628 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 4, NO. 4, DECEMBER 2009

TPM Meets DRE: Reducing the Trust Base for
Electronic Voting Using Trusted Platform Modules

Russell A. Fink, Alan T. Sherman, and Richard Carback

Abstract—We reduce the required trusted computing base for
direct recording electronic (DRE) voting machines with a design
based on trusted platform modules (TPMs). Our approach ensures
election data integrity by binding the voter’s choices with the pre-
sented ballot using a platform vote ballot (PVB) signature key man-
aged by the TPM. The TPM can use the PVB key only when static
measurements of the software reflect an uncompromised state and
when a precinct judge enters a special password revealed on elec-

tion day. Using the PVB with the TPM can expose authorized soft-

ware, ballot modifications, vote tampering, and creation of fake
election records early in the election process. Our protocol places
trust in tamper resistant hardware, not in mutable system soft-
ware. Although we are not the first to suggest using TPMs in voting,
we are the first to provide a detailed engineering protocol that binds
the voter choices with the presented ballot and uses the TPM to
enforce election policy. We present the protocol, architecture, as-
sumptions, and security arguments in enough detail to support fur-
ther analysis or implementation.

Index Terms—Applications, direct recording electronic (DRE),
electronic voting, protocols, security and privacy analysis, system
design and implementation, trusted platform modules (TPMs).

I. INTRODUCTION

IRECT recording electronic (DRE) voting machines can

offer many compelling benefits, including good usability
and accessibility, support of multiple ballots and languages, and
elimination of overvotes and unintentional undervotes [14]. Un-
fortunately, bad security engineering of existing products (e.g.,
[2]-[4], [10]) has largely discredited the entire approach along
with many of its strengths. We offer an approach to DRE de-
sign based on trusted cryptographic hardware that offers a much
more secure way to build DREs while preserving their advan-
tages. This engineering paper describes in considerable detail
how to design a more trustworthy DRE for protecting vote data
integrity and ballot privacy. Our protocol is a first step in our
larger effort to apply high-assurance computing techniques to
voting technology.

Manuscript received February 15, 2009; revised September 30, 2009. First
published October 20, 2009; current version published November 18, 2009. The
associate editor coordinating the review of this manuscript and approving it for
publication was Dr. Bart Preneel.

R. A. Fink is with the Johns Hopkins University/Applied Physics Laboratory,
Laurel, MD 20723 USA, and also with the Cyber Defense Lab, Department of
Computer Science and Electrical Engineering, University of Maryland, Balti-
more County, Baltimore, MD 21250 USA (e-mail Russ.Fink @jhuapl.edu).

A.T. Sherman is with the Cyber Defense Lab, Department of Computer Sci-
ence and Electrical Engineering, University of Maryland, Baltimore County,
Baltimore, MD 21250 USA, and also with the National Center for the Study
of Elections, University of Maryland, Baltimore County, Baltimore, MD 21250
USA (e-mail: sherman@umbc.edu).

R. Carback is with the Cyber Defense Lab, Department of Computer Science
and Electrical Engineering, University of Maryland, Baltimore County, Balti-
more, MD 21250 USA (e-mail: carbackl @umbc.edu).

Digital Object Identifier 10.1109/TIFS.2009.2034900

T &
1556-6013/$26.00 © 2009 IEEE

We have designed a protocol for election systems that se-
cures data with private signature keys managed by special
physically secured hardware resident on commercial PC com-
puting platforms. Our protocol uses the trusted platform module
(TPM)—an embedded processor that provides cryptographic
services, stores measurements of booted software, and manages
onboard nonvolatile memory—to create and manage a special
signature key called the platform vote ballot (PVB) key. The
PVB binds together the booted state of the platform, the ballot
presented to the voter, and the voter’s cast vote, thwarting
unauthorized vote modification, insertion, or deletion.

In our protocol, the PVB key is created and bound to the
correct platform state during the initial DRE software load, and
is unlocked by a password revealed on election day. During
the polling phase, the TPM signs a hash of each recorded
vote and ballot with the PVB private key. Votes are recorded
in pseudorandomly determined storage slots, and the storage
is signed by the PVB after each recorded vote. At the close
of the polls, tallying officials receive the signed storage and
verify the signatures of both the individual votes and the
storage area using the PVB public key. Verification ensures
that the DREs booted the correct software, voters used the
correct ballots, and the votes were not modified, omitted, or
illegally inserted or deleted. In this paper, we present our
protocol with enough detail to demonstrate feasibility of an
actual implementation on a system compliant with the Trusted
Computing Group (TCG) software stack (TSS) [36].

Although others have suggested using TPMs for voting, our
protocol is the first to use a TPM to bind the ballot, vote data,
and storage integrity to the platform state to achieve these goals:

1) Hardware-based protection of keys—the plaintext PVB
signature key is never revealed outside of the TPM, pre-
venting errant or malicious disclosure of the private key.

2) Cryptographic binding of vote to ballot—rverification that
a specific ballot guided the voter’s decisions.

3) Hardware-based software state and election policy en-
forcement—the TPM requires proper platform software
measurements and election initiation passwords to store
valid data (resisting day-before attacks?).

4) Cryptographic integrity and privacy—integrity is enforced
by public key cryptography, and privacy is preserved by a
pseudorandom ordering of votes in storage.

While the TPM and our protocol improve system-level as-
surance in electronic voting, we acknowledge valid criticisms
about current DRE implementations and many electronic voting
systems. Electronic voting requires voters to have faith in the
correct operations of the system hardware and software: DRE

!On June 28, 2009, the day Honduras President Manuel Zelaya was ousted,
officials found certified election results on government computers for an election
that was to have taken place that day [9].

FINK et

users
peripl
testin;
analy!
voting
teract.
place
our p
proble
not al
cessir
Despi
lots, ¢
costs
tenan
ginee
transg
of tra
Ap
featur
multi]
races
play 1
dible
port t
as ral
date }
usual!
candi
rently
suchi
voter
ital m
chads
paper
DR
nature
the ct
sion,
sump
truste
rent [
comp
primi
Mmerci
DRE
Th
views
capat
archit
prese
cludir
benef
and &
the re
togra
and a
proce
hardv
syste;

MBER 2009

r
€S

; that se-
y special
PC com-
n module
iographic
manages
a special
key. The
e ballot
hwarting
on.
id to the
load, and
. During
recorded
recorded
> storage
the close
rage and
and the
. ensures
used the
itted, or
sent our
ty of an
> Trusted
]'.
ting, our
'ote data,
:se goals:
ext PVB
PM, pre-
ite key.
ition that

dlicy en-
software
to store

enforced
ved by a

level as-
riticisms
ic voting
th in the
re: DRE

vas ousted,
anelection

.

-"y

FINK et al.: TPM MEE‘# S DRE{ REDUCING THE TRUST BASE FOR ELECTRONIC VOTING USING TPMs 629

users implicitly trust the CPU, system RAM, and user interface
peripherals (touch screen or other input device), and no random
testing paradigm that we know of includes hardware component
analysis. Electronic data capture systems—including electronic
voting systems—mask their inner workings, in that a user in-
teracting with a computer cannot see the computation taking
place or know what bits were recorded on the media. While
our protocol enables the tallying authority to detect integrity
problems with the software and data, the present design does
not allow the voter to interactively verify proper capture, pro-
cessing, or storage integrity of her vote while the polls are open.
Despite avoiding the significant expense of printing paper bal-
lots, electronic voting systems can mean significant up-front
costs for procurement, installation, training, upgrade and main-
tenance, reflecting a high cost per user. Improved security en-
gineering and implementation, a reduced trust base, and better
transparency and verifiability are required to alleviate concerns
of traditional DRE and electronic voting.

Apart from the risks, DRE systems provide good usability
features. DRE systems readily support multilanguage ballots,
multiple ballots for different races, lengthy ballots with many
races or candidates, and a variety of input methods and dis-
play modes, including general use touch screens and also au-
dible and sip-and-puff options for disabled voters. They can sup-
port the option to use innovative presentation techniques such
as randomly ordering the candidate lists to avoid the candi-
date primacy phenomenon where a candidate receives an un-
usually high number of votes based on appearing as the first
candidate in a list [20]. Although not always appropriate or cur-
rently permitted by law, there are many circumstances in which
such innovative techniques can lead to more accurate capture of
voter will. Clarity of intent is most accurately captured by dig-
ital means, avoiding ambiguous user markings such as dimpled
chads, markings from butterfly layouts, or incorrect marks on
paper-based forms.

DRE terminals can protect the vote records with digital sig-
natures prior to being offloaded for tallying, reducing risk in
the chain of custody, whereas paper ballots are subject to omis-
sion, loss, or tampering. While our protocol makes certain as-
sumptions about the hardware (stated in Section IV-B), it uses
trusted hardware to overcome many of the software risks of cur-

rent DRE systems, thus reducing the overall size of the trusted -

computing base. Our vision is that the hardware cryptographic
primitives of TPMs can help improve DRE systems with com-
mercial computing components for a reasonable cost, allowing
DRE benefits with fewer security risks.

This paper is organized as follows: Section II briefly re-
views previous and related work; Section III introduces the
capabilities of a TPM; Section IV describes a notional system
architecture and states several security assumptions; Section V
presents our protocol; Section VI analyzes the protocol, in-
cluding its security and special features; Section VII discusses
benefits and limitations; Section VIII presents future work;
and Section IX concludes our current work. We assume that
the reader is familiar with some high-level principles of cryp-
tography including digital signatures, hashing, and encryption,
and also a general voter’s knowledge of elections and election
procedures. The paper is of interest both for applying trusted
hardware to voting and as an example of building secure
systems with trust rooted in TPMs.

II. PREVIOUS AND RELATED WORK

Arbaugh [1] suggested using TPMs in voting by outlining an
on-line protocol for attesting systems through a central server.
Rossler, ef al. [25] proposed using hardware security modules
in postal-voting where each voter submits a ballot encrypted
with a public key to the tallying server. Both approaches seem
promising, but omit key design details. Paul and Tanenbaum
[22] sketched a voting system architecture incorporating
TPMs, but the TPMs’ role assures only presence of correct
software—the platform state is not bound to the cast ballot.

Yee [37] designed a DRE with a greatly reduced trusted code
base to simplify software inspections, but inspections cannot
prevent malicious tampering of the DRE immediately prior to
operations.

The Scytl architecture created by Jorba, et al., described with
few details in [16], suggests using a hardware security module
to protect chained digital signatures but not signature keys, and
uses light-weight voting software booted from a CD-ROM to
eliminate reliance on preinstalled software and hardware. The
security of any system that obtains software and private keys
from removable media is vulnerable to compromise through
theft and replacement of the media. OQur approach stores and
uses private keys only in tamper-resistant hardware, preventing
theft or unauthorized disclosure of the keys.

Feldman, et al. [10] suggested using technology from the
TCG, cautioning that this technology “could not prevent mali-
cious code from changing future votes by altering data before it
1s sent to the storage device.” Our approach uses a hardware root
of trust making it harder to inject malicious software, but we
rely on software correctly taking measurements and correctly
executing the voting features. Furthermore, because the TPM
signs each cast ballot, malicious software cannot modify a vote
(without detection) once it has been processed by the TPM.

TPMs are described in the specifications [36]. Pearson et al.
give a slightly dated but comprehensive overview of TPMs and
the TCG [23], and Challener [5] provides an excellent prac-
tical guide to the TPM for software developers. Additionally,
TrouSerS [35] is an open source implementation of the TSS and
includes test suite software useful for understanding the pro-
gramming interface, while Strasser [34] provides an open source
TPM emulator to aid development.

Previous authors have applied TPMs to nonvoting domains.
Sevinc [31] described a key distribution protocol that sends se-
crets from a server to a TPM-enabled client, but the server has
no way to attest the software state of the client. Our protocol
binds the PVB key to the software state of the DRE allowing
the election authority to verify the correct configuration of the
DRE.

Previous studies on security and implementation problems of
current DRE systems include Kelsey’s [17] catalog of DRE at-
tack strategies, a threat analysis derived from attack trees by the
Brennan Center [21], and research analyses by Kohno et /. [18],
SAIC [28], RABA [24], and Compuware Corporation [8] on
flawed commercial DRE implementations. Additionally, Hursti
[15] analyzed the problems of unauthenticated software installs,
and Feldman, et al. [10] analyzed the damage caused by viruses
when policies and procedures are not followed. Additional vul-
nerabilities in modern DREs were uncovered in the EVEREST
Project [4] and in the California Top-To-Bottom Review [3].

630

.

Unfortunately, most critics of current DRE systems do not
offer a high-integrity alternative. Some groups advocate using
so-called “voter-verified” systems, such as precinct-count op-
tical scan or voter verifiable paper audit trails (VVPATs) (e.g.,

vever, such systems provide weak ballot custody as-

and hence offer no guarantee that the ballot verified

by the voter was the ballot actually tallied. Furthermore, such

systems offer poor verification guarantees for visually disabled
voters.

End-to-end voter verifiable systems (E2E) (e.g., [6], [7]) pro-

id ng assurance to the voter that her vote was cast as in-
1d counted as cast, and allow independent universal
verification of the election result. Our present design does not
give integrity assurance to the voter in the polling location, but
it does offer security assurance to the election authority that the
correct software was installed, that voters used the correct ballot,
and that votes were securely stored and transmitted to the cen-
tral tallying location. Further, our design can detect malicious
installed software in the polling booth, catching persistent soft-
ware injection attacks early. Our approach could complement
E2E systems by adding prompt detection of unauthorized plat-
form software—safeguarding voter privacy—and leading to a
hybrid system with a more secure electronic interface coupled
with E2E voter verifiable results [11].

Some researchers have raised questions of how trustworthy
TPMs are. The TPM specifications can be difficult to under-
stand, and as a result, implementation problems can occur.
Sadeghi et al. performed a detailed compliance analysis of five
TPM implementations; of the three found to be noncompliant,
only one of those implemented the current version (1.2) of the
TPM specification [27]. Although correct TPM implementation
is critical to a protocol like ours, there are many different TPM
vendors from which to choose, and the specific problems that
Sadeghi identified have no impact on our protocol.

A DRE system could be built on today’s commercial plat-
forms without hardware controlled key management or soft-
ware attestation, but such systems would rely on software and
procedures to prevent key theft, data modification, malicious
software injection, and privacy loss. Keys can be stolen quite
easily through physical attacks [13]; data can be modified on
disk without added protections such as full disk encryption [30];
and rogue software can be loaded in a way that is undetectable
by antivirus products [26] compromising privacy and data in-
tegrity. Trusted hardware can enhance many voting technolo-
gies by providing a secure place to store keys and the ability to
attest the software state of the platform cryptographically.

III. TPM CAPABILITIES

List of Acronyms
ITA Independent testing authority.
NV Nonvolatile (storage).
PCRs Platform configuration registers.
PVB Platform vote ballot binding key.
SRK Storage root key.
TEA Trusted election authority.
TPJ Trusted precinct judge.
TPM Trusted platform module.

~| BEA Trusted tallying authority.

The TPM is an embedded cryptographic processor and non-
volatile storage device meeting specifications provided by the
Trusted Computing Group [36]. The TPM allows platform at-
testation whereby sensitive information and keys can be bound
to measured states of booted software. Version 1.2 of the TPM
implements asymmetric RSA 2048-bit encryption, random

number and key generation, and the Secure Hash Algorithm |

(SHA-1) within tamper-resistant hardware.2 The TPM offers
three major protections for computing platforms: physical and
architectural security, a flexible key hierarchy, and attestation
support.

The physical security of the TPM is bolstered by tamper-evi- |

dent packaging and secure mounting on the motherboard. TPM-

*r

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 4, NO. 4, DECEMBER 2009

FINK et ¢

Vendor

———— v

enabled architectures are designed to use the TPM as a slave de- :

vice—some attach the TPM to the low pincount (LPC) bus, for
example—ensuring that the TPM cannot interfere with or con-
trol the CPU. Sensitive data exchanged between the CPU and
TPM can be encrypted to resist attacks by malicious devices or
hardware probes [36].

The TPM maintains a hierarchy of keys, rooted by the storage
root key (SRK) that protects keys and other data stored exter-
nally. The SRK is generated whenever someone takes owner-
ship of the TPM, preventing new owners from accessing the
former owner’s keys. The SRK is generated and stored inter-
nally such that the private part never leaves the TPM. Keys in
the TPM hierarchy have a parent/child relationship, whereby
a parent key encrypts—or wraps—a child key. Children of the
SRK (but not the SRK) can be exported in encrypted blobs,
easing the storage burden on the TPM while allowing software
to load keys back into the TPM when needed. In our protocol,
the PVB is created as a child of the SRK. As additional protec-
tion, the TPM can enforce passwords on blobs to prevent unau-
thorized loading.

Ownership is enforced by a password that allows the owner
to use all features of the TPM. Occasionally, an administrator
other than the TPM owner needs the ability to perform limited
tasks, such as invalidating a key, but the owner does not trust the
administrator with the owner password. The TPM supports del-
egation to address this situation by granting limited privileges
to an admininistrator enforced by a distinct password.

The TPM can support system software attestation by
recording the state of the platform’s software processes as
measured through means of cryptographic hashes of executable
binary code. Such measurements can be compared to the ex-
pected state to verify the platform’s integrity. Measurements
are done typically at the initial boot of the platform by fol-
lowing a sequence of load, measure, and execute steps among
the major software components. For instance, the BIOS loads
the boot loader, measures it, stores the measurements in the
TPM, and then transfers control to it. This measurement chain
must include all critical system components and configuration
data. Measurements are stored in TPM platform configuration
registers (PCRs), special volatile memory locations in the TPM
that either can be reset to zero, or extended by hashing a new
value with the existing PCR value. PCRs never can be set to a
specific nonzero value, for security against malicious software.
A signing key can be bound to a particular software state by
specifying acceptable values for the PCRs, allowing the TPM

2SHA-1"s replacement will be addressed in the next version of the TPM spec-
ification.

e

Fig. 1.

tracker/1
Trusted
(TTA), |
software

to loac
the PC

We
systemr
and sc
delibes
cabilit

A. Sy
Fig.
level a

B. Se

The
voter)
voter)

1) A

tt
d
)T
v
tt
n
St
tt
3H1
T¢
4) 1
o
c

5) A

ti

.
»

L L]

FINK er al.: TPM MEETS DRE: REDUCING THE TRUST BASE FOR ELECTRONKC VOT! ING USING TPMs 631

6) A trusted hardware path exists between the DRE mother-
board/CPU and all other hardware components including
the screen, hard drive, external storage connections, pe-
ripherals, and input devices.

7) System memory is unmodifiable by on-board devices.

Further, the protocol requires that binaries are correctly gen-

erated from reviewed software and securely transferred between
the vendor, ITA, and TEA; and that the ballots are reviewed for

The protocol trusts certain human roles to carry out parts of
the election process. We take the word trust to mean an expec-
tation of a certain behavior for a particular purpose; that is, if a
trusted role behaves errantly, the security claims of the protocol
no longer hold. These roles are more fully explained in the pro-
tocol steps, but a short summary follows:

1) Trusted Election Authority (TEA)—charged with ensuring
integrity of the election and its procedures, and entrusted to
protect voter privacy. Responsible for approving software
and slates, initializing the election system and voting units,
creating cryptographic keys and protecting the TPM key
creation passwords (owner password). The TEA is critical
to the entire protocol.

2) Trusted Tallying Authority (TTA)—receives encrypted,
completed ballots, tallies them, and produces the general

3) Trusted Precinct Judge (TPJ)—primary polling location
worker who activates and shuts down the DREs, enforces
election rules at the polling location, and resolves prob-
lems detected by the TPM and voting software. The TPJ
is trusted to help resolve problems in the precinct, taking
action if the TPM refuses to load the PVB key, putting a
backup machine into operation. Trust is less strict here as
the protocol limits the set of cryptographic operations that
the TPJ can conduct. (Denial of service is still possible by
a rogue or poorly trained TPJ.)

4) Independent Testing Authority (ITA)—tests vendor-sup-
plied software for compliance to specifications, performs
random machine testing to ensure quality of hardware and
other components outside of the protective boundary of

V. PROTOCOL

We present a protocol for platform and data binding of elec-
tronic data captured at the DRE during election time, and de-
scribe its assurance and security properties. The protocol will
be described in several steps that tie closely with a typical elec-
tion timeline, to aid understanding in how an actual implemen-
tation might be executed. The protocol provides integrity and
authenticity of ballot data recorded electronically at the DRE,
and utilizes the main features of the TPM. The central work of
the protocol is management of the PVB key. Fig. 2 highlights
the main features of the protocol.

A. Detailed Descriptién

We now present the full details of the protocol broken into
distinct voting phases. For clarity, we focus on the cryptographic
aspects of the protocol, and list only a few TCG service provider
interface (TSPI) calls in the discussion. Some TSPI calls have

EMBER 2009
- and non- 9* Source
led by the Code \.8 Ballot
atform at- Vendor Definition
be bound
f the TPM
i, random
Algorithm Voter
PM offers Auth Card
. . verifies
ysical and Voter , results accuracy.
attestation
4 C. System Roles
mper-evi-
ard. TPM- +
1slave de- Election Tracker
~) bus, for
th or con- Results
CPU and Cast Votes
devices or .
Election Election
TTA Tally Centified
1e storage
red exter- Fig. 1. Architecture includes: DRE (with a TPM), tallying systems, and
€S owner- | acker/reporting systems such as Election Tracker [32]; trusted authorities:
:ssing the Trusted Election Authority (TEA), Precinct Judge (TPJ), Tallying Authority
red inter- (TTA), Independent Testing Authority (ITA); the voter; and binary images of
L. Keys in software, ballot, and storage for cast votes.
whereby
f:; l(:lf t;e to load the key only when the software measurements stored in results.
’ 995, | the PCRs are correct.
1 software
I;fOtOCOL IV. ARCHITECTURE
al protec-
'enlt) unau- We define a notional architecture consisting of high-level
system elements, including hardware, actors, dependencies,
he owner and some security assumptions. The architecture is patterned
\inistrator deliberately after existing DRE architectures to show the appli-
m limited cability of the protocol to current technology.
t trus:hle A. System Elements
orts del- . . .
P rivileges Fig. 1 shows the system elements in the context of the high
P level architecture.
ation by | B Security Assumptions
cesses as . ’ the .
xecutable The protocol protects the cast vote (recorded intent of the TPM
o the ex- voter) and evidence of the ballot (the choices presented to the
:urements voter) provided that certain assumptions hold.
n by fol- 1) Asymmetric digital signature keys and hashing afforded by
»s among the TPM adequately ensure data authenticity and integrity
0S loads during storage and transmittal.
its in the 2) The chain of trust of PCR measurements includes all rele-
ent chain vant software, firmware, and configuration files, including
jguration the operating system kernel, software drivers, loadable
égura tion modules, relevant dynamic libraries, the voting system
the TPM software and configuration files, and relevant portions of
the BIOS.
ng a new .
egs et to a 3) The TPM and other trusted hardware are operating cor-
rectly.
software. .
. state by 4) The software components that form the measured chain
the TPM of trust are behaving as expected (correctly implemented,
correctly executing).
TPM spec- 5) A pseudorandom index is sufficient to protect voter identi-
ties against analysis of stored vote order.
I

632

[EEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 4, NO. 4, DECEMBER 2009

Boot Loader 0s ' lEIection SwW ,
I [
Y N taxes
Y N educ PVB Key
Y N tolls
PCR |{@m
o Amy
Bob
Eve Hash M
Ballot
N|Y[Y]| A
| l fid lﬁlY YI Amy } Hash’l Digest
Vote /_ @-m
5 s |z S s sz
Storage | 2 212 2 2 22
S

Fig. 2. Protocol loads the PVB key into the TPM to produce a signed digest of the vote and ballot. The PVB is usable only when the PCRs match a specified set
of measurement values. The vote, digest, and hash are stored in a pseudorandom location on disk and the storage is signed whenever a new vote is inserted.

numerous arguments, and others require additional setup/take-
down commands. We have purposely simplified these elements
of the protocol to keep the presentation clear.

We assume the use of version 1.2 of the TPM specifications
[36] and the associated TSPI implementation. Certain protocol
features such as sealing are not available on prior versions of the
TPM.

Our notation uses a lowercase h for hashing; P and S for
public and private key operations, respectively, with a subscript
indicating the key being used, and an inverse notation to indicate
decryption using same. As an example:

A — B :Pg(P4,B)
A — B:Sg(rg,A)

Verifp =Pg'(rp, A)

A sends its public key and B’sidentity in a message encrypted
with B’spublickey, B signsamessage g to A (using B’sprivate
key), and A decrypts B’s message using B’s public key. Note the
dual use of “key as a function” and “key as an entity.”

B. Protocol Actors

Several actors and software items are referenced in the Pro-
tocol Steps section for convenience, and include the following:
1) SWvote—the platform software (voting application and
operating system, plus any configuration files) needed for

the polling phase;

2) SWinit—initialization software used during platform ini-
tialization;

3) Platform—the DRE computing unit, including the TPM,
the user interface, CPU, memory, persistent storage (disk
or other), I/O channels, and BIOS;

), _Storage—persistent storage on the DRE, e.g., hard disk. .

C. Protocol Phases

The Platform Initialization and Platform Software Load and
Key Creation steps are assumed to be conducted in a trusted
environment.

Platform Initialization, Software Load, and Key Creation:

1. TEA — Platform : TakeOwnership(ownerPass, srkPass),
Platform — Storage : metaspy
2. TEA — Platform : CreateDelegation(SRK,
DELEGATE_LoadKey, srkPass, pollopenPass),
TEA — Platform : CreateDelegation(Owner,
DELEGATE_OwnerClear, ownerPass, pollclosePass)
3. TEA — Platform : Key_CreateKey(PV B, srkPass,
perComposite),
Platform — Storage : Pspx (PV B), metapy g
4. Platform — Storage : Spy g(h(VoteStorage))
5. Platform — TT A(via TEA) : Ppyp
6. TTA — Storage : Prra

1) The TPM is physically reset to erase any previous owner-
ship. SWinit is installed and booted. The TEA chooses a
password for the platform’s TPM, ownerPass, and a pass-
word for the SRK, srkPass, and then invokes TPM_Take-
Ownership to create the asymmetric SRK within the TPM.
The SRK is protected by srkPass. The private portion of
the SRK never leaves the TPM. The platform exports the
SRK metadata, which includes information needed to ref-
erence the SRK later on, to platform persistent storage.

The TEA creates two delegations: a load key delegation,
protected by pollopenPass, allowing the TPJ to use the
SRK to load the PVB; and an ownership delegation, pro-
tected by policlosePass, allowing the TPJ only to clear

2)

ownership in the Voting Termination step. These: pass-;.

words are kept secret until election day. Delegation grants

=
o o]

FINK

3)

stol
dov
clu
dat:

3
ifici
disc

MBER 2009

;pecified set
erted.

Load and
a trusted

eation:

‘kPass),

5,

us owner-
chooses a
ad a pass-
*M_Take-
the TPM.
yortion of
xports the
led to ref-
torage.

elegation,
o use the
tion, pro-
y to clear
ese pass-
ion grants

1

FINK et al.: TPM MEETS DRE: RE_EUCJNG’THE TRUST BASE FOR ELECTRONIC VOTING USING TPMs 633

only the needed rights to the TPJ without disclosing the
full-use passwords, maintaining least privilege.

3) The TEA supplies expected software PCR measurements
to SWinit which stores them in a PcrComposite object.
SWinit calls Key CreateKey with srkPass to create the
PVB—the PVB is both a child of the SRK and bound to
the PcrComposite values. The platform calls RegisterKey
to store the encrypted PVB keypair and the metadata
(called a blob) to platform persistent storage, wrapped by
the public portion of the SRK.

4) A large area to store the votes called VoteStorage is allo-
cated and initialized along with a separate area for cryp-
tographic audit logs.3 Storage consists of fixed-size slots,
each initialized to a sentinel value (e.g., all zeroes). The
storage should be generously sized to accommodate a large
number of votes, and to reduce the probability of colli-
sions when recording votes. The TEA signs the empty vote
storage area with the PVB.

5) The TPM exports the public portion of the PVB to the
TEA, and the TEA securely transmits the public key to the
tallying authority. (PKI could create an integrity-protected
channel between the TEA and TTA in this step, to ensure
that the TTA receives the correct public key.)

6) The TTA’s public key is installed on the platform to encrypt
the storage during Voting Termination—Precinct.

Finally, the TEA installs SWvote onto the platform. The audit
storage area is created, hashed, and signed. The platform is shut
down, securely erasing the values of the volatile registers in-
cluding the PCRs and any loaded keys or other authorization
data. The platform is delivered to the precinct.

Election Day Initiation (and Reboot):

1. TEA — TPJ : pollopenPass
2. TPJ — Platform : LoadKey(PV B, pollopenPass)

3. Verify h(VoteStorage) = P;‘I,Bh(VoteStora,ge)

1) The TEA reveals the delegation pollopenPass to the TPJ.
This delegation password allows the TPJ only key loading,
as opposed to unrestricted access to the SRK, and can be
posted publicly.

2) The TPJ boots SWvote, causing measurements of SWvote

to be extended into the TPM’s PCRs. SWvote attempts to

load the PVB key, which succeeds only if: a) pollopen-
Pass is entered, and b) the PCRs match the measured PCR
values of the certified SWvote software. If either condition
fails, the PVB key cannot be used and the TPJ is alerted.
Note that pollopenPass could be stored on the platform,
allowing periodic reboots throughout the day to ensure a
fresh set of PCR measurements.

3) The platform verifies the value and the signature on the
storage area’s recorded hash value. This ensures that that
the storage (and audit log) is in a consistent and valid
state, meaning that no votes have been improperly inserted,
deleted, or modified. If the signed hash value is invalid,
then the storage is corrupt and the administrator can be no-
tified or the unit can be shut down. An audit entry is created
reflecting the result of the boot. (After every entry, the audit
log is signed securely.)

3The audit log is not central to the use of the TPM, but is necessary for ver-
ification. All steps of the protocol should be logged. The Future Work section
discusses important issues related to secure auditing and logging.

Voting and Recording:

1. Voter — Plat form : vote

2. i — RANDOM(1, sizeof (VoteStorage))

3. Platform — VoteStorageli] : vote, Spy g(h(vote || ballot)),
Platform — Storage : Spyv g(h(VoteStorage))

1) The voter receives an electronic ballot from the TPJ (pos-
sibly via voter registration card) and presents it to the plat-
form. The platform displays the ballot to the voter, and the
voter commits her choices to the SWvote software. (Aborts
are possible on each race, or on the whole ballot, and are
recorded in vote storage as such.)

2) A pseudorandom offset into the vote storage is computed,
and adjusted for collisions. (The pseudorandom seed is ob-
tained from the TPM which, in turn, is seeded with system
randomness and TPJ randomness at platform reboot.)

3) The software hashes the vote and ballot data into a hash
object using Hash_SetHashValue, then calls Hash_Sign to
sign the hash inside the TPM with the PVB private key.
Atomically, the vote record is inserted into storage and the
storage area hash is updated.

The audit log is updated after every vote with any information
required by the higher level protocol (but none that threatens
voter privacy). This procedure is repeated for subsequent voters.
As added security, the TPJ keeps counts of how many people
attempted to vote and completed voting on each DRE.

Voting Termination—Precinct:

1. TEA — TPJ(and TTA) : policlosePass
2. Platform — TPJ : Prr4(VoteStorage,

Spy g(h(VoteStorage || policlosePass)), Ppv B)
3. TPJ — Platform : OwnerClear(pollclosePass)

1) The TEA reveals policlosePass to the TPJ and the TTA
(used later), and can be posted publicly. The TPJ enters
this in SWvote, witnessed by others.

2) The platform offloads the vote storage, the public PVB key,
and a digest of the vote storage and the policlosePass en-
crypted with the TTA’s public key. (Omitting, or submit-
ting an invalid pollclosePass in this step reveals premature
precinct termination to the TTA.)

3) The TPJ clears ownership of the TPM. Hereafter, the PVB
private key can never be used since the internal TPM state
enabling its use has been erased. Cleared units can be re-
booted and tested to validate that the PVB blob cannot be
loaded.

The above events are audited and must be officially wit-
nessed. The audit log is offloaded, but also retained on the
platform. The encrypted data are transported to the Trusted
Tallying Authority (TTA).

Tallying:

1. Decrypt : P’IT'Il‘ 4 (VoteStorage,

Spv B(h(VoteStoraée || pollclosePass)), Ppv B)
2. Verify h(VoteStorage || pollclosePass)

= P;‘l, p{h(VoteStorage || pollclosePass)
3.Vi € {1,2,3,...}, Verify h(VoteStorageli])

= Ppv g(h(VoteStorageli]))

EEEEE—————————————————]

634

1) The TTA decrypts the transported data. The TTA looks up

the supplied public PVB key against that supplied earlier
by the TEA—if the key is not known, halt and report the
error.
The TTA verifies the vote storage digest, and that it
iatches the policlosePass. If verification fails, then either
the precinct was terminated without knowledge of poll-
closeFass, or the storage digest is corrupt—halt and report
an error.

3) The TTA verifies each recorded vote in the VoteStorage
area—Tfailure indicates a corrupt vote.

The TTA checks audit logs for proper sequences of oper-
ations, e.g., initiation, voting, and termination, as well as the
proper signature on the audit logs. When satisfied with the votes
and results, the TTA publishes vote digests and the public key
of the PVB to the election trackers for public verification and
adds the votes to the general tally.

Election Termination: At the conclusion of the election, the
digital vote records and PVB public key are securely archived,
allowing independent verification and historical analysis of the
results.

D. Protocol and Implementation Enhancements

The protocol as described above has been kept simple for
clarity, but certain design improvements could increase security
and usability.

1) Authenticating DRE Presence—Preventing “Day-Of” At-
tacks: Day-of attacks are carried out by a malicious minority of
trusted officials who might hide a valid DRE (perhaps intended
as a spare) in a closet at the precinct to carry out a fake election.
Policy could require some number of independent officials NV
to supply multiple passwords to terminate the precinct voting
phase. When the TTA checks the vote storage, it also checks for
knowledge of policlosePass before considering the data to be
legitimate. Dividing pollclosePass N ways prevents N — 1 or
fewer corrupt officials from slipping fake results into the tally.
(In addition to election termination, N witnesses could be re-
quired to bring a machine into operation as well.)

2) Authenticating DRE Ildentity—Preventing Alternative Ma-
chine Substitution Attacks: A rogue official may attempt to sub-
stitute a terminal of his own choosing that exactly matches the
software and configuration of authorized terminals in the polling
booth. This attack may deceive the voter, compromising pri-
vacy; additionally, denial of service will occur because any votes
collected by the machine will be signed by a PVB key unknown
to the TTA, causing all such votes to be rejected. Our protocol
could be extended to allow the voter, using third-party hardware,
to verify the PVB signature on a voter-issued challenge to con-
firm platform correctness in the polling booth.

3) Other Enhancements: Assurance of the protocol requires
that the storage remain in a consistent state, surviving simple
power outages or even “pull-the-plug” attacks; implementa-
tions can utilize a commit/redo/undo protocol in a log-based
recovery system for implementing stable storage [33]. Addi-
tional privacy can be provided by splitting the cast ballot and
storing each voted race independently, defeating privacy attacks
that might deduce relationships among different decisions, e.g.,
“most folks that voted for Amy voted ‘no’ to the tax hike.”
Repeat voting can be prevented by assigning a unique serial
‘umber to a voter, chosen from a large pool of random numbers

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 4, NO. 4, DECEMBER 2009

each encrypted by the PVB public key. The PVB decrypts the

supplied serial number, ensures membership in an authorized
numbers table, and adds it to a list of used numbers before

allowing the vote. Write-in candidates can be handled by a |
dynamic strings table referenced by the vote record, protected |

by encryption with the TTA public key.

VI. SECURITY ARGUMENTS

We begin with a model of the adversary in terms of goals, ca-
pabilities, limitations, and information available for attack, and
describe the security against several types of attacks given the
model. Our adversarial model focuses on attacks against only
integrity and privacy of the data storage and transmission mech-
anisms.

We assume that the adversary wants to subvert the election
by changing the outcome or causing the public to question the
validity of the election through modification, substitution, or
unauthorized insertion of vote and ballot data. The adversary
has physical access to the DRE unit before, during, and after the
election, and can load software, reboot the platform, insert or re-
move data from local DRE storage. She can also insert software
or otherwise change the behavior of the running election soft-
ware without requiring reboot, perhaps using buffer overflows.
The adversary also has access to secondary storage including
the voter authorization card, and also the postelection precinct
data bundled for transmission to the tallying location.

We assume that the adversary cannot recover the PVB private
key. We assume that she cannot physically access the internals
or influence the operations of the TPM without being detected.

A. Countered Attacks

Given this model, we describe high level attack vectors and
show the infeasibility of the attacks given the adversary’s limi-
tations.

1) Ballot Modification and Misrepresentation: The attacker
may attempt to modify ballot data in the voter authorization card
to deceive the voter. Because the ballot is hashed with the vote
and signed, the TTA would fail to verify the digital signature
in the tallying phase, exposing the attack. If the attacker can
somehow misrepresent the ballot on the screen, then the voter’s
choices would not reflect her intent, but this attack violates our
assumption about certain trustworthy hardware.

2) Stored or Transmitted Vote Modification: If the attacker
makes offline modifications to the individual vote—when the
platform is turned off or when the vote is in transit—then the
TTA would detect the difference on the vote and storage area
digests when verifying the PVB signature (as recorded by the
TPM), revealing the attack.

3) Stored or Transmitted Vote Insertion or Removal: The
attacker may try to insert or remove votes from the DRE storage
area. Since the TPM protects this storage area by signing a hash
of the whole area by the PVB private key, the TTA would notice
the integrity violation during verification of the storage digital
signature.

4) In-Memory Data Modification: In-memory data modifi-
cations can occur if the attacker can subvert the correct opera-
tion of the software. Two methods of subversion include (1) file
injection attacks that require a platform reboot to activate in-
jected code (e.g., rootkits), and (2) runtime, integr‘it)g attacks

po
VO
his
or¢
var
wi

fic
on
ele
en
co
ve.
sig
bit
att
sis
cel

or

Vo

MBER 2009

rypts the
.uthorized
:rs before
lled by a
protected

goals, ca-
ttack, and
given the
ainst only
ion mech-

e election
estion the
tution, or
adversary
1 after the
sert or re-
t software
ition soft-
yerflows.
including
1 precinct

'B private
: internals
detected.

sctors and
ry’s limi-

e attacker
ation card
1 the vote
signature
acker can
he voter’s
dlates our

2 attacker

W e -

FINK et al.: TPM MEETS DRE: REDUCING THE TRUST BASE FOR ELECTRONIC VOTING USING TPMs 635

that alter the memory state of the running software without re-
boot (e.g., dormant activation flags, SQL injections, buffer over-
flows). Assuming (1), the PCRs would reflect measurements
of the malicious software and invalid configuration files in the
PCRs collected during boot, preventing the PVB from loading.
Write-once storage can foil a vote storage replacement attack for
case (2), an attack in which the subverted software replaces the
vote storage area and commands the TPM to sign it. Although
case (2) violates our assumption of correctly running software,
defenses include write-only secure logging and dynamic run-
time integrity measurement as discussed in Section VIIL

5) Observed Voter Order: An attacker might observe the
polling place during the election and record the order of the
voters using a DRE, and later correlate the stored vote order with
his observations. Our protocol stores votes in a pseudorandom
order onto the storage media, countering this attack against pri-
vacy by ensuring that the order of recorded votes is uncorrelated
with the order of voter interactions.

6) Election Substitution/Day-Before Attack: One or more of-
ficials charged with safeguarding the machines activate and vote
on properly initialized voting terminals the day before the actual
election and then attempt to substitute the malevolent data at the
end of the election. This attack is prevented because the system
controls when the PVB key can sign data through a password re-
vealed only on the day of the election. Since the TPM refuses to
sign anything with the PVB key without proper authorization,
binding the key to the election phase prevents the day-before
attack. Further, password guessing attacks are detected and re-
sisted by declining performance of the TPM, to the extent that
certain TPM implementations will completely shut down once
a failed authentication threshold is achieved.

B. Attacks Not Countered

Several classes of attack cannot be prevented by our protocol,
or by any protocol that uses the TPM.
1) Hardware Attacks: These are specific hardware attacks that
affect any complex software and hardware system:
a) Memory attacks via rogue devices—devices could
use direct memory access (DMA) to manipulate
system memory during the vote casting process to

display an incorrect ballot while recording a hash of

the correct ballot. One partial defense is deactivating
DMA on platforms, the other is physical security of
ports; however, prior voting systems analyses show

‘_Nt]ﬁ:ﬁ $: that locking down port access never fully solves the
rage area prob‘lem [18]. . ‘ .
ed by the b) Device tampering—misrepresenting a ballot to a
voter can cause her to cast a vote that opposes her
wal: The intention. Our protocolicryptographical@y'bin'ds the
E storage contents of the ballot with the vote, but it is dlfﬁgult
ng a hash to prove what the voter actually saw when making
11d notice her decision.4 '
ge digital 2) Other Attacks: The following attack classes are not mit-
igated by the protocol: insider attacks, including coercion
2 modifi- or pa_yoff of a trusted entity; attacks against the_higher level
:ct opera- falectlon system that uses our protocol; sc‘)phis'tlcated phys-
de (1) file ical attacks such as TPM power analysis, microscopy, or
tivate in- “In the 1990s, Democracy Systems, Inc. offered a verification product called
y attacks VoteGuard that recorded a video log of screen images presented to the voter.
j

disassembly (easy to detect in the polling precinct); de-
struction of machines, resource exhaustion, and other de-
nial of service attacks; procedural breakdowns where the
TPJ fails in his duty allowing repeat DRE visits by the
same voter; and overt physical tampering. Certain insider
attacks could be mitigated by using shared secrets (for in-
stance, defending against the day-of attack), but the re-
maining problems require correct procedural controls.

VII. BENEFITS AND LIMITATIONS

The main benefit of the protocol is that trusted hardware
assures the election authority of the integrity of the software
and ballot data during voting, and the integrity of the vote data
during storage and transmittal, increasing the security of the
election. It also allows vote collection only during the legitimate
election period. By delegating critical cryptographic operations
to trusted hardware in a verifiable way, we can reduce risk and
enjoy the usability benefits of DRE systems. Other benefits
include that it:

1) is readily implemented with the TSPI,

2) works for any supported TPM and platform;

3) supports Static Core Root of Trust or Late Launch trust
models—Late Launch is a special mode that ensures full
measurement of the system components without trusting
any of the software or firmware, but requires special CPU
and chipset extensions such as Intel Trusted eXecution
Technology (TXT).

One limitation of the protocol is its dependence on trusting
the hardware. There are several respected authorities that validly
argue that hardware is inherently opaque, and that any system
(including ours) that delegates critical functionality to the cor-
rect operation of hardware is too risky. Further, some authorities
struggle to accept foreign-made cryptographic hardware mod-
ules as trustworthy for processing sensitive national data such
as elections.

Another limitation is that the PCR measurements verify only
that the correct software is running, not that the software is
running correctly. Validating correct software design and oper-
ation requires techniques such as formal proofs, trusted com-
pilers, branch test coverage, and dynamic attestation of data
structures [19]. Software-independent E2E systems also offer
integrity protection against software faults.

Last, our present design provides no assurance to the voter
that the machine is an authorized device or is configured or be-
having correctly. As mentioned earlier, the protocol could be re-
vised to include a challenge and verification step from the voter,
but this raises scalability and accessibility concerns (e.g., can
all voters obtain the necessary hardware?) and must be designed
very carefully.

VIII. FUTURE WORK

This paper represents a start at using trusted hardware (o mit-
igate some risks of DRE. One area related to the protocol is to
modify the TPM specification to manage count-limited signing
keys. This feature could allow numerous smaller vote storage
areas—each signed with its own unique PVB—instead of one
large one, to reduce the risk of total storage compromise. Sar-
menta et al. [29] refers to this as clobs—count-limited objects.
Another task would be to prove the protocol properties formally

T

636 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 4,NO. 4, DECEMBER 2009 ; FINK

to ensure that the security claims are satisfied under the stated
assumptions.
A prototype could validate correct use of the TPM, and in-
corporate a full voting application to show usability with higher
tems. The protocol can be extended to include
E cryptographic audit trail technology. For in-
stance, technologies such as Scantegrity [6], [7] empower each
voter to verify that her vote was recorded and tabulated cor-
rectly, but verification takes place only after all results are re-
ported. Our protocol can catch problems much sooner than is
possible without technology assistance.
The problem of runtime integrity attacks—in our case,
promise of the live platform after the PVB has been
loaded—can be addressed by at least two research areas.
Policy-driven, secure write-once log storage could be used
to verify historic system state and event occurrence crypto-
graphically, preventing surreptitious wholesale replacement
of the voting storage. The challenge is determining what data
to record to properly balance the needs of voter privacy and
public verifiability. Dynamic attestation of software state could
thwart live software attacks by measuring the running system,
perhaps with the help of virtualized environments, to verify the
correct state of system memory structures [19]. Advances in
both of these areas would benefit both electronic voting and
information assurance in general.

IX. CONCLUSION

We have created a protocol based on hardware TPM enforce-
ment of attested software state that resists vote modification, in-
sertion, election replacement, and augmentation, and can reveal
the use of incorrect software during the election data gathering
phase. Our protocol works by protecting the integrity of both
data at rest and data in transit as well as protecting voter pri-
vacy, and is compatible with higher level election techniques
including end-to-end systems. We have shown in practical de-
tail how trusted hardware can reduce the required trust base for
electronic voting. Our work enables meaningfully more secure
DRE voting with excellent usability and accessibility.

ACKNOWLEDGMENT

The authors would like to acknowledge D. Challener,
H. Finney, L. Sarmenta, and J. Osbom for sharing their knowl-
edge of the TPM; reviewers G. Walker, D. Heine, J. Land,
D. Paulhamus, and the CSRG group of APL; and J. Pinkston of
UMBC. The authors are grateful for the discussions and insight
from D. Phatak, J. Krautheim, and members of the UMBC
Cyber Defense Lab. Finally, they thank their IEEE reviewer
who pointed out a remanence issue in an earlier draft.

REFERENCES

(1] W. A. Arbaugh, “The real risk of digital voting?,” Computer, vol. 37,
no. 12, pp. 124-125, 2004.

[2] A.Aviv, P.Cerny, S. Clark, E. Cronin, G. Shah, M. Sherr, and M. Blaze,
“Security evaluation of ES&S voting machines and election manage-
ment system,” in Proc. Conf. Electronic Voting Technology (EVT'08),
Berkeley, CA, 2008, pp. 1-13, USENIX Association.

[3] D. Bowen, Top-to-bottom review Secretary of State of California Tech.
Rep. 2007 [Online]. Available: http://www.sos.ca.gov/elections/elec-
tions_vsr.htm, Last accessed Jul. 31, 2009

g -

&

(41

[51

[6

—

[7

—

[8

—

9

—

(10

(11}

(12]

[13]

[14]

[15]

(16]

(17]

(18]

(19]

(20}

[21]

(22}

K. Butler, W. Enck, H. Hursti, S. McLaughlin, P. Traynor, and P. Mc-
Daniel, “Systemic issues in the Hart InterCivic and Premier voting sys-
tems: Reflections on Project Everest,” in Proc. Conf. Electronic Voting
Technology (EVT'08), Berkeley, CA, 2008, pp. 1-14, USENIX Asso-
ciation.

D. Challener, K. Yoder, R. Catherman, D. Safford, and L. van Doom, A
Practical Guide to Trusted Computing, 1st ed. Upper Saddle River,
NIJ: IBM Press, 2008, no. 978-0132398428.

D. Chaum, R. Carback, J. Clark, A. Essex, S. Popoveniuc, L. R. Rivest,
P.Y. A Ryan, E. Shen, and A. T. Sherman, “Scantegrity II: End-to-end
verifiability for optical scan election systems using invisible ink confir-
mation codes,” in Proc. Conf. Electronic Voting Technology (EVT’08),
Berkeley, CA, 2008, pp. 1~13, USENIX Association.

D. Chaum, A. Essex, R. Carback, J. Clark, S. Popoveniuc, A. Sherman,
and P. Vora, “Scantegrity: End-to-end voter-verifiable optical scan
voting,” IEEE Security Privacy, vol. 6, no. 3, pp. 4046, May/Jun.
2008.

Direct recording electronic (DRE) technical security assessment
report State of Ohio Office of the Secretary of State, Tech. Rep.,
2003 [Online). Available: http://www.sos.state.oh.us/sos/hava/com-
puwarel12103.pdf, Compuware Corporation. Last accessed Mar. 15,
2008

Decomisan varios ordenadores en la casa presidencial con los re-
sultados de la consulta que queria hacer zelaya. (Rough Trans:
Computers seized with bogus election results pre-loaded) Europa
Press [Online]. Available: http://www.europapress.cat/interna-
cional/noticia-decomisan-varios-ordenadores-casa-presidencial-re-
sultados-consulta-queria-hacer-zelaya-20090717221 327.html, Last
accessed Jul. 31, 2009

A. J. Feldman, J. A. Halderman, and E. W. Felten, “Security analysis
of the Diebold AccuVote-TS voting machine,” in Proc. USENIX Work-
shop on Accurate Electronic Voting Technology (EVT’07), Berkeley,
CA, 2007, USENIX Association.

R. Fink and A. Sherman, “Combining end-to-end voting with trust-
worthy computing for greater trust, privacy, accessibility and usability
(summary),” in End-To-End Voting Systems Workshop, Oct. 2009, Na-
tional Institute of Standards and Technology.

S.N. Goggin, M. D. Byrne, J. E. Gilbert, G. Rogers, and J. McClendon,
“Comparing the auditability of optical scan, voter verified paper audit
trail (VVPAT) and video (VVVAT) ballot systems,” in Proc. Conf.
Electronic Voting Technology (EVT’08), Berkeley, CA, 2008, pp. 1-7,
USENIX Association.

J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J.
A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest
we remember: Cold-boot attacks on encryption keys,” Commun. ACM,
vol. 52, no. 5, pp. 91-98, 2009.

P.S. Hermnson, R. G. Niemi, M. J. Hanmer, and B. B. Bederson, Voting
Technology: The Not-So-Simple Act of Casting a Ballot. Washington,
DC: Brookings Institution Press, 2008, ISBN 0-8157-3563-4.

H. Hursti, Diebold TSx evaluation: Critical security issues with
Diebold TSx Black Box Voting, Renton, WA [Online]. Available:
http://www.bbvdocs.org/reports/BBVreportIIunredacted.pdf, Last
accessed Mar. 15, 2008

A.R.Jorba, J. Antonio, O. Ruiz, and P. Brown, “Advanced security to
enable trustworthy electronic voting,” in Proc. 3rd Eur. Conf. E-Gov-
ernment, 2003, pp. 377-384.

J. Kelsey, “Strategies for software attacks on voting machines,” in
Developing an Analysis of Threats to Voting Systems. Gaithers-
burg, MD: National Institute of Standards and Technology [Online].
Available: http://vote.nist.gov/threats/papers/stategies_for_soft-
ware_attacks.pdf, Last accessed Mar. 15, 2008

T. Kohno, A. Stubblefield, A. D. Rubin, and D. S. Wallach, “Analysis
of an electronic voting system,” in IEEE Symp. Security and Privacy,
2004, p. 27.

P. A. Loscocco, P. W. Wilson, J. A. Pendergrass, and C. D. McDonell,
“Linux kernel integrity measurement using contextual inspection,” in
Proc. 2007 ACM Workshop On Scalable Trusted Computing (STC’07),
New York, 2007, pp. 21-29, ACM.

J. Miller and J. Krosnick, “The impact of candidate name order on
election outcomes,” Public Opinion Quart., vol. 3, no. 62, pp. 291-330,
1998.

L. Norden, The Machinery of Democracy: Protecting Elections in
an Electronic World, ser. Voting Rights and Elections. New York:
Brennan Center Task Force on Voting System Security, Brennan
Center for Justice at NYU School of Law, 2006.

N. Paul and A. S. Tanenbaum, “Trustworthy voting: From machine to

system,” Computer, vol. 42, no. 5, pp. 23-29, 2009.

<,

[2

[2

2

2

[2!

B3

[3

[3:
3
[3

3.

3

[3

‘EMBER 2009

:, and P. Mc-
T voting sys-
tronic Voting
ENIX Asso-

van Doorn, A
iaddle River,

L.R. Rivest,
: End-to-end
le ink confir-
3y (EVT'08),

A. Sherman,
optical scan
6, May/Jun.

assessment
Tech. Rep.,
s/hava/com-
sed Mar. 15,

con los re-
>ugh Trans:
led) Europa
i.cat/interna-
:ncial-re-

iml, Last

rity analysis
'ENIX Work-
7), Berkeley,

3 with trust-
ind usability
t. 2009, Na-

McClendon,
| paper audit
Proc. Conf.
108, pp. 1-7,

, W. Paul, J.
‘elten, “Lest
wmun. ACM,

xson, Voting
Washington,
3-4.

issues with
. Available:
df, Last

1 security to
onf. E-Gov-

achines,” in

Gaithers-
1y [Online].
es_for_soft-

1, “Analysis
nd Privacy,

. McDonell,
pection,” in
g(STC'07),

ae order on
p- 291-330,

tlections in
New York:
y, Brennan

machine to

W

[23] S. Pearson, Trusted Computing Platforms: TCPA Technology
in Context. Upper Saddle River, NJ: Prentice-Hall, 2003, no.
978-0130092205.

[24] Trusted agent report: Diebold AccuVote-TS voling system State of
Maryland General Assembly, Department of Legislative Services, An-
napolis, MD [Online]. Available: http://www.raba.com/press/TA_Re-
port_AccuVote.pdf, RABA Innovative Solution Cell (RiSC), Dr.
Michael A. Wertheimer, Director. Jan. 2004. Last accessed Mar. 15,
2008

[25] T. Réssler, H. Leitold, and R. Posch, “E-voting: A scalable approach
using XML and hardware security modules,” in IEEE Int. Conf. e-Tech-
nology, e-Commerce, and e-Services, 2005, pp. 480-485, 2005.

[26] J. Rutkowska, Introducing Blue Pill [Online]. Available: http:/thein-
visiblethings.blogspot.com/2006/06/introducing-blue-pill.html Last
accessed Feb. 2009

[27] A. Sadeghi, M. Selhorst, C. Stiible, C. Wachsmann, and M. Winandy,
“TCG inside?: A note on TPM specification compliance,” in Proc. First
ACM Workshop on Scalable Trusted Computing (STC'06), New York,
2006, pp. 47-56, ACM.

[28] Risk assessment report: Diebold AccuVote-TS voting system and
processes (unredacted) Science Applications International Corpo-
ration, State of Maryland Department of Budget and Management,
Annapolis, MD, Sep. 2003 [Online]. Available: http://www.brad-
blog.com/?p=3731, Last accessed Mar. 15, 2008

[29] L. F. G. Sarmenta, M. van Dijk, C. W. O. Donnell, J. Rhodes, and S.
Devadas, “Virtual monotonic counters and count-limited objects using
aTPM without a trusted OS,” in Proc. First ACM Workshop on Scalable
Trusted Computing (STC’06), New York, 2006, pp. 27-42, ACM.

[30] DriveTrust technology: A technical overview. Seagate Corporation,
Seagate, Tech. Rep., 2006 [Online]. Available: http://www.sea-
gate.com/docs/pdf/whitepaper/TP564_DriveTrust_Oct06.pdf, Last
accessed Feb. 2009

[31] P. E. Seving, M. Strasser, and D. A. Basin, “Securing the distribution
and storage of secrets with trusted platform modules,” in Proc. Work-
shop in Information Security Theory and Practices (WISTP), 2007, pp.
53-66.

[32] A. Sherman, “Election tracker: A new tool for greater election trans-
parency,” presented at the VoComp 2007, Jul. 2007, Rump session.

[33] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System Con-
cepts. New York: McGraw-Hill, 2005, no. 0-07-295886-3.

[34] M. Strasser, A software-based TPM emulator for Linux Semesterarbeit,
ETH Zurich, 2004 [Online]. Available: http://tpm-emulator.berlios.de/,
Last accessed Apr. 2008

[35] The TrouSerS Software Library [Online]. Available: http://trousers.
sourceforge.net Last accessed Apr. 2008

[36] Trusted Computing Group, TCG TPM Specification Version 1.2 Re-
vision 103, 2008 [Online]. Available: https://www.trustedcomputing-
group.org/specs/TPM, Last accessed Mar. 2008

[37] K.P. Yee, “Building Reliable Voting Machine Software,” Ph.D. disser-
tation, Berkeley, CA, 2007.

iy]

FINK et al.: T®M MEETS DRE: REDUCING THE TRUST BASE FOR ELECTRONIC VOTING USING TPMs 637

Russell A. Fink received the Bachelor’s Degree in
computer science from the University of Maryland,
College Park, and the Master’s Degree in computer
systems management from the University of Mary-
land, University College. He is working toward the
Ph.D. degree in computer science at the University
of Maryland, Baltimore County (UMBC).

He is a senior staff member of the Johns Hopkins
University/Applied Physics Laboratory, Laurel, MD,
and a member of the UMBC Cyber Defense Lab. His

/ research interests include network security, trusted
computing, high assurance platforms, signals processing, and secure voting
systems.

Alan T. Sherman received the Sc.B. degree in math-
ematics (magna cum laude) from Brown University,
the S.M. degree in electrical engineering and com-
puter science from MIT, and the Ph.D. degree in com-
puter science from MIT studying under R. L. Rivest.

He is an Associate Professor of computer science
at the University of Maryland, Baltimore County
(UMBC) in the Computer Science and Electrical
Engineering Department, Director of UMBC’s
Center for Information Security and Assurance, and
a member of the National Center for the Study of
Elections at UMBC. His main research interest is high-security voting systems.
He has carried out research in election systems, algorithm design, cryptanalysis,
theoretical foundations for cryptography, and applications of cryptography.

Dr. Sherman is also a private consultant performing security analyses, an ed-
itor for Cryptologia, and a member of Phi Beta Kappa and Sigma Xi.

Richard Carback was born in Baltimore, MD. He
received the Master’s Degree in computer science
from University of Maryland, Baltimore County
(UMBC) in May 2008. He is currently working
toward the Ph.D. degree in computer science at
UMBC.

He is a Research Associate for Convergent
Technologies Incorporated, Baltimore, MD, sup-
porting computer security development and training
efforts. Previously, he has worked as a Research
and Teaching Assistant at UMBC, and a Software
Engineer at L-3 GSI, Inc. His research interests include end-to-end election
systems, privacy enhancing technologies, virtual systems security, computer
network operations, cryptology, and other topics in computer security and
information assurance.

