
8th ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA’13), JUNE 4-5, 2013, ALBANY, NY

ASIA ’13 - 46

Abstract—Packet filtering is a central facet of cyber defense

used to detect adversarial activity on a network. Detection stems

from defensive efforts to discover new attack indicators, and

efforts to share indicators with collaborating partners. There are

instances where the sensitive nature of an indicator prohibits

outright disclosure. Our private packet filtering language adapts

the concept of private stream searching, and defines a new

capability to filter packet data without revealing the indicator or

result. The syntax of the language, the code to generate a private

query, search and result, and the semantic constraints enforced

by the language are presented. A cyber defender retains control

of sensitive indicators, and coordinates a response action without

revealing every indicator to the partner or risk disclosure to the

adversary.

Index Terms—Cyber Defense, Data Privacy, Oblivious

Transfer, Packet Filtering, Private Search, Security Language

I. INTRODUCTION

HE DISCOVERY of new cyber-attack indicators requires

significant effort and expense. To ensure the greatest

benefit, cyber defenders share new indicators with other

collaborating partners (e.g., government and industry,

corporations and their international subsidiaries.) However,

indicators may be improperly disclosed by a partner, or

exposed during an intrusion. This gives the adversary an

opportunity to change their Tactics, Techniques, and

Procedures (TTPs), reducing the value of the indicator. The

defender is faced with a challenge. There is a need to share

indicators and a requirement to control their dissemination.

Our contribution recognizes the association between this

defensive challenge, and the capability provided by private

stream searching. Specifically, we adapt the private search

capability presented by Rafail Ostrovsky and William Skeith

in 2005 [1], [2], and create a language for private packet

filtering. Our high level language preserves the confidentiality

of the indicator, and packets returned by the search.

Using our language, the defender constructs a query

consisting of sensitive indicators, encrypts the query, and

transfers the encrypted query (a filter) to the partner. The

partner performs a private search on a stream of packets, and

returns encrypted packets. If a matching packet is discovered,

the defender notifies the partner of the adversarial activity, and

coordinates a response. In this collaborative environment, the

Michael Oehler, Dhananjay Phatak, and Alan Sherman are with the Cyber

Defense Lab, Department of Computer Science and Electrical Engineering,

University of Maryland, Baltimore County, Baltimore, Maryland 21250
(email: {oehler1, phatak, sherman}@umbc.edu).

defender maintains situational awareness of adversarial tactics,

controls which attack indicators are revealed, and advises the

partner of current threat activity. This is a new scenario for

cyber defense and private search.

The design of the language is intuitive and readable. For

example, five lines define the cryptographic structure for a

private search. Additional indicators and output buffers can

also be specified in this structure. A single query can select

different types of indicators and filter complex packet streams.

This ability to search multiple indicators privately is unique.

Ostrovsky defined private stream searching. Bethencourt

[3], [4] and Danezis [5] improved the storage efficiency of the

output buffer. Yi constructed a conjunctive search [6], and

Finiasz integrated Reed-Solomon codes with private searching

[7]. We are also aware of Bethencourt's toolkit for private

searching [8]. A high level language for private stream

searching has not been previously formalized.

We name the language PPF for Private Packet Filtering.

II. PRIVATE STREAM SEARCH

In this section, we describe the salient features of private

stream search. The terms, client, provider, document, and

keywords are a generalization. Their use provides clarity, and

permits an illustration of private search. In our context, these

terms map to defender, partner, packets, and attack indicators,

respectively. Last, the term, filter is retained, and a resulting

collision in nomenclature is discussed at the end of this

section.

A private search system preserves the confidentiality of the

search criteria, and involves a client, and one or more

information providers. A client generates a query, the provider

performs the search, and delivers a response back to the client

without gaining knowledge of the query or the result. The

naïve approach transfers an entire data set from a provider to

the client. Admittedly, this approach conceals the query from

the provider. Ignoring bandwidth costs and a required client-

side search, few providers would relinquish an entire data set

(As an example, a partner is unlikely to divulge all network

activity.) Alternatively, if the search criteria were kept secret,

but knowledge of the result was evident, the structure of the

query could be inferred. This is also unacceptable.

These concepts establish the fundamental properties of a

private search system: the provider gains no knowledge of the

query, cannot infer information about the query from the

result, and client access is limited to results matched by the

A Private Packet Filtering Language for

Cyber Defense

Michael Oehler, Dhananjay S. Phatak and Alan T. Sherman

T

8th ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA’13), JUNE 4-5, 2013, ALBANY, NY

ASIA ’13 - 47

query [9].

Ostrovsky and Skeith created a clever private search system

using (partial) homomorphic encryption [1], [2]. The system

preserves the confidentiality of the search criteria, the result,

and allows the client to match a document on a disjunction of

keywords. The system is based on the asymmetric

cryptosystem defined by Paillier, and utilizes the additive

homomorphic property of the cryptosystem [10]. The cipher

text from the Paillier cryptosystem is randomized. Thus, an

encrypted value will be indistinguishable from another, even

the same value, using the same public key. For instance, the

encryption of () is indistinguishable from some other value

of ().

The client creates a list of encrypted ones and zeroes,

corresponding to keywords of interest and non-relevant terms

from a public dictionary; an encrypted filter. The client sends

the filter and dictionary to the provider.

The provider performs the search by calculating a product

of entries taken from the filter that associate with words in a

document, an exponentiation, and a second product to save

results to an encrypted output buffer. These calculations are

performed on encrypted values (in the encrypted domain.) The

provider is thus, unaware of the query or search-result.

Furthermore, multiple documents may be stored in the buffer,

creating a system that streams results, a private stream search

(PSS) system.

Table I illustrates a simplified example. Consider a public

dictionary with five words, and a filter containing five

encrypted values. The fourth entry is an encrypted one ()

and expresses a private keyword that associates with “sorbet”.

The provider constructs the buffer . The search entails a

single document . A product of filter entries and ,

corresponding to words existing in the document and

dictionary is calculated, and the exponentiation (A product of

encrypted terms is equivalent to a summation of plaintext

terms.) The provider then randomly selects a buffer position

 . Results are saved to the buffer as a pairwise multiplication.

The client decrypts the buffer, and recovers the document.

We transition to terms related to cyber defense (defender,

packet, indicator), but will emphasize that the role and

meaning of the encrypted filter is retained. In fact, an

encrypted filter is integral to private search; “filter” appears as

part of our syntax. A collision occurs when referring to a

“packet filter.” We define a packet filter as a graph of nodes

(variables) used to select certain packets that are then sent to

the private search system. For instance, a defender may not be

interested in packets destined to common IP addresses. A

packet filter could be constructed to disregard these packets,

before sending the remaining stream of packets to the

encrypted filter.

Our language parallels the three phases of a private search,

and this is reflected in Table I with a reference to a code

listing. The syntax and role of each listing is discussed next.

III. A PRIVATE PACKET FILTERING LANGUAGE

To introduce the central features of the language, we work

through an example that searches for a sensitive indicator, a

single Internet Protocol (IP) address.

Fig. 1 contains the code for query generation. This file is

constructed by the defender, who defines the cryptographic

TABLE I

AN ILLUSTRATION OF PRIVATE STREAM SEARCHING

Client (Defender): Generates the query:

Define a public dictionary:
Construct an encrypted filter: () () () () ()
Send and to the provider.

Provider (Partners): Performs the search:

Construct an encrypted buffer: { () () () () }
Search using this document:

Calculate a product of filter terms:
 ∏

 () () ()

Calculate the search result as the exponentiation: () ()
Save the result to a buffer position:

 { () () () () }

 () ()

Return the buffer to the client: { () () () () }

Client (Defender): Processes the result:

Decrypt the buffer: ({ () () () () })

 { }

Recover the matching document:

See Fig. 1

See Fig. 2

See Fig. 3

8th ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA’13), JUNE 4-5, 2013, ALBANY, NY

ASIA ’13 - 48

structures, indicators, and packet filter. The indicators stored

in this code will remain private. The defender uses our parser

to transform the query to a public form. This public code

defines the private search, and is transferred to the partner.

When all packets are searched, the partner transmits an output

buffer of encrypted packets to the defender. The search is

finished.

The creation of the query, the transformation, transfer,

resulting packets, and any response action define the

supporting process for an overall system. Our objective

focuses on the definition of the language to support this

process.

A. Query Generation

Fig. 1 shows the code for query generation. There are three

portions: declarations, assignments, and an expression of a

packet filter. For clarity, each portion is preceded by a

comment, represented by the pound symbol.

Fig. 1. Query generation: sensitive indicators kept private.

Declarations: Variables are declared before use. Each is

given a type, and may be followed by a qualifier. Furthermore,

variable declarations are structured either to bind the

cryptographic relationship of the filter variables, or to

establish the function of a packet filter.

There are two declarations in Fig. 1:

 and . The first

declaration expresses a public Paillier key, and is structured

such that an output buffer and two encrypted filters are bound

with the key. The qualifiers on the filters indicate that

destination IP addresses will be searched. This key declaration

establishes the cryptographic relationship used for a private

search.

We note that the defender and partner use this public key to

encrypted the filter and buffer respectively. The partner also

uses the public key to perform the search. The defender uses

the private key only to decrypt the buffer. This use of keys

differs from that in a traditional public-key cryptosystem,

which encrypts and decrypts a single document.

The second declaration establishes the packet filter.

Specifically, we express a packet filter as a graph of nodes and

edges. In this example, the graph variable is named ,

and includes the definition of four nodes, strictly four

variables, one for data input, and three for data reduction. Data

input is represented by the source declaration, and in this case

input from a file is inferred: . The

remaining four declarations define whitelist nodes to discard

packets of non-interest: , , and .

These node (variable) declarations will be bound with a

filter variable via edge assignments. Together, all variables

form a path, express a specific packet filter, and produce a

private search system.

Assignments: The four assignments initialize the public

key, a filter variable, and two whitelist variables. The public

key is included from a file, and contains the modulus and

public random integer, the public parameters of the Paillier

cryptosystem. The filter variable, contains a sensitive

indicator (A single IP address is used as a demonstration.

Filter assignments typically contain a list of many indicators.)

The remaining whitelist assignments depict two destination

addresses, and a net block of source addresses to exclude from

the private search.

Packet Filter: The final portion of Fig. 1 depicts the edge

assignments of the packet filter. Variables are interconnected

via the “−>” operator. We also introduce a sink operator, “::”

to bridge nodes defined in the graph variable and that of the

encrypted filter. The operator forms a path from the input

source, , passes packets through two whitelist variables,

and then sinks packets in the filter variable, where

the private search is performed. When executed, results are

placed into the output buffer, that was previously

related with the encrypted filter.

The network defender submits the code to the parser,

transforms the indicators into a public form, and sends this

public code to the partner.

B. The Search

The partner uses the public form of the code for the search

as shown in Fig. 2. This listing displays a few alterations: The

assignment of the filter variable, , references an

included file, . This file contains the encrypted

values of the indicators, and is also publicly releasable. A

default assignment for the input variable, , will prompt

the partner for the name of a packet capture (PCAP) file.

Two additional lines define processing parameters for the

output buffer. These parameters are produced by the parser in

D e c l a r a t i o n s

key public paillier kPub {

buffer outputBuf {

filter in_addr dst malSite;

filter in_addr dst c2IP

}

};

graph myGraph {

source file inFile;

whitelist in_addr dst whList;

whitelist in_addr src whtLst2;

whitelist port dst whList3

};

A s s i g n me n t s

kPub = { include "kPub.key" };

malSite = { 69.25.94.22 };

whList = { 192.168.0.0/16 };

whList2 = { 10.10.10.0/24, 11.11.11.11 };

A p a c k e t f i l t e r

myGraph = {

inFile −> whList −> whtLst2 :: malSite

};

8th ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA’13), JUNE 4-5, 2013, ALBANY, NY

ASIA ’13 - 49

lieu of a buffer assignment. The parameters specify the size of

the buffer and that the partner's system constructs the buffer

locally (i.e., The partner's system will encrypt a list of 1024

zeroes using the public key associated with the buffer.)

Fig. 2. The Search: public code for private packet filtering.

C. The Result

After completing the search, the partner's system will create

an output file consisting of a PCAP header, represented by

 and a buffer. The partner sends this file to the

defender, who decrypts the buffer and assembles the matching

packets into a PCAP file. The defender can then use additional

packet processing tools. For brevity, only one ASCII hex

value from the buffer is displayed in Fig. 3:

Fig. 3. The Result: an encrypted output buffer.

Our application of private search exercises a special case.

When a packet is searched, a single indicator (the destination

address in this example) from a packet is tested against the

encrypted filter. No more than one indicator can match for any

given packet. Whereas in the general case, multiple words

from a document could match, which scales a document by a

constant factor. In our case, this scaling factor will be one, and

does not have to be transferred to the defender. Our output

buffer can thus, be initialized as a simple list of encrypted

zeroes, and returned as a list of encrypted results without

scaling.

IV. SYNTAX AND SEMANTICS

This section presents the formal syntax, private comments,

processing parameters, and describes two principal and

semantic tests: the variable and packet filter check.

Definition of the Syntax: The Appendix presents the

syntax of the language in a traditional Backus-Naur Form

(BNF): nonterminals are represented in a braced form,

“<nonterminal>”, and productions are presented with a single

nonterminal on the left side of the “composed of” operator,

“::=”. Reserved words are in boldface. The syntax deviates

slightly from tradition with the utilization of a regular

expression range operator, and a repetition operator, for

example “[a-z]” and “[0-9]{1,3}” to represent characters from

the alphabet, and one to three digits, respectively.

Optional items (qualifiers) are bounded by square brackets.

Curly braces “{” and “}”, are terminals used to delimit the

declaration of a key, buffer, or graph variable, and additionally

when a list of values is required. We also use a state

designator to bind the context of an assignment. For instance,

the value assignment for an IP address variable is restricted by

the “$ipInputState” designator. Finally, the start symbol,

 defines our language as statements of

declarations, assignments, and comments.

Private Comments: Within the syntax, there is a notion of

public and private comments. When manipulating sensitive

indicators, defenders are likely to attribute activity by

intelligence source, origin, and by other characteristics of a

named intrusion set. These comments need to remain private,

are designated by a double pound, “##”, and removed by our

parser. Public comments, those that can still add clarification

and can be sent to the partner, are defined by a single pound.

For instance, the private comment in Fig. 4 identifies the

indicators and attributes these indicators to a named threat

actor. They are removed. The public comment remains in the

D e c l a r a t i o n s

key public paillier kPub {

 buffer outputBuf {

 filter in_addr src malSite

 }

};

graph myGraph {

 source file inFile;

 whitelist in_addr dst whList;

 whitelist in_addr src whList2

};

A s s i g n me n t s

kPub = {

 include "kPub.key"

};

malSite = {

 include "malSite.fltr"

};

inFile = {

 "Enter a PCAP Filename: "

};

whList = 192.168.0.0/16;

whList2 = { 10.10.10.0/24, 11.11.11.11 };

outputBuf.bufferSize = 2048;

outputBuf.production = local;

G r a p h E x e c u t i o n

myGraph = {

 inFile -> whList -> whList2 :: malSite

};

T h e o u t p u t b u f f e r : A P C A P h e a d e r

a n d a n e n c r y p t e d b u f f e r

outputBuf={

 0xa1b2c3d4…,

 {

 0x112233445566778899aa…

 }

};

8th ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA’13), JUNE 4-5, 2013, ALBANY, NY

ASIA ’13 - 50

parsed version of the code. As a semantic rule, public

comments are associated with the next variable, and in their

order of appearance.

Fig. 3. Public and private comments.

Processing Parameters: Processing parameters define

additional options.

The code fragment in Fig. 4 also depicts a processing

parameter: the statement indicates that

the variable name will be obfuscated in the public code (an

obfuscated variable name is expressed as the Base64 string of

a cryptographic hash.) This facet reduces a burden on the

defender. Variable names can conform to practice, readability,

and operational context in the private form, and presented in a

non-revealing manner in the public form of the code.

In this instance, the obfuscation was localized to a specific

variable. If the variable name had been excluded, the

processing parameter is applied globally. For instance,

 , obfuscates the names of all variables.

The design includes three parameters that can be used by

any type variable, , , and , four

parameters for buffer variables, and one for filter variables.

The parameters are shown in Fig. 5.

Fig. 4. Processing parameters for variables

The parameter sets the working directory for output,

and indicates whether a variable's assigned data

will be saved to an include file or inline with the code.

The parameter establishes the number of

entries in an output buffer. The parameter

indicates where the buffer is produced, either locally on the

defender's system, or remotely on the partner's system. The

 parameter specifies whether an initial copy of the

buffer can be used again, after the maximum number of buffer

insertions is reached. This threshold is expressed as a

multiplicative factor of the buffer size, and specified by the

. parameter. The parameter scales the filter,

to reduce false positives. These parameters are discussed

further in Section V, Facets of Design.

Variable Assignment Checks: After declaration, variables

are assigned and then used in a packet filter, via edge

assignments. These two states assigned and on a path, are

tracked as part of the transformation to the public form of the

code. A warning or error is generated if either one of these two

states is not met, and as shown in Table II.

If a variable is not on a path, (the variable is not used in a

packet filter), the variable is deemed unused, even if data has

been assigned to the variable. A warning will be issued,

indicating that the variable must be part of a packet filter, and

then removed from the public code. This exclusion has no

effect on the private form of the code, minimizes structure in

the public code, and does not alter the intent of the search.

This was the case for the whitelist variable, and the

filter, from Fig. 1. Neither variable appears in Fig. 2. A

greater challenge occurs when a variable is left unassigned,

but used in the graph. This condition results in an error or

warning, depending on the type of variable.

A design decision was made to produce an error when an

unassigned filter variable is used in a graph. The error halts

processing. While it is possible to construct an encrypted filter

without search criteria, the search would consume resources

without producing a result. This seemed inefficient, but in a

strict sense, this decision precludes the ability to perform a

null or empty search.

When a node variable is left unassigned, but utilized in a

graph, a warning is issued. However, the variable, its

declaration, and use in the graph remain. Packets pass through

this unassigned node, when the packet filter is executed, and

without modification. This is a design decision to support a

no-operation (no-op). As packets traverse the packet filter, the

no-op imparts little impact.

Packet Filter Validation: The semantic check for graph

correctness assures that a path starts at a source variable and

sinks to a filter variable. The in-degree of each node must be

one, excluding source nodes which have an in-degree of zero.

A filter variable cannot connect to another variable. This

prohibits feedback loops in the packet filter. These rules are

depicted in Figure 1 with three packet filters and their visual

representations for clarification. The variables are from Fig. 1.

The packet filter in Fig. 6-a for is correct. The edge

assignments start at a source variable, , and sink to the

M a l i c i o u s h o s t s a t t r i b u t e d t o n a m e d

t h r e a t a c t o r , F u z z y B u n n y

A f i l t e r a s s i g n m e n t

malSite.obfuscate=true;

malSite={ 69.25.94.22 };

A p p l i e s t o a l l v a r i a b l e s

. cwd = <aDirectoryPath>

. datamap = [include | inline]

. obfuscate = [true | false]

A p p l i e s t o b u f f e r v a r i a b l e s

. bufferS ize = <integer >

. production = [remote | local]

. reuse = [true | false]

. trigger = <integer >

A p p l i e s t o f i l t e r v a r i a b l e s

. expand = <integer >

TABLE II

VARIABLE ASSIGNMENT CHECKS

Variable Assigned? On Path? Result

filter

No

No

Yes

Yes

No

Yes

No

Yes

Warning Unused

Error. Halt

Warning Unused

OK. Encrypted Filter

node

No

No

Yes

Yes

No

Yes

No

Yes

Warning Unused

Warning No-Op

Warning Unused

OK. Use in Packet Filter

8th ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA’13), JUNE 4-5, 2013, ALBANY, NY

ASIA ’13 - 51

filter, . The in-degree of each node is one. This is a

valid packet filter. Fig. 6-b also has a correct syntax, specifies

a source and sink, and has valid edge assignments. A warning

though will be issued, since whList3 was not assigned any

data. An error is additionally issued and processing halted

since the filter variable, was not assigned; notice that no

indicators for this variable appear in Fig. 1. Fig. 6-c

demonstrates an invalid path because the in-degree to the filter

variable is two. Processing is halted.

Last, we note that our graph representation is similar to the

edge operator (edgeop) for directed graphs in the GraphViz

language [11], [12], and the ability to select, direct, and reduce

traffic volume is a common data processing paradigm. For

example, the rwfilter command selects specific Netflow

records in the SiLK tool suite, and the rwsender command

creates a tee, directing data to multiple receivers [13], [14].

Our graph processing approach also shares functional

similarities with Unix pipes.

Fig. 6. Three representations of a packet filter.

V. FACETS OF DESIGN

There are some design decisions that are reflected and

apparent in the syntax. In this section, we will address the less

apparent decisions, including how filter entries are referenced,

a filter size is selected, and how a buffer is managed.

Encrypted Filter References: In the original private search

system, entries in an encrypted filter were associated with a

public dictionary of words [1]. Consider the contrived public

dictionary from Table I.

This is an example of the inference problem, forming

conclusions from premises without authorization [15].

While the associated entries in the filter are encrypted,

precluding exposed interest in the keyword “sorbet”, the

overall interest in frozen desserts is evident. For this reason, a

dictionary is assumed to be diverse, if not unabridged. The

solution works for common nouns, general terminology, etc.

However, proper nouns and domain specific terms are not as

easily obfuscated. Exposure in a small set may be sufficient to

divulge knowledge, and enumerating the full set may not be

possible.

Indicators are domain specific and cannot be exposed in a

public dictionary, even if the indicators were intermingled

with a large number of unrelated (chaff) indicators. The

adversary need only look for their address, domain name, etc.

Furthermore, it may not be possible to enumerate every

indicator. Our design does not reference filter entries through

an association in a public dictionary.

Bethencourt detailed a method to eliminate the dictionary

[4]. The value of a truncated cryptographic hash is utilized as

an index into the filter, and the one-way property of the hash

assures that the keyword cannot be inferred. A cryptographic

hash will also exhibit a uniform response for all inputs,

assuring that index values are generated uniformly. Our design

utilizes this approach when referencing filter entries.

There is a drawback. That is, for a given hash function

 () and two words, and , hash values may collide

 () (). This is not (generally) an issue for full-

length cryptographic hash values, but the reduction of the hash

space will introduce false positives.

Filter Expansion: To counter false positives, the filter size

must be increased to an acceptable size. We use an expansion

factor relative to the number of indicators. Unfortunately, this

leads to a quadratic relationship in the size of the filter. A

defender analyzing a thousand IP indicators across multiple

intrusion sets, and in an environment which requires little or

no spurious access to data, for instance at a rate of one in a

thousand, produces a filter of a million entries.

Filter expansion is reflected in the design as the

processing parameter for filter variables (Fig. 5). The

parameter indicates the proportional expansion of indicators to

determine the size of the filter. The parameter is not presented

in the public form of the code so that the number of sensitive

indicators cannot be immediately deduced.

Buffer Management: Some packets will match on an

encrypted indicator in a filter, and will be returned as an

encrypted result in the output buffer. Other packets will not

match; the result of this non-matching search is an encrypted

zero. Informally, an output buffer is not changed when a zero,

in the plain text domain, is added to the buffer. However, the

partner is unable to detect whether a packet matched and is

stored to the buffer, or not. Since the result is encrypted, this

leads to a conundrum. The partner does not know what was

myGraph {

 inFile whList whList2 :: malsite

};

(a) Valid assignment and path

myGraph {

 inFile whList whList2 :: malsite;

 whList whList3 :: c21P

};

(b) Valid path, but unassigned filter error

myGraph {

 inFile whList whList2 :: malsite;

 whList whList3 :: malsite

};

(c) Invalid Path: In degree of 2 is invalid

whListinFile whList2 malSite

whListinFile whList2 malSite

whList3 c2IP

whListinFile whList2 malSite

whList3

8th ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA’13), JUNE 4-5, 2013, ALBANY, NY

ASIA ’13 - 52

stored, which buffer positions are available, or when to stop.

Current storage strategies thus, employ a randomized

approach that is fundamentally based on the color survival

theorem. Ostrovsky gives a formal presentation of this

theorem [1], but intuitively, the strategy saves the result to a

few randomly selected buffer positions. The occurrence of

multiple copies will perpetuate the survival of at least one

copy. A non-match has no effect on the buffer. In Ostrovsky's

approach, the client recovers documents from the buffer by

decrypting, and then searching for surviving documents.

However, at the buffer's limit, some positions may be chosen

multiple times, eliminating surviving copies. The recovery

algorithm has a non-zero probability that all copies will be

overwritten. Large buffers may minimize this condition, but

this results in storage inefficiencies.

Subsequent research has sought to improve the document

storage algorithm and therefore, document recovery rates. The

research recognizes that a collision in a buffer position results

in a linear combination of documents, and as a direct result of

the homomorphic property of the Paillier cryptosystem.

Information is not entirely destroyed, only obscured. Research

has thus, qualified external structures, additional processes,

and leveraged the redundancy of multiple copies to extract

documents that were not recoverable in the original approach.

Bethencourt deconstructs the linear combination through a

series of linear equations, but requires a second encrypted

buffer [4]. The second buffer acts as a Bloom filter, when

decrypted, and validates a document's membership in the

output buffer. This knowledge can then be used to establish a

system of linear equations to solve.

Danezis presents a (simple) iterative method: identify the

singletons, calculate the positions that those documents were

stored too, subtract the document value from those buffer

positions, and repeat until no further singletons are discovered

or the buffer is empty [5]. The use of the term, singleton was

defined by Finiasz for this context [7]. The approach does

require a function that duplicates document positions by the

defender and partner. A (truncated) hash of incremented

document values was suggested:

 () () () () ,
for each document and for a pre-determined number of

copies . This algorithm replaces Ostrovsky's randomized

approach for buffer position selection. Danezis's iterative

method achieves full recovery when three document copies

are utilized, and the total number of matching-documents

inserted into the buffer does not exceed half the buffer size,

 .
As a design decision, our prototype utilizes Danezis's

iterative method to recover documents from the buffer. The

simplicity and acceptable recovery rates justified use.

However, this still does not address when the provider should

stop inserting results into a buffer. If we abide by the

theoretical results, a buffer, twice the size, is returned after

every “m” insertions. This is unacceptable when the majority

of packets never match.

We resolve this issue with a processing parameter,

 . The parameter specifies the number of insertions as

a multiplicative factor of the buffer size, for example 100,

1000, or 10000 insertions occurs before returning the buffer.

VI. EXPERIMENTATION

We implemented a working model of the language. Our

prototype consists of a lexical analyzer (Flex), a Bison parser,

C++ code, and used Mathematica for the private search

operations.

The result is three programs, ppf-generate, ppf-search, and

ppf-recover that derive from a single code base to generate the

query, perform the search, and retrieve results.

One challenge remained. We needed an experimental

dataset, and one that does not impinge on operational data. We

acknowledge the pursuit of a standardize corpora for security

research [16]. While Garfinkel's focus is on digital forensics,

his scenarios include network datasets, including the “Nitroba

University Harassment Scenario” [17]. This data set contains

91,144 IP packets.

Fig. 6 shows the execution of the private search detailed in

this paper. The listing depicts a collaborative environment

consisting of a defender and partner system, and shows the

sequence of commands executed on each system. The search

determines if any traffic in the Nitroba data set is destined to

69.25.94.22. A fictional organization with known malicious

intent operates a web server, , at

this address. This fictional IP address is a sensitive indicator,

and is not initially revealed to the partner.

The dataset consists of inbound and outbound traffic to

fifteen private netblocks. Since the intent is to reveal

malicious outbound traffic, the query from Fig. 1 includes a

whitelist to ignore any inbound traffic; packets sent to

192.168.0.0/16 are dropped. In total, our prototype processed

45,776 IP packets.

The result of this search revealed 101 packets destined to

69.25.94.22. The defender gains situational awareness, and

initiates a response action. If deemed appropriate, the defender

may reveal the IP indicator and activity to the partner. We

emphasize that all other indicators remain private.

Computation is bound by the number of modular

exponentiations performed during the search. As depicted in

Table III, query generation requires an encryption for each

filter entry, and a result is obtained after decrypting the output

buffer. The computational cost to create an encrypted filter is

 () encryptions, and the output is recovered in ()

decryptions.

 Recall that each exponentiation (a result) is saved to the

buffer three times (as per the color survival theorem.) Hiding

this constant, the cost to save results to the buffer is ()

modular multiplications. Last, the computational cost for

buffer construction can be performed off-line, and is not an

overall factor.

The search however, must partition each packet to a set of

values with a bit length less than the length of the modulus.

The number of exponentiations is thus, hidden by another

constant factor, but in general where is a data

set of packets. The computational cost of ()

8th ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA’13), JUNE 4-5, 2013, ALBANY, NY

ASIA ’13 - 53

exponentiations outweighs that of other operations in this

system.

VII. CLOSING REMARKS

We developed a high level language for private packet

filtering (PPF). The language adapts the concepts of private

stream searching, preserves the confidentiality of sensitive

indicators, and is highly suited for cyber defense in a

collaborative environment. Using our language, a cyber

defender maintains situational awareness, controls which

indicators are revealed, and shares threat details with

collaborating partners.

We designed the language to be user friendly and to bridge

the cryptographic constructs of private searching in a form

applicable for a cyber defender. This paper presents the syntax

of the language and demonstrates a private search for a

sensitive IP address.

A greater breadth of searchable indicators is also possible.

Additional filter types, such as ,

 , , etc. can

be constructed as future work.

The language can also be adapted for new file scanners,

anti-virus, and other defensive products that search for

malicious content without revealing knowledge of the search.

TABLE III
COMPUTATIONAL COST

Query Generation

Filter Construction () Paillier encryptions

The Search

Buffer Construction () Paillier encryptions

Packets Searched () Modular exponentiations

Saving the Result () Modular multiplications

The Result

Buffer Decryption () Paillier decryptions

Fig. 5. A Demonstration of the Private Packet Filtering Prototype

defender$ ppf-generate -r privateIndicators.ppf -w public.ppf

defender$ echo "Send public.ppf to the partners."

partner$ ppf-search -r public.ppf -w buffer.ppf

 Enter PCAP filename: nitroba.pcap

partner$ echo "Return the buffer file, buffer.ppf"

defender$ ppf-recover -k kPrivate.key -r buffer.ppf -w partnerActivity.pcap

defender$ tcpdump -n -c 2 -r partnerActivity.pcap

01:03:43.729507 IP 192.168.15.4.35984 > 69.25.94.22.80: Flags [S], seq 3033670331, win 64240, options [mss 1460 …

01:03:43.819342 IP 192.168.15.4.35984 > 69.25.94.22.80: Flags [.], ack 2749676331, win 64296, options [nop,nop,TS val …

01:03:43.825871 IP 192.168.15.4.35984 > 69.25.94.22.80: Flags [P.], seq 0:526, ack 1, %win 64296, options [nop,nop,TS val …

The remaining packets from the tcpdump are not shown for brevity.

8th ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA’13), JUNE 4-5, 2013, ALBANY, NY

ASIA ’13 - 54

APPENDIX A

The BNF Representation of the Private Packet Filtering (PPF) Language:

<ppfProgram> ::= <statements>

<statements> ::= <declaration> | <assignment> | <comment>

<declaration> ::= <keyDeclaration> | <graphDeclaration>

<keyDeclaration> ::= key public paillier <variable> { <bufferDeclarations> };

<bufferDeclarations> ::= <buffer> | <buffer>; <bufferDeclarations>

<buffer> ::= buffer <variable> { <filterDeclarations> };

<filterDeclarations> ::= <filter> | <filter>; <filterDeclarations>

<filter> ::= filter in_addr [src|dst] <variable>

 | filter port [src|dst] <variable>

<graphDeclaration> ::= graph <variable> {<nodeDeclarations>} ;

<nodeDeclarations> ::= <node> | <node>; <nodeDeclarations>

<node>

::= source [file|interface] <variable>

 | whitelist ip [src|dst] <variable>

 | whitelist port [src|dst] <variable>

<assignment> ::= <varAssignment> | <parameterAssignment>

<varAssignment> ::= <variable> = <value> | {<values> | include “<fileName>"};

<parameterAssignment> ::= <variable>.<parameter> = <pValue>; | .<parameter> = <pValue>;

<fileName> ::= <text>

<pValue> ::= <decimalValue>

<values> ::= <value> | <value>, <values>

$numInputState<value> ::= 0x<hexValues> | <decimalValues>

$edgeInputState<value> ::= <variable> -> | <variable> :: | <variable>

$ipInputState<value> ::= <ipAddresses>

<ipAddresses> ::= <ipAddress> | <ipAddress>, <ipAddresses>

<comment> ::= <publicComment> | <privateComment>

<publicComment> ::= #<text>

<privateComment> ::= ##<text>

<parameter> ::= cwd | datamap | obfuscate | bufferSize | production | reuse | trigger | expand

<variable> ::= <variableID>

<variableID> ::= <letter> | <variableID><letter> | <variableID><digit>

<ipAddress> ::= <netBlock> | <dottedDecimal>

<netBlock> ::= <ddigit>{1, 3}.<ddigit>{1, 3}.<ddigit>{1, 3}.0/24

<dottedDecimal> ::= <ddigit>{1, 3}.<ddigit>{1, 3}.<ddigit>{1, 3}.<ddigit>{1, 3}

<decimalValues> ::= <decimalV alue> | <decimalValue><decimalValues>

<decimalValue> ::= <ddigit>

<hexValues> ::= <hexValue> | <hexValue>, <hexValues>

<hexValue> ::= <hdigit>

<text> ::= <character> | <character><text>

<character> ::= <letter> | <ddigit>

<letter> ::= [a−z] | [A−Z]

<hdigit> ::= [0−9] | [a−f]

<ddigit> ::= [0 − 9]

8th ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA’13), JUNE 4-5, 2013, ALBANY, NY

ASIA ’13 - 55

REFERENCES

[1] R. Ostrovsky and W. Skeith, “Private searching on streaming data,” in

Annual International Cryptology Conference (CRYPTO'05), vol. 3621,
pp. 223–240, 2005.

[2] R. Ostrovsky and W. Skeith, “Private searching on streaming data,”

Journal of Cryptology, vol. 20, no. 4, pp. 397–430, 2007.
[3] J. Bethencourt, D. Song, and B. Waters, “New construction and practical

applications for private stream searching (extended abstract),” in IEEE

Symposium on Security and Privacy (SP'06), pp. 132–139, 2006.
[4] J. Bethencourt, D. Song, and B. Waters, “New techniques for private

stream searching,” ACM Transactions on Information and System

Security (TISSEC), vol. 12, no. 3, 2009.
[5] G. Danezis and C. Diaz, “Space-efficient private search with

applications to rateless codes,” in Financial cryptography (FC'07), pp.

148–162, 2007.
[6] X. Yi and E. Bertino, “Private searching for single and conjunctive

keywords on streaming data,” in 10th annual ACM workshop on Privacy

in the electronic society (WPES '11), pp. 153–158, 2011.
[7] M. Finiasz and K. Ramchandran, “Private stream search at the same

communication cost as a regular search: Role of LDPC codes,” in

Proceedings of the 2012 IEEE International Symposium on Information
Theory, pp. 2566–2570, IEEE, 2012.

[8] J. Bethencourt and B. Waters, “Private stream searching toolkit.”

http://acsc.cs.utexas.edu/, 2011.
[9] S. M. Bellovin and W. R. Cheswick, “Privacy-enhanced searches using

encrypted bloom filters,” Tech. Rep. CUCS-034-07, 2007.

[10] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in International Conference on the Theory and

Applications of Cryptographic Techniques (EUROCRYPT'99), vol.

1592, pp. 223–238, 1999.
[11] E. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo, “A technique for

drawing directed graphs,” IEEE Transaction Software Engineering, vol.

19, no. 3, pp. 214–230, 1993.
[12] E. Gansner, E. Koutsofios, and S. North, “Drawing graphs with dot, the

dot user manual,” tech. rep., 2006.

[13] C. Gates, M. Collins, M. Duggan, A. Kompanek, and M. Thomas,
“More netflow tools: For performance and security,” in Large

Installation System Administration Conference (LISA '04), the

Eighteenth Systems Administration Conference, 2004.

[14] T. Shimeall, S. Faber, M. DeShon, and A. Kompanek, “Using SiLK for

network traffic analysis,” tech. rep., CERT Network Situational

Awareness Group, 2010.
[15] M. Collins, W. Ford, J. O'Keefe, and B. Thuraisingham, “The inference

problem in multilevel secure database management systems,” in 3rd

RADC Database Security Workshop, The MITRE Corporation, 1990.
[16] S. Garfinkel, P. Farrel, V. Roussev, and G. Dinolt, “Bringing science to

digital forensics with standardized forensic corpora,” Digital

Investigation, vol. 6, pp. S2–S11, 2009.
[17] S. Garfinkel, “Digital corpora producing the digital body – nitroba

university harassment scenario.” NSF DUE-0919593,

http://digitalcorpora.org/, 2011.

