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Abstract

Computer experiments compare the effectiveness of five test statistics at recognizing and
distinguishing several types of real and simulated English strings. These experiments measure
the statistical power and robustness of the test statistics X 2 ML, IND, 8, and I{C when applied
t0 samples of everyday American English from the Brown Corpus and Wall Sireet Journal and
to simulated English generated from Ist-order Markov models based on these samples. An
empirical approach is needed because the asymptotic theory of statistical inference on Markov
chains does not apply to short strings drawn from natural language. Here, X7 is the chi-squared
test statistic; ML is a likelihood ratio test for recognizing a known language; IND is a likelihood
ratio test for distinguishing unknown Oth-order noise from unknown Ist-order language; S is a
log-likelihood function that is a most-powerful test for distinguishing a known language from
uniform noise; and IC is the index of coincidence. The test languages comprise four types of
real English, two types of simulated Ist-order English, and three types of noise.

Two experiments characterize the distributions of these test statistics when applied to nine
test languages, presented as strings of different lengths and contaminated with various amounts
of noise. Experiment | varies the length of the string from 2 to 217 characters. Experiment 2
adds uniform noise to samples of three fixed lengths (2%, 27, 2!%), with the amount of added
noise ranging from 0% to 100%. These experiments assess the performance of the test statistics
under realistic cryptographic constraints.

Using graphs and tables of observed statistical power, we compare the effectiveness of the
test statistics at distinguishing various pairs of languages at several critical levels. Although no
statistic dominated all others for all critical levels and string lengths, each test performed well
at its designated task. For distinguishing a known type of English from uniform noise at critical
levels 0.1 through 0.0001, X? attained the highest power, with ML and S also performing well.
For distinguishing uniform noise from a known type of English at the same critical levels, ML

*Dart of this work was carried out while Sherman was a member of the Institute for Advanced Computer Studies,
University of Maryland College Park,
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1 Introduction

Automatic language recognition plays an important role in cryptanalysis, speaker identification,
document processing, and other pattern-recognition tasks. To carry out such language-recognition
tasks, the theory of statistics offers useful models and test statistics.! For example, in our companion
introductory guide [16], we explain how to solve four well-defined language-recognition problems
using likelihood ratio tests and other standard statistical techniques, when languages are modeled as
Markov chains. Although the theory of statistical inference has much to say about the asymptotic
performance of many test statistics when applied to the idealized languages of Markov models, this
theory says little, if anything, about the performance of test statistics on short strings {e.g. 4 to
100 characters) drawn from natural languages such as English. Yet many practitioners must deal
with such input strings.

This paper presents and analyzes results of computer experiments that characterize the distri-
butions of five test statistics when applied to several types of real and simulated English strings of
various lengths. We focus on statistical approaches to language recognition and empirically analyze
the performance of five test statistics for recognizing and distinguishing nine test languages under
realistic practical constraints. Specifically, we answer the following questions. What is the actual
distribution of each statistic when applied to several types of real English? How do these distribu-
tions vary with the length of the input string? For each test statistic, how does its distribution on
real English compare with that on simulated English generated from a 1st-order Markov model?
How are these distributions affected when the input is contaminated with noise? How effective is
cach test statistic at distinguishing various pairs of languages? And, what helpful advice can be
offered to practitioners who wish to solve language-recognition problems?

To answer these questions we perform two experiments: Experiment 1 characterizes the dis-
tributions of five test statistics when applied to strings from nine types of language, with strings
ranging in length from 2 to 2'7 characters. Experiment 2 characterizes the distributions of these
statistics when applied to strings of three fixed lengths (2%, 27, 2'°) from the same languages, when
the strings are contaminated with various amounts of uniform noise. To compare the effectiveness
of the test statistics at distinguishing various pairs of languages, we compute the power of these
statistics at several critical levels.

Each experiment studies the five test statistics X 2 ML, IND, S, IC, and normalized versions
thereof, defined in Section 2. We apply these test statistics to strings randomly selected from
large samples of text drawn from nine test languages. Our nine test languages comprise four types
of real English, two corresponding lst-order Markov models of English, and three alternatives to
English consisting of uniform noise, a non-uniform Oth-order noise, and a simple repeating pattern.
Parameters for each Markov model, including the two 1st-order models of English and the non-
uniform Oth-order noise, are computed from two of the samples of real English. We drew our four
samples of real English from the Wall Street Journal and from the Brown Corpus, which is a well-
known collection of everyday American Fnglish, assembled during 1963-1964 at Brown University
under the direction of Francis, and analyzed by Kugera and his colleagues [13, 26].

Much is known about the asymptotic theory of statistic inference on Markov chains. For
example, Anderson and Goodman [2]; Billingsly [6, 7]; and Kullback, Kupperman, and Ku [29]
survey the literature. In addition, a few experiments have been carried out to determine the exact

T\We assute the reader is familiar with elementary statistics—as explained by Larsen and Marx [30], for example,
For a more advanced review of hypothesis testing, see Lehmann [31].
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For each of our four types of real English, we estimated transition probabilities from a base
sample of over 500,000 characters, using straightforward maximum-likelihood estimates as described
in Section 3.2. Throughout we work with Markov models with m = 27 states corresponding to the
characters ‘A’—“Z" and blank. Although we do not experiment with case or special characters, such
additional information may prove useful in more elaborate models of language.

Notation

Fach of the test statistics X2, ML, and § is defined in terms of the transition probabilities
pisli<ijem of the base language and the observed bigram frequency counts {nj}1<ij<m of the
candidate string; the other statistics IND and IC are defined from these frequency counts alone.
Here, m = 27 is the number of states in our Markov model. The candidate string of n characters
forms N = n — 1 overlapping bigrams. For each 1 < 7,j < m, let n; denote the observed frequency
of letter i. There are m;. = Y 7.y 7;; bigrams beginning with the letter ¢. For all 1 < i < m, either
Ty = Mjx OF Ny = Njx + 1.

From these frequency counts, define the observed relative unigram frequencies p; = n;/n and
the observed relative transition frequencies pi; = nij/ni.. In addition, let b;; = pipi; denote the
unconditional bigram probability of the bigram 4j in the Markov model of the base language, where
p; denotes the steady-state state probability {i.e. unigram probability) from the Markov model of
the base language.

Test Statistics X2, ML, IND and Normalized Variations oX 2 oML, ¢IND

The asymptotically equivalent test statistics X ? and ML are defined by

x? = Z (nipi; — nipi;) (1)
i<ijem P
and®
ML=2 3 nynPL (2)
1<i g<m Pij

When the base and candidate languages are generated by the same Markov chain, X * and ML
have an asymptotically x? distribution with 1 = m{m — 1) — d degrees of freedom, where d is the
number of zero transition probabilities from the base language. In each experiment we took the base
language to be language BCa (see Section 3.1), for which d = 168 and thus 1y = 27(27—-1)— 168 =
534. In Equations 1, 2 and throughout, we adopt the convention that all summations are computed

over only those indices ¢, j such that p;; # 0.8
Similarly, when the candidate language is Oth order, the likelihood ratio test stafistic

IND = 2 Z mﬂn% (3)

1<ig<m

5Throughout let In = log, and Ig = log,.
51w to treat zere transition probahbilities can be important. For more elaborate ways of treating zero transition
probabilities, see Good [19], Church and Gale [9], Davies and Ganesan f12], and Levin and Reeds [32].
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Anderson’s variation of § for bigrams is

A= H b;g;(n/(%’))_ (8)
1<i3<m !

For convenience, we worked with the equivalent statistic ln A.

The Index of Coincidence /¢ and Normalized Variation 1,

The index of coincidence 7 for bigrams is defined by

o= nig(nij ~ 1) 9
1igem NN =1 )
Good and his colleagues [23, 24] present experimental evidence that, when applied to uniform noise
and when N < m?/12 (for us, m?/12 = 27%/12 = 61), the statistic IC, = N(N — 1)/C/2 has an
approximately Poisson distribution with mean g, = N(N — 1)/(2m*). For more about the IC and
its distribution, see Good [22, 20, 21] and Kullback [27, pp. 151-153].
To express JC' on a convenient scale, we center and normalize 1 C, by

IC*“pq(
Vi

since the mean and variance in the Poisson distribution are the same. When the test statistic 1O
is approximately Poisson, and when y, is sufficiently large (e.9. itz > 5), the related test statistic
IC, is approximately standard normal. However, since the condition p, > 5 is satisfied only when
N > 86, we do not recommend using a standard normal interpretation of { C, for short strings.
When computing IC with large n;j, to reduce the chance of arithmetic overflow, it is helpful not
to distribute the factor 1/(N(N — 1)) outside of the summation.

IC, = (10}

3 Experimental Methods

We perform two experiments to determine how each of the test statisties X2, ML, IND, §, and IC
performs when applied to real and simulated Fnglish under realistic practical constraints. This
section describes our two experiments in detail, focusing on our methods. In doing so, we explain our
experimental toolkit, our test languages, how we preprocessed our base samples of these languages,
how we carried out each experiment, and how we analyzed the results.

3.1 The Nine Test Languages

To carry out a run of any experiment on any test statistic, up to two languages must be specified: a
candidate language from which candidate strings are drawn, and a base language (if needed) whose
known transition probabilities are used in some test statistics. We ran our experiments using the
nine test languages described in Table 1, each of which is defined by a sample file of between 500,000
and 900,000 characters. These nine test languages comprise four types of everyday American
English (BCa, BCf, BCg, WSJ1), two types of simulated English (1st-order BCa, ist-order BCT},
and three types of noise (0th-order BCa, uniform noise, “er” repeated).



Gianesan and Sherman, Language Recognition: An Empirical Study—June 30, 1994

LICRCRIC R RICHICEIMCRICHICRICRICR b R Kb K

R ERCRCHCERR R R R R el 098'829 IR, poyerausl 1sndwon payeador 12
fAMADNOIHEINANYINHSAI XATZOHAZS sanIqeqord UOTISTRIY WI0)
~df ANGOINNANAALSUIHEAMAZINVIZIANY 100'009  -Tun Sulsn PPOW AoNIRW %PIO-Y3) poyerpusd rondwod oSO WLIOjUR
AAELOIDIILILY NUSTT ME saniqeqord vonmsuen
W LIVANGUHNNLO MLLAIDHEALT HOVS I NV Z00'DSS  ®DY Fwisn Ppour AoYIR]Y 13pIo-ig pajereuad ejnduwicd  v{ 19pIlo-Ulg
ysybug joN
44 dd SAWVIOHIVTd JHLAE 0¥N sanMqeqord uonisuwly
JAVANIOWIMEAN S ONIWOHD ddvd H NV $00'05¢  JOH BuISn [opoul AR TApIo-9sT peyeiousd soqndwion  jog 1epio-4sy
odand SIKIAO ALV ATHLAG soliiqeqoid uonsueI}
HOL LIVIOIOTILSIL S ANANOHD aANAD H NV 200°08¢  ¥DHY Bulsn [PPOW AONIRIY I9PIO-IST pojesousd einduwrod v 19pI0-38]
yepbus popiuey
AALLOADAXINON ¥V SV qUVOod
AHIL NIOr TTIM Q710 SUVIA NIMNIA TYHdld 0LL'E9L afejrodar ssaxd  [[sm o[y jouanop 12048 jM I1SM
NV SLEHTH TIAID 40 SHIIH0d
-dNs J4IHD JHL ¥V $TvVYdgrT NHIHIYON [GERZE sfesso ‘soripderdolq ‘soxyye] sePg ¢2108 o1y sudio)) umoiq 204
dHL LYEM NVHL HZHDIH SAIVY
DNIHLON LSOWTY JONVWOY NVOIMENY NI £61'999 azo] repndod g¥10§ o[y sudiop usmorg 10d
40 NOLLVOLISHANI NV Avd
THA AIVS AYAL ANVYED ALNAOD NOLINL THEL L98'808 o8wyrodor sso1d FP10% o[y sudio)) umoig ey
ysybug

opdureg

{sreyd) gyBueg

wonduoss(]

80IN0G

adA ], oFendme]

-adenduey oseq 91 #2 BOY Posn sdAnme

om ‘ofenfue| oveq umouy B oInbel 1Ry} SINSHRIS 1591 w04 -Aparpedser ‘JO{ pur B JO S[EPOW AOIRIY ISPIC-1ST 818 JY I9plo-is] puw
e)f I9pI0-1s] sefenTue] peyernuus oy, ~(poreodod Jo, ‘98I0U WIONIUN ‘B)g] I9plo-13)) esiou jo sadAy sa1iy pur ‘(Ing TepIo-1st ‘eDg WPI0
~ys7) ysyBury peyepnuns jo sedA3 omy (1rSM ‘SO 904 ‘end) ysyFug uesmeury jo sadA) oy jo ysisuco sofenSuel outu esoy], -sefensuw|
4899 28043} JO Yoeo Joj o[y ojdures e woiy sfuins payerousd Ajwopuel oy pordde st onsye)s 3sey (oef sofendue] 989 suru oyJ, ] OqR]



(ianesan and Sherman, Language Recognition: An Empirical Study—June 30, 1994 9

was given by a file of transition probabilities estimated from the clean BCa sample. Each run
of Experiment 1 applies all specified test statistics to the same strings generated from the given
candidate language.

We apply one test statistic to one candidate language as follows. For each integer 1 < e < 17,
we select b = 100 candidate sample strings of length n = 2° characters (N =n — 1 bigrams) from
the candidate Janguage file. Thus, the candidate strings range in length from 2 to 217 = 131,072
characters. Fach string is selected independently, with uniform distribution from the set of ali
possible substrings of length n from the specified language file. The test statistic is computed on
each of the & strings. To summarize the distribution of the test statistic on the specified language,
for each string length, Experiment 1 outputs the sample mean and sample standard deviation
computed from the observed f values of the test statistic.® Optionally, when we desired a more
detailed characterization of the distribution of the test statistic, we output a list of these values
and viewed them as a histogram.

We arbitrarily chose the values 100 and 17 with the intent of achieving a sufficiently large
sample size and of ensuring that asymptotic behavior of the test statistics would be apparent by
our maximum string lengths. After performing a complete set of experiments with A = 100, we
ran a smaller set with A = 10,000 and 1 < lgn < 11 for the purpose of improving the accuracy of
our power calculations. All power calculations for Experiments 1 and 2 are based on sample size
h = 10, 000.

It is possible for the sample strings to overlap. Overlap is unlikely for short strings; substantial
overlap is likely for huge strings. To prevent potential run-time arithmetic overflow errors in
calculating any test statistic, all probabilities and relative frequencies less than 10~ were treated

as Zeroes.

3.4 Experiment 2: Noisy Plaintext

Experiment 2 is a variation of Experiment 1 that empirically characterizes the distribution of each
of our five test statistics, when applied to strings contaminated with various amounts of uniform
noise. As with Experiment 1, we apply each test statistic to sample strings drawn from each of
our nine test languages. Unlike Experiment 1, however, for simplicity we work only with strings
of three fixed lengths: 2¢ = 16, 27 = 128, 210 = 1 024. The purpose of this experiment is to
characterize the actual distributions of our test statistics when applied to everyday English under
noisy conditions, which are common in practical langnage-recognition applications.

Input to Experiment 2 consists of a list of test statistics, a base language, and a candidate
language. For each test statistic, Experiment 2 outputs the sample mean and sample standard
deviation of A = 100 values of the test statistic computed for each string length at each of several
noise levels. We tried all noise levels 0 < w < 106 in increments of 5. As with Experiment 1, we
worked with the test statistics X2, oML, oIND, S, IC, and In A, and we always chose the base
language to be BCa.

For each string length n and noise level 0 < w < 100, Experiment 2 selects h strings at random
from the given candidate language file. Fach character of each string is processed independently, and
with probability w/100 replaced with a randomly chosen character {possibly the same character).
The replacement character is chosen independently with uniform distribution over our 27-character
alphabet. Fach specified test statistic is applied to the same strings.

3Gpecifically, we computed sample standard deviation as the square root of the unbiased sample variance.
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package [34]. In particular, we used ®~7(0.1) = 1.28155, ®-1(0.01) = 2.32635, €71(0.001) =
3.09023, and ©71(0.0001) = 3.71902.

3.6 Our Language-Recognition Toolkit

To carry out our experiments, we designed and implemented a toolkit of C programs running
under the DEC Ultrix and SGI Irix operating systems. These programs include routines to remove
extraneous characters from text files, to count k-gram frequencies, to simulate any Markov chain,
and to display data. Particular experiments are run by a program that selects strings from a text file
at random and applies tests to these strings. All experiments were carried out on 32-bit machines
using double-precision arithmetic operators of the C programming language. To select sample
strings at random from each candidate language, to generate random noise, and to drive our our
Markov chain simulators, we used the pseudorandom number generator “random()”. We also made
extensive use of several standard data manipulation programs, including the Awk text-processing
language and the ACE/gr interactive graphing program.

4 Results

We now describe and compare the distributions of our test statistics when applied to strings of
various lengths drawn from the nine test languages. Specifically, we summarize and explain the
results of Experiments 1 and 2 and of our power calculations. Finally, we discuss some issues raised
in these findings. Throughout, the base language is BCa.

Complete experimental results are given in our technical report [17] and its appendices. In
particular, Appendix B lists detailed results for Experiment 1 on plaintext length: for each test
statistic, there is a table of sample means and standard deviations of the test statistic applied
to each test language for various string lengths. The amount of data is overwhelming, and it is
difficult to intuit phenomena from these numerical tables. Therefore, in this section, we selectively
present highlights of our data through several graphs, histograms, and tables of statistical power.
Additional similar figures and tables are included in the supplemental appendices [17].

4.1 Results of Experiment 1 (plaintext length)

We describe the distributions of the test statistics in histograms and in graphs of mean x standard
deviation. The histograms provide thorough descriptions of the distributions at fixed string lengths;
the graphs summarize this information showing the effect of string length.

Histograms

Figures 1-6 describe the distributions of the statistics §/N,IC, X? ML, and IND when applied to
BCa English, Ist-order BCa English, Oth-order BCa, and uniform noise. For example, for each of
these four test languages, Figure 1 gives histograms of 100 observed values of §/N computed from
randomly selected strings of length n = 1024, and Figure 2 gives histograms of S/N for n = 16.
Figures 3-6 present similar histograms of JC, X 2 ML, and IND for n = 1024. These histograms
reveal the shape, dispersion, and separation of the distributions.

As explained in Section 3.1, BCa is a type of real English; 1st-order BCa is an idealized model
of BCa; and Oth-order BCa and uniform noise are alternatives to FEnglish. When distingunishing
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Figure 1: Four histograms of values of the statistic 5 /N computed on 100 randomly chosen strings
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uniform noise, respectively. For example, for uniform noise, 20 of the chosen strings had S/N
vajues between -3.700 and -3.725. Base langunage is BCa.
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Figure 5: Four histograms of values of the unnormalized statistic ML computed on 100 randomly
chosen strings of length n = 1024 drawn from BCa English, 1st-order BCa English, Oth-order BCa
noise, and uniform noise, respectively. Base language is BCa.
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Means and Standard Deviations

To examine the effects of string length on the test statistics, it is convenient to summarize the
distributions in terms of their first two moments. We now do so, focusing on the statistics 5, 1C,
and oX?2. Figures 7, 8, and 9 show, respectively, how the means of §, IC, and oX? vary with
string length for all nine test languages. Figures 10 and 11 show the observed means and standard
deviations for § and IC, when applied to BCa English and uniform noise; these standard deviations
are criicial in comparing the effectiveness of the test statistics.

Figure 7 illustrates that, for sufficiently large strings, the mean of 5 differs for most of the
test languages. For example, the three alternatives to English {uniform noise, Oth-order BCa, and
“er” tepeated) rapidly diverge from the other fest languages. The significance of these differences
is established by the standard deviations, as depicted in Figure 10 and given in Appendix B. By
n = 256, the mean of S separates the remaining test langnages into three groups: real and simulated
BCa English, WSJ1, and the remaining three types of real and simulated English. Figure 8 shows
a similar trend for IC. The IC, however, had a more chaotic behavior for very short strings—
perhaps because very short strings are unlikely to have repeated bigrams. Also, the IC more cleanly
separated uniform noise from Oth-order BCa than did 5, which is useful to know for cryptanalytic
applications that yield unigrams only.

Figures 10 and 11 illustrate the behavior of § and IC, at distingnishing BCa English from
uniform noise at various string lengths. Although both statistics eventually perfectly separate
these two languages, § was relatively more effective at small lengths, as is quantified in our power
calculations {see Figure 13). In addition, as observed in Figure 3, Figure 11 shows that [ C, has a
smaller standard deviation on uniform noise than on BCa English.

Our normalizations ¢X? and § of X? and S, respectively, were intended to produce statistics
whose distributions are approximately standard normal when applied to 1st-order BCa (and BCa).
Similarly, IC, was intended to have an approximately standard normal distribution when applied
to uniform noise {see Section 2). Figures 9-11 show that this intent was achieved fairly well
for IC, and § but not for 0 X2, except when oX? was applied to long strings of Ist-order BCa.
Nevertheless, as proven in the power tables, the relative separations of the means of ¢X? on most
languages are indeed significant. Thus, when interpreting the values of X2, it is important to use
experimentally-determined thresholds. Similar statements also apply to oML and ¢IND.

As shown in Figure 10 and Appendix B [17], although § is approximately standard normal
on BCa, its standard deviation increases slightly with string length throughout. We believe this
slight increase in the standard deviation of § results from S being applied to dependent bigrams
and from the fact that BCa English is not a ist-order Markov chain. By contrast, when applied
to 1st-order BCa, the standard deviation of S remains approximately constant and slightly less
than 1. For huge strings, however, the standard deviation of § on 1st-order BCa decreases slightly,
we believe reflecting the bias of selecting the sample strings from the base sample.

Table 8 of Appendix B [17] reveals some interesting properties of the ¢X ? statistic. Pirst, from
these means and standard deviations, it is apparent that a standard normal interpretation of ¢X 2
is not useful, except for recognizing long strings of Ist-order BCa. For example, the observed means
of X2 on BCa lie in the interval [~5,5] only for string lengths 128 < n < 1024, even though BCa
is the base language and the candidate strings were drawn from the same base sample used to
compute the BCa transition probabilities. Even for lst-order BCa, the values of 0X? fall outside
of [~5,5] until n > 128. Second, for long strings, the values of X% diverge for all languages except
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4.2 Results of Experiment 2 (noisy plaintext)

Figure 12 highlights the results of Experiment 2 by illustrating the behavior of S at distinguishing
BCa English from uniform noise in the presence of noise. Specifically, this figure shows the first two
moments of § when applied to strings of length » = 1024 drawn from BCa English and uniform
Loise with various amounts of added uniform noise. In this figure, the curve for uniform noise
serves as a reference line, which could have been drawn using data from Experiment 1 or from
theoretically computed values. Similar figures in our technical report [17] show the behavior of the
other statistics.

Comparing Figure 12 with the corresponding one for 1€, reveals two interesting differences.
First, at n = 1024, 1 C, is able to distinguish BCa English from uniform noise in the presence of
higher amounts of noise than is S. For example, the standard deviation bars for § in Figure 12 first
overlap at 65% added noise, whereas those for 1C, first overlap at 80% added noise. This behavior
is quantified in our power calculations (see Figure 15). Second, with increasing noise levels, IC,
on noisy BCa converges at a faster rate to 1C, on uniform noise than does §, perhaps reflecting
the quadratic nature of the /C formula.

BCa English

Nommalized S
L3
e
[
1

uniform noise

i H i i 1 H 1 1 . 1 . |

G 10 20 30 40 50 60 70 80 g0
Pearcent Added Noise (for n= 1024}

Figure 12: Sample means and standard deviations of the statistic § computed on 100 randomly
chosen strings of length n = 1024 drawn from BCa English, with various amounts of added uniform
noise, A corresponding curve for uniform noise is also drawn as a reference line. Base language is

BCa.
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that X2 outperformed § given that S is an asymptotically most powerful test for distinguishing
BCa English from uniform noise. Perhaps the relatively better performance of ¢X? over § at
n < 128 is explained by the small string length. Even for the short string length n = 8 at critical
level 0.001, 0 X ? achieved a reasonably high power of over 0.79. Here and throughout, Anderson’s
statistic performed unimpressively—usually worse and never better than § (except for n = 2).
But for each critical level and for ail sufficiently long strings (n > 1024), all statistics performed
indistinguishably with perfect power.

In Figure 14 and Table 3, oML dominated the other statistics at distinguishing uniform noise
from BCa English, for string lengths n > 8. The statistics IC, and oIND, X2, and § also
performed relatively well. The strong performance of IC and oIND was expected: 7C is designed
to recognize uniform noise, and IND is designed to distinguish Oth-order language {which includes
uniform noise) from tst-order language (which we use to model BCa). We were surprised, however,
that oML outperformed I'C since ML is designed fo recognize BCa. We attribute this relatively
better performance of oML over IC to the fact that oML depends on BCa transition probabilities
whereas ¢ does not. As happened in Figure 13, for all critical levels and for all sufficiently long
strings (n > 1024), all statistics performed indistinguishably with perfect power.

When distinguishing uniform noise from BCa English, the relative performance of the statistics
varied depending on the critical level. For example, X2 and § outperformed IC at critical level 0.1
but not at level 0.001, with the greatest difference in power between /(' and 5§ occurring at short
string lengths and low critical levels. By contrast, when distinguishing BCa English from uniform
noise, raising the critical level increased the power of all statistics but had little effect on their
relative performance.

For test statistics o X2, oML, §, and In A, for the same critical level, as high or higher power was
attained by distinguishing BCa English from uniform noise than by distinguishing uniform noise
from BCa English. In particular, for short strings (» < 16) and all critical levels, significantly higher
power was so attained using the best statistic for each problem (0X* and oML, respectively). The
implication to the practitioner, however, depends on the application. For example, when recognizing
valid plaintext in cryptanalysis, typically the cryptanalyst will set the threshold on the basis of
minimizing the chance of overlooking valid plaintext. Thus, when distinguishing BCa English from
uniform noise, the cryptanalyst will start with a desired critical level. But when distingunishing
uniform noise from BCa English, the cryptanalyst will pick a critical level that achieves a desired
power. Therefore, for this application, the choice of which of these two hypothesis testing problems
to use cannot be decided from Figures 13 and 14 alone. In addition, this choice will also depend
on other factors, such as the cryptanalyst’s degree of belief in what plaintext language was used.

For test statistics JC and oIND, however, higher power was attained when distinguishing uni-
form noise from BCa English. This behavior results from the fact that each of IC and oIND has
a much smaller variance on uniform noise than on BCa English, as observed in the histograms.

In all of our power calculations, as expected, the equivalent statistics S, S/, and § achieved
nearly identical powers (typically through at least three decimal places). For this reason, Tables 2-5
do not list powers for S/N or 4. We attribute the minor differences in their powers to experimental
approximations, possibly due to approximations in computing tail areas of the normal distribution
and our method for estimating observed power. Similarly, the equivalent statistics JC' and IC,
also achieved very close statistical powers.

We also computed observed powers for distinguishing Oth-order BCa from lst-order BCa (see
Figure 16 and Table 4 from our technical report [17]). At all critical levels, the statistics 5 and
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Figure 13: Power of the test statistics oX 2 oML, ¢IND, §, IC, and In A at distinguishing
BCa English from uniform noise at critical level 0.01 for strings of various lengths. Power was

approximated from 10,000 randomly chosen strings at each length. Base language is BCa.

Table 2: Power of six test statistics at distinguishing BCa English from uniform noise at critical

levels 0.1, 0.01, 0.001, 0.0001 for string lengths n = 16, 32, 64. Base language is BCa.

lgn Critical Level  oX® oML oIND S Ic In A
4 0.1000 0.9350 0.9462 0.3834 0.9009 0.0477 0.7452
4 0.0108 0.9183 0.8509 0.0839 0.8214 0.0000 0.6281
4 0.0010 0.9042 0.7338 0.0150 0.7433 0.0000 0.5333
4 (.0001 0.8914 0.61I0 0.0024 06677 0.0000 0.4536
5 0.1000 0.0823 0.9991 0.8894 0.9786 0.3168 0.8667
5 0.0G100 0.9747 0.9940 0.5501 08523 0.0002 0.7831
5 0.0010 0.9676 0.9804 0.2494 0.9200 0.0000 0.7062
5 0.0001 0.0607 0.954¢  0.0906 0.8828 0.0000 0.6349
6§ 0.1000 0.9981 1.0000 (.9996 0.998% 0.9988 0.9588
6 0.6100 0.9969 1.00060 0.9815 0.9966 0.1466 0.9205
6 0.0010 (1.9956 1.0000 ©.8723 0.9927 0.0000 0.8787
6 0.0001 0.9942 1.0000 0.6390 0.9868 0.0000 0.8341
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Figure 15: Power of the test statistics oX?%, oML, oIND, 5, IC, and In A at distinguishing BCa
English from uniform noise at critical level 0.01 with various amounts of added uniform noise for
strings of length n = 128. Power was approximated from 10,000 randomly chosen strings at each

noise level. Base language is BCa.

Table 4: Power of six test statistics at distinguishing BCa English from uniform noise at critical
levels 0.1, 0.01, 0.001, 0.0001 for strings of length n = 128 at noise levels 10%, 20%, and 30%. Base

language is BCa.

% Added Noise Critical Level o X2 oML oIND S c Ind
10 6.1060 0.0754 1.0000 1.0000 0.9993 1.0000 0.9557
10 06.0100 0.8038 1.0000 0.9893 0.9956 0.0916 0.8840
10 0.0010 0.7645 1.0000 0.8203 0.9859 0.1807 10.7951
10  0.0001 0.6132 1.0000 0.4372 0.9672 0.0001 0.6981
20 0.1000 0.8007 1.0000 0.0088 0.9836 1.00086 0.8276
20 0.0100 0.8735 0.9907 0.8845 0.9212 0.6852 (.6301
20 0.0010 0.4519 0.9950 0.4412 0.8122 0.0157 0.4540
20 0.0001 0.9774  0.9709 0.1047 0.6745 0.0000 0.3141
30 0.1000 07687 0.0093 (.9853 0.9005 0.9897 0.6367
30 0.0160 0.4733 0.9797 0.6396 (.6948 0.2796 0.3735
30 0.0010 0.2560 0.8872 0.1653 04772 0.0034 (.2078

30 0.0001 0.1281 0.6999 0.0193 0.3002 0.0000 0.1115
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4.4 Discussion

We now discuss several issues raised by our power calculations.

o First, in Figures 13 and 14, the power curve for ¢/ND has an unusual downward spike at
string lengths n = 256, 512. In addition, the IC' power curve in Pigure 13 has an upward spike at
n = 4. The ¢IND spikes are most prominent when distinguishing BCa from uniform noise (a task
for which IND was not intended), and absent when distinguishing Gth-order BCa from 1st-order
BCa (a task for which IND was explicitedly designed). When distinguishing uniform noise from
BCa, the ofND spikes are present but less pronounced.

When we had first observed the ¢IND spikes from our initial run of Experiment 1, we had
suspected that they might be statistical anomalies due to our small sampling size of b = 100.
But the spikes reappeared when we repeated Experiment 1 with A = 10, 000. Moreover, from the
repeatability of the phenomenon, we cannot simply attribute the spikes to statistical anomalies or
to weak pseudorandom number generators. Similarly, given the short and moderate lengths of the
affected strings, we cannot attribute the spikes to overlapping strings. From the means of cIND
in Table 10 of Appendix B [17], however, we find a partial explanation: For 3 < n < 512, the
observed means for ¢IND are less on BCa than on uniform noise, but for n > 512, the means are
greater on BCa than on uniform noise. The oIND spikes correspond to this “crossing of the means”
at n = 512. We find this phenomenon puzzling, and we do not have a good explanation for the

isolated IC spike.

¢ Second, it would be inferesting to compare our power results with previous related power
calculations from other researchers. Unfortunately, we are not aware of any such prior work that
would permit a direct comparison. We can, however, make some informal comparisons with the
work of Baldwin and Sherman [3], and with that of Davies and Ganesan [12].

In their solution of the Decipher Puzzle, Baldwin and Sherman recognized standard English
versus Oth-order English with the $ statistic using a 26-state 1st-order model of English with
transition probabilities published by Beker and Piper [4]. Each of their input strings consisted of
a sequence of approximately ten independent bigrams, and they rejected strings for which |5’ | > 4.
Thus, they worked with at a critical level less than 0.0001. Although Baldwin and Sherman did
not compute power, they found that their test worked “very we ” in practice for their application.
By contrast, when distinguishing BCa from uniform noise at level 0.001 for strings of dependent
bigrams, we observed the power of § to be 0.5256 for » = 8 and 0.7433 at n = 16. Thus, our power
calculations seem somewhat pessimistic in comparison to the experience of Baldwin and Sherman.

In their BApasswd checker, Davies and Ganesan used an equivalent variation of the 5 statis-
tic in a 27-state 2nd-order model, estimating their own transition probabilities with the Good-
Turing method [19]. Davies and Ganesan rejected bad eight-letter passwords using experimentally-
determined thresholds. Although they did not compute power, it is possible to estimate power from
their reported data for distinguishing uniform noise from valid English. For example, consider their
dictionary file BP6 (bad passwords) as valid English, and consider their file GP1 (good passwords)
of randomly-generated passwords with the letters ‘A’—*7’ as uniform noise. According to their
Figure 7 [12], using their threshold, their test accepted 96.26% of the random GP1 passwords as
noise {corresponding to a critical level of (.0374), while accepting only 12.29% of the English words
in BP6 as noise {corresponding to a power of 0.8781). By contrast, when distinguishing uniform
noise from BCa at critical level 0.1, we observed the power of S to be 0.3676 at n = 8 and 0.9997
at n = 16. Thus, our power calculations also seem pessimistic in comparison to the experimence of
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0.0001. Even at critical level 0.0001 and short string length n = 8, X? attained a reasonable
power of approximately 0.77.

For distinguishing uniform noise from BCa English, ML had the overall best performance,
with IC, X2, §, and IND also performing well. At critical levels 0.01 through 0.0001 7
attained higher power than did X? (and than did ML for n < 8), but at critical level 0.1
X2 performed better than did IC. For string lengths n < 128, we recommend using ML for
critical levels 0.1 through 0.0001. For » > 128, each of ML, [ C, X?, § worked perfectly at
these critical levels. At n = 32 and critical level 0.1, ML achieved a power of over 0.99.

For distinguishing BCa English from uniform noise using strings of length n = 128 corrupted
with uniform noise, MJ outperformed the other statistics at all critical levels. At critical
levels 0.01 through 0.0001, § had the overall second-best performance. We recommend using
ML for this problem. At n» = 128 and critical level 0.01, the power of ML rerained above
0.8 through noise level 40%. For noise levels 0%-15%, ML had attained power greater than
0.99 at critical levels 0.1 through 0.0001; for noise levels 70%-100%, all statistics had power
less than 0.5 at these critical levels.

For distinguishing uniform noise from BCa English using strings of length n = 128 corrupted
with uniform noise, ML had the overall best performance, with IC' and IND also performing
well. We recommend using ML. The performance of ML on this problem was very similar to,
and slightly better than, its performance at distinguishing uniform noise from BCa English

ander noisy conditions.

The § statistic outperformed Anderson’s variation of it, except when distinguishing BCa En-
glish from uniform noise at string length n = 2. Therefore, we do not recommend Anderson’s

variation.

For n < 128, our four types of real English (BCa, BCf, BCg, and WSJ 1) had similar means
for all statistics. For longer strings, the statistics could distinguish BCa, BCf, and WSJ1 on

the basis of their means.

Strict standard normal interpretations of the normalized statistics X 2, oML, and ¢IND do
not apply, except when recognizing long strings of a known simulated lst-order language. For
best results, use experimentally-determined thresholds for all statistics, including S and / .
These thresholds can be computed as explained in Section 3.5.

As expected, the performance of all statistics on BCa English closely matched their perfor-
mance on simulated Ist-order BCa Fnglish. In this sense, our lst-order statistics are robust
with respect to our lst-order model. Nevertheless, minor differences can be seen in their
histograms {e.g. lst-order language produced more symmetrical and bell-shaped distribu-
tions). In addition, to human observers, our 1st-order BCa strings do not closely resemble

real English.

Complete experimental data, including additional descriptive graphs and power calculations, are
given in the supplemental appendices of our technical report [17].

Using an exploratory, descriptive approach, we have exposed general trends and uncovered
interesting phenomena. We consider these trends and phenomena more important than our partic-
ular numerical results, since models and languages vary with the application, and since our power
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