
Catching the Cuckoo: Verifying TPM Proximity
Using a Quote Timing Side-Channel

(short paper)

Russell A. Fink1,2, Alan T. Sherman2, Alexander O. Mitchell3, and
David C. Challener1

1 Johns Hopkins University / Applied Physics Laboratory
2 University of Maryland Baltimore County / Cyber Defense Lab

3 Hammond High School, Columbia, MD

Abstract. We present a Trusted Platform Module (TPM) application
protocol that detects a certain man in the middle attack where an ad-
versary captures and replaces a legitimate computing platform with an
imposter that forwards platform authentication challenges to the cap-
tive over a high speed data link. This revised Cuckoo attack allows the
imposter to satisfy a user’s query of platform integrity, tricking the user
into divulging sensitive information to the imposter. Our protocol uses an
ordinary smart card to verify the platform boot integrity through TPM
quote requests, and to verify TPM proximity by measuring TPM tick-
stamp times required to answer the quotes. Quotes not answered in an
expected amount of time may indicate the presence of an imposter’s data
link, revealing the Cuckoo attack. We describe a timing model for the
Cuckoo attack, and summarize experimental results that demonstrate
the feasibility of using timing to detect the Cuckoo attack over practical
levels of adversary link speeds.

Keywords: TPM, Attestation, Timing, Quote

1 Introduction

Despite the proliferation of personal computers and mobile devices, the public re-
lies on kiosk computers for critical security applications such as Automated Teller
Machine (ATM) banking, filling out tax forms in public assisted offices, entering
health insurance information at hospital kiosks, and voting on electronic termi-
nals in large precincts. Kiosk computers are vulnerable to undetected physical
attack because they are not controlled as well as personal devices. The Trusted
Computing Group (TCG) has created the TPM, an embedded cryptographic
processor that can convince the user by attestation that the correct software
was booted on the platform with cryptographic proof of software measurements
signed by a private key. A user who knows the corresponding public key can ver-
ify the attestation measurements recorded by the TPM, useful for verifying the
state of a public kiosk. Attestation, however, requires the user to trust a smart
token to issue challenges to the kiosk on his behalf and verify the cryptographic

2 Fink et al.

results. Further, attestation does not detect the Cuckoo attack, defined by Parno
in [7] as a corrupt platform forwarding attestation challenges to a machine that
can emit the expected responses, leading the user into disclosing sensitive infor-
mation to the attacker. Therefore, the two major problems with kiosk computing
are the user trusting a token to attest the state of the TPM, and the user trust-
ing the physical path between his token and the TPM—in other words, the user
cannot confirm the proximity of the TPM that is answering the challenges easily.

In our work to mitigate the Cuckoo attack, we have discovered that a reliable
timing side-channel exists with quote command processing through the TPM.4

We have designed a protocol to exploit this side channel by using an ordinary
smart card to issue a sequence of quote requests, measure the amount of time
taken to receive the responses, and decide whether the time taken to respond to
the quotes is consistent with the expected path components between the smart
card and the TPM. In short, we propose using timing to detect the Cuckoo
attack. Our contributions are:

– Design and presentation of a TPM quote and timing attestation protocol
using an ordinary, inexpensive smart card

– A timing model for the Cuckoo attack and required adversary bandwidth
– Experimental results supporting the use of timing side-channels to verify

TPM proximity, revealing the Cuckoo attack.

In this short paper, we define the problem being solved, present a security and
timing model, describe our protocol, and give an overview of the experimental
results we obtained that demonstrate the feasibility of our approach.

2 Security and Timing Model

The problem we solve begins when the user intends to interact with a specific
kiosk, but the adversary wants him to interact with an imposter. The adversary
kidnaps the kiosk and replaces it with the imposter, and forces the kiosk to
answer challenges on behalf of the adversary, thereby fooling the user.

This Man-In-The-Middle (MITM) attack is described by Parno as a Cuckoo
attack where an adversary redirecting attestation challenges to a remote TPM
under his control [7]. Our revised model, shown in Figure 1, places the imposter
directly in front of the user. The imposter forwards any Platform Configuration
Register (PCR) challenges to the kidnapped kiosk computer to obtain signed
PCR values that the user expects to see. Our revised attack assumes that the
user knows the public AIK of the kiosk used to verify quotes, but cannot confirm
the physical proximity of the TPM. The attack resists detection by exploiting
the gap between the challenger and the verifier.

We can detect Cuckoo attack by timing precisely an exchange of authenti-
cation messages between a smart card and a TPM. A notional timing model
4 A quote is a reading of the TPM Platform Configuration Register (PCR) values

signed by an Attestation Identity Key (AIK) belonging to that particular TPM. It
is cryptographic evidence that the platform booted the correct software.

Verifying TPM Proximity 3

TPM

Kidnapped

Kiosk

The

Imposter

Quote

Challenge
Response

Challenger/

Verifier Gap

The

User

Smart

Card

Fig. 1. In the revised Cuckoo attack, the user interacts with an imposter that forwards
challenges to the legitimate kiosk, tricking the user into interacting with the imposter.
This attack exploits a proximity gap between the challenger (user) and the verifier
(kiosk).

for this authentication sequence includes the time for the smart card to issue
its challenge, the platform CPU to forward it to the TPM, and the time for
the TPM to respond. Repeated trials of this exchange taken during a training
phase will reveal some timing noise (measured as statistical variance) caused
by network collisions, processor scheduling, card latency, and TPM load. In the
Cuckoo attack, the adversary adds additional components to the model, poten-
tially increasing the average transaction time. If we conservatively assume that
the extra components in the Cuckoo case contribute no extra noise, then the
attack succeeds without detection when the time added by the extra compo-
nents is no greater than the noise time observed in training. We model the extra
components in the Cuckoo attack in Figure 2.

Let the notional timing noise be ε, and the Cuckoo attack time be C. If we
remove the imposter components from the model, and add back in the notional
noise, the non-attack time becomes C − 2(T ′N + T ′P) + ε; therefore, the Cuckoo
attack cannot be distinguished from expected noise in the non-imposter case
when:

2(T ′N + T ′P) ≤ ε (1)

Therefore, this model states that the adversary’s connection speed in the
hostage case varies linearly with the noise observed during the non-hostage train-
ing phase.

4 Fink et al.

Smart Card Imposter Kiosk TPM

TC

T
′

P

T
′

N
TP

TTPM

TP

T
′

N
T

′

P

TC

Fig. 2. Timing model for the revised Cuckoo attack. The smart card challenge takes
time TC to arrive at the imposter. The imposter takes takes T ′

P to prepare the challenge
and T ′

N to forward it. The kiosk processes the message in TP , and the TPM takes time
TTPM to respond.

3 Previous and Related Work

Parno [7] first described the Cuckoo attack as a user interacting with a kiosk
tampered to forward challenges to the attacker’s machine. Parno assumes that
the user does not know any public keys of the kiosk TPM, enabling the attacker’s
(or anyone’s) TPM to respond to attestation requests.5 Our revised Cuckoo
attack reverses the placement of the kiosk and the imposter. As with Parno, we
assume that the user cannot confirm the physical proximity of the TPM. Unlike
Parno, we require that the user knows the public AIK of the kiosk.

The Cuckoo attack is also called a Masquerade attack. Stumpf et al. proposed
a TPM solution in [9] that establishes an encrypted session tunnel following attes-
tation using a shared key exchanged during attestation, preventing interactions
with the imposter. Goldman et al. proposed a similar system in [4]. While these
are feasible when both communicating endpoints are computers, they do not fit
the user-kiosk model where the human interacts directly with the host.

The TCG specifies the TPM, an embedded cryptographic processor and non-
volatile storage device that can generate keys and use them securely according to
policy. Our protocol uses the TPM to verify the correctness of platform identity
and software state, and to keep accurate time for the smart card. The TPM
is explained in specifications [10], and the software programming interface is

5 While we disagree that distributing public portions of AIKs is difficult, we concede
that Public Key Infrastructure (PKI) is often implemented incorrectly in practice.

Verifying TPM Proximity 5

explained in [11]. Challener et al. covers TPM application programming in [1].
Fink et al. give an example of TPMs enforcing election security policy using
platform state in [2].

Attestation involving cryptography is not practical for a human without as-
sistance. Trusted computing supports attestation by using TPM to engage in
a special challenge-response protocol with networked computers, called Trusted
Network Connect (TNC), described in [12]. However, TNC requires back-end
infrastructure to verify challenges. We use a smart card in place of the back-end
to let the user verify the platform.

We use timing side channels to verify TPM proximity to our smart card.
Seshadri et al. created SWATT [8] that attests embedded software using timing.
Gardner et al. uses memory access latency to attest software running on general
purpose computers in [3]. These systems show the feasibility of using timing for
attestation.

4 Protocol

Our authentication and proximity verification protocol uses a smart card to
issue a fixed number of TPM QUOTE requests to the local platform, measuring
the time taken for these calls to complete as a group. The smart card verifies
the quotes, and compares the aggregate response time with some clean room
training set of timings and noise established previously. If the quote responses
are correct and the response time is within the noise margin of the training times,
the smart card releases a passphrase to the local platform indicating attestation
success indicating the attestation decision of the smart card to the user. If either
the timing or quote verification fails, the smart card releases a duress passphrase.

We assume that the adversary has a network of finite speed to connect his im-
poster to the kiosk. We assume that the adversary does not know the passphrases,
nonces, or the AIK private key. We also assume that the TPM is working cor-
rectly. Figure 3 pressents the protocol in more detail.

5 Experiments

We conducted experiments to verify our approach. The experiments timed the
interactions between the operating system and TPM separately from the in-
teractions between the smart card and operating system—this simplified setup
allowed quick validation in lieu of a full end-to-end experiment. We calculated
the average values and variances of the challenge/reponse times in each experi-
ment, then combined the variances to compute the critical value of the one-tailed
t distribution that dictates the required speed of the adversary’s network.

5.1 OS to TPM

We created the experiment using a STmicroelectronics TPM running on a Dell
OptiPlex 755. We developed two software programs for Linux, one using IBM’s

6 Fink et al.

Smart Card Platform OS TPM

card register

get nonce

nS TICKS(nS , blobK)

ticksS ⊕ nSticksS ⊕ nS , get nonce

n1

QUOTE(n1, PCRs)

PCRs⊕ n1PCRs⊕ n1, get nonce

n2

nN

QUOTE(nN , PCRs)

nF TICKS(nF , blobK)

passphrase

PCRs⊕ nNPCRs⊕ nN , get nonce

ticksF ⊕ nFticksS ⊕ nF

ti
c
k
s
F
−
ti
c
k
s
S
±
ǫ

Fig. 3. A smart card issues a challenge nonce nS to the TPM for an initial tickstamp,
ticksS , recording the start of the timed quote loop. The smart card issues unique nonces
to obtain quotes. After receiving a final tickstamp, ticksF , the smart card verifies the
responses and loop time, then releases a positive or duress passphrase. The expected
loop time is measured in an initial training phase. [⊕ signifies cryptographic binding
with the TPM’s AIK.]

Count OS Time Tickstamps

1 148.792325 149.934

351 148.800337 149.945
148.800325 149.944
148.800326 149.945

.

45 148.804325 149.949
148.804315 149.946
148.804325 149.947

.

1 148.808326 149.952

Count OS Time

799 1.3997048
1.3997401

. . .

1 1.4006945

790 1.9997026
1.9997082

. . .

8 2.0000521
2.0009368

. . .

Table 1. Sample timing data, showing results for TPM (left) and smart cards (right).
Times are of repeated challenge/response runs, expressed in seconds. OS (wall clock)
time is compared with tickstamp time. Multi-modal harmonics (counts per group
shown) differed by 0.004 secs for TPM and by 0.6 secs for smart cards.

Verifying TPM Proximity 7

software TPM emulator and accompanying command-line utilities [6] and the
other built on TrouSerS [5]. We collected data for runs that consisted of 200 chal-
lenge/response messages, and did several hundred runs to form the population.
We terminated many extraneous operating system services during the runs.

A summary of the TrouSerS data is presented in Table 1. The multi-modal
clustering resembles harmonics that occur at intervals of 0.004 seconds; these
are due likely to device interrupts and process scheduling of our test program by
the Linux operating system.

5.2 OS to Smart Card

We timed different Subscriber Identity Module (SIM) Java cards running under
Windows XP, and implemented a simple data collector using C#—we have ap-
proximated the timing variance of reading data from a program running on the
card with that of reading a simple data value from the card. We timed 1,600
samples of 200 message transactions per sample. Data are shown in Table 1.

5.3 Analysis

Using the data from the largest harmonic groups, we computed the population
standard deviation and used it to determine the one-tailed t test critical value.
At the 95% confidence limit, our experiments a SIM variance of 3.2739× 10−10

seconds and a TPM variance of 2.4925×10−7 seconds. The combined σ is 4.9958×
10−4, giving a critical value of 8.1931×10−4. The attestation challenges consume
2,806 bytes per loop, for a total of 1.5 megabytes after adding in nominal packet
headers. This requires the adversary to have a minimum network speed of 14.8
gigabits per second to avoid detection by our protocol.

6 Results and Conclusions

The predicted gigabit speed is faster than modern wireless technologies, meaning
that the adversary must use wired, and possibly fiber, connections to carry out
the Cuckoo attack. Such wired connections are both visible and expensive, and
are revealed by simple physical inspection of the kiosk.

In conclusion, we have developed a protocol that works with an ordinary
smart card and a TPMs to verify identity, state, and physical proximity of the
platform. The protocol uses inexpensive technologies and enables practical prox-
imity attestation for kiosk-style public computers. The attestation smart card is
simple enough to be validated independently, e.g. in Seshadri [8].

7 Future Work

We must develop a full path, smart card to TPM experiment, and investigate
environmental factors. We must characterize the probability of Type 1 errors.6

6 The timing harmonics are evidence that Type 1 errors are likely.

8 Fink et al.

A variety of smart cards should be tested, including identical models of the same
cards. We should determine the optimal training time and number of loops to
minimize the time needed for attestation.

Acknowledgments

We thank Ryan Gardner for formative discussions, and also T. Llanso, F. Deal,
B. Benjamin, E. Reilly, and members of the UMBC UMBC Cyber Defense
Lab (CDL) for good suggestions. We thank April Lerner, gifted and talented co-
ordinator for Hammond High School, for lending us a promising new researcher.

References

1. D. Challener, K. Yoder, R. Catherman, D. Safford, and L. Van Doorn. A practical
guide to trusted computing. IBM press, Upper Saddle River, NJ, 2007. ISBN
978-0132398428.

2. Russell A. Fink, Alan T. Sherman, and Richard Carback. TPM meets DRE:
Reducing the trust base for electronic voting using trusted platform modules. IEEE
Transactions on Security and Forensics, 4(4):628–637, 2009.

3. Ryan W. Gardner, Sujata Garera, and Aviel D. Rubin. Detecting code alteration
by creating a temporary memory bottleneck. IEEE Transactions on Security and
Forensics, 4(4), 2009.

4. K. Goldman, R. Perez, and R. Sailer. Linking remote attestation to secure tunnel
endpoints. In Proceedings of the first ACM workshop on Scalable trusted computing,
pages 21–24. ACM, 2006.

5. IBM Corporation. The Trusted Computing Software Stack (TrouSerS) software
library. Available at http://sourceforge.net/projects/trousers/, 2008.
Last accessed Feb 3, 2011.

6. IBM Corporation. Software TPM emulator. Available at http://ibmswtpm.
sourceforge.net/, 2010. Last accessed June 23, 2010.

7. B. Parno. Bootstrapping trust in a trusted platform. In Proceedings of the 3rd
conference on Hot topics in security, pages 1–6. USENIX Association, 2008.

8. A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. SWATT: SoftWare-based
ATTestation for embedded devices. In Security and Privacy, 2004. Proceedings.
2004 IEEE Symposium on, pages 272–282. IEEE, 2004.

9. F. Stumpf, O. Tafreschi, P. Röder, and C. Eckert. A robust integrity report-
ing protocol for remote attestation. In Second Workshop on Advances in Trusted
Computing (WATCâ06 Fall). Citeseer, 2006.

10. Trusted Computing Group. TCG TPM specification version 1.2, revision 103.
Available at https://www.trustedcomputinggroup.org/specs/TPM, 2008.
Last accessed on Mar 15, 2008.

11. Trusted Computing Group. The TCG Software Stack. Available at http://www.
trustedcomputinggroup.org/developers/software_stack, 2009. Last
accessed Sep 1, 2009.

12. Trusted Computing Group. The TCG Trusted Network Connect. Available
at http://www.trustedcomputinggroup.org/developers/trusted_
network_connect/, 2009. Last accessed Sep 1, 2009.

http://sourceforge.net/projects/trousers/
http://ibmswtpm.sourceforge.net/
http://ibmswtpm.sourceforge.net/
https://www.trustedcomputinggroup.org/specs/TPM
http://www.trustedcomputinggroup.org/developers/software_stack
http://www.trustedcomputinggroup.org/developers/software_stack
http://www.trustedcomputinggroup.org/developers/trusted_network_connect/
http://www.trustedcomputinggroup.org/developers/trusted_network_connect/

	Catching the Cuckoo: Verifying TPM Proximity Using a Quote Timing Side-Channel (short paper)

