman, A. Sehman, Complexity measurss for public-key
cryptosystems, SIAM 1. Comput. 17 €2y {1988) 309-335.

{71 R. ImpagHazzo, 5. Rudich, Limits on the provable
consequences of one-way permutations, i Proc. 2ist Ann.
Symp. on Theary of Computation, ACM Press, New York,
1989, pp, 44-61 (1o appear in: L Crvptology ).

{8] I Ingemarsson, The algebraic structure of public-key
distribusions systems, Tech, Reps. 1979-02-08, LiTH-ISY-I-
2070, Dept. of Blecirical Engineering, Link@ping University,
1979, 12 pp.

191 I Ingemassson, D.T. Tang, CK. Wong, A conference key
distribution system, IBEE Trans. Inform. Theory 28 {5
(1982) 714719

{10] B.S. Kaliski i, RL. Rivest, AT, Sherman, is the
Puota Encryption Standard a group? {Results of cycling
experiments on DES), | Cryptology 1 (1) (1988) 3-36.

{311 UM, Maurer, Towards the equivalence of breaking the
Diffie-~Hellman protocol and computing discrete logarithms,
in' Y.G. Desmedtr (Ed.}, Advances in Cryptology: Proc.
Crypio 94, Leciure Notes in Computer Science, vol. 839,
Springer, Berlin, 1994, pp. 271-281.

{12] U.M. Maurer, S. Wolf, Diffie-Hellman oracles, in: N. Koblitz
(¥d.}, Advances in Cryptology: Proc. Crypto 96, Lecture
Notes in Computer Science, vol. 1109, Springer, Beriia,
1994, pp. 268-282.

[13] BC. van Qorschot, Extending eryptographic logics of belief
io key agreemeni protocols {extended abstract}. in: Proc.
15t ACM Conf. on Computer and Communications Security,
ACM Press, New York, 1993, pp. 232-243.

f14] M. Rabi, AT. Sherman, Associative ope-way functions:
A npew paradigm for secret-key agreement and digital
signatures, Tech. Rept S-TR-3183/UUMIACS-TR-93-
124, University of Maryland Coliege Park, 1993, and
Tech. Rept. TR (S5-93-18, Computer Science Dept.,
University of Maryland Baldmore County. 1993, 13 pp.
{hetp:/ /www.cs.umbe.edu/ ~sherman).

[15] RL. Rivest, Cryplography, in: J. van leeuwen (Bd.),
Handbook of Theoretical Computer Science. Volume A:
Algorithms and Complexity, Elsevier, Amsterdam, 1990,
Chapter 13, pp. 717-755.

161 R.A. Rueppel, PC. van Oorschot, Modern key agreement
technigues, Computer Communications 17 (7) (1994) 458~
463,

{17} AL Selman, A survey of one-way functions in complexity
theory, Math. Systems Theory 25 {3) (1992} 203-221.

18} A.T. Sherman, Cryptology and VLSE (a two-pasi disserta-
tion}, Tech. Rept. MIT/LCS/TR-381, MIT Laboratory for
Computer Science, 1986.

119] C.P. Waldvogel, J.L. Massey, The probability distribution of
the Diffie-Hellman key, in: 1. Seberry, Y. Zheng (Eds.},

Proc. AUSCRYPT 92, Lecture Notes in Computer Science,
vol. 718, Springer, Beglin, 1593, pp. 492304,

Editer

Th
resulis
concise
equival

Thy
found
most #
ieast ¢
Editors
OR SXPE

The
of keyv

Algorit
combin
compui
crypiog
distriby
formal

informa
systems
evaluati
progran
spevific
- softw
specific

Instrue

Con
the Bea
arga pr
Since 1
provide:

The
ete.} sh
pages,
approxit
decision

An
supplied
lisy of i
pil in
should
ariicle,
{or titic
page m
preferres

Sinc
no need
used, €
paginaie
cariier.
S42C OF, |

(e
e:r;rrc.vpe
hclence
Netherla
proofrea
i the
exiremel
should ¥
fext

Upor
copyrigh
witl ensu

Ther
cach art
Pubiishe;
MNotice w

Instructi

The
publicati
a disket



