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Abstract

The Dynamic Cryptographic Context Management
(DCCM) project efficiently provides security for very
large, dvnamically changing groups of participanis.
The DCCM system has twa novel distinguishing
characteristics.  First, policy plays a key role in
DCCM.  Groups at all levels have policies. These
policies are represented, they are negotiated, they are
managed: and a  cryptographic  conlext—an
unambiguous sef of mechanisms and configurqtion-—is
created to make parlicular interactions possible
subject to these policies. Second, DCCM implemenis a
scalable key managemeni system based on One-way
Function Trees (OFT} that can handle group sizes up
fo 100,000 members and can dvnamically handie
members entering and leaving groups.

1. Intreduction

The Dynamic Cryptographic Context Management
(DCCM) project [2] efficiently provides security for
very large, dynamically changing groups of
participants. For example, command and contro] of
factical military forces requires several types of
protection among a very large group of participants,
perhaps from different countres or from differemt
Armed Forces units, grouped together under one
command for some time period or for a specific
exercise. By “large,” we mean groups with number of
members ranging from 10,000 to 100,000 or more. By
“dynamic,” we mean new members may be added to
the group at any time and existing members may be
evicted from the grous, thereby requiring immediate

i

changes to some of the sccurity provisions. Members
need not be humans; they can be a variely of
communicating entities, including sensors, mobile
client workstations, server workstations, or network
nodes.

The DCCM system has two novel distinguishing
characteristics.  First, policy plays a key role in
DCCM.  Groups at ali levels have policies. These
policies are represented; they arc negotiated; they are
managed; and a  cryplographic  confext—an
unambiguous set of mechanisms and configuration—is
created to make particular interactions possible subject
to these policies. Second, DCCM has a scalable key
management system that can handle group sizes up to
100,000 members and <can dynamically handle
members entering and leaving groups.

This paper presents:

o The DCCM view of a scoure group: its

organization; lifecycie; and operations,

e Secure group policy and a Cryptographic

Context Negotiation Template to represent it;
e Policy negotiation via a Cryptographic Context
Negotiation Protocol;

s  The One-way Function Tree (OFT) method for

large group key management; and

o The architecture of a demonstration system

incorporating the DCCM concepts.

2. Secure groups

A secure group is a collection of members who are
authorized to access a set of information, Secure group
mechanisms enable the members, and only the
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members, to access the information. DCCM supports
group policies that require group confidentiality and/or
group integrity of the information.

Group  confidentiality  protects the  group
mformation from disclosure to non-group members. In
order to provide confidendality in a dynamically
changing group, security mechanisms must provide
forward and backward secrecy., Forward secrecy
means that evicted members cannot access fufure
information.  Backward secrecy means that new
members cannot access past information.

Group integrity protects  information  from
moedification by non-group members. Members of a
secure group can verify that information has not been
modified by anyone outside of the group, and that it
originated from an authorized group member. Group
integrity does not allow a member to determine which
individual group member created a message, ie,
individual source authentication.

DCCM does not provide mechanisms o support
ndividual source authentication of information or to
maintain the availability of information.

2.1, Group organization

DCCM recognizes and supports a range of models
for the organization of a secure group, from a strict
hierarchical model to a broad flat model. A
hierarchical group is based on inherent structure of the
members forming a group. This structure is fypicaily
found in  groups created for organizational
collaboration, such as an industrial consorfium or a
military cozlition, The security policies and supporting
infrastructure for the group also take advantage of
existing structure and relationships between members,
For example, there may be multipie authentication
policies and servers for a group, based on the existing
policies within the hierarchy or across multiple
hierarchies.

A flat group has no group structure or relationships
between group members. It is typically used for
individual collaboration or information distribution,
such as web broadcasts or pay-per-view. BDCCM
aflows each member to have its own security policy, or
to subscribe to a known security policy. In a {lat
model, certain members may advertise a policy
designed to meet certain goals that other members with
similar goals can use as well.

The most basic entity in a DCCM secure group is
the participant. A participant is 4 single entity that is
involved in secure group communication. Typically a
participant represents a person, but it can represent a
sensor, a Personal Digital Assistant (PDA), or a piece
of software. DCCM supports all security services for
all participants, and assumes that all participants have

the same group communication capabilities. DCCM
fully supports the many-to-many medel of group
communications, meaning all participants can both
send and receive information. DCCM can also support
the one-to-many model {one sender with many
receivers) within its support of the many-to-many
model.

A group of participants sharing a secure group
communication mechanism for a specified period of
time for a commoen purpose is a session. A session
imphes that all of the participants share the same
security mechanisms, share the same security policy
for theose mechanisms, and share & common security
configuration, including cryptographic keys, for the
enforcement of the policy. For example, a single
lecture broadcast from z semester long class would be
a session,

A DCCM project is a set of sessions occurring over
time. All of the sessions within a project will use the
same cryptographic context, or policy, and support the
same set of participants. The project is the unit of
administration for access contro! for DCCM. DCCM
administers the list of participants in a project and
enforces an access control pelicy between project
members and nen-members.  Within a project, any
project participant is free to participate in any session
announced for the project. All project members are
authorized for all sessions within that project. Project
members may choose not to participate, but that is not
a sccurity relevant decision. Multiple sessions can
occur simultaneously within a project, and a participant
can join more than one of these sessions.

The highest level of organization of secure groups
in DCCM is a systemn. A system is the supporting
infrastructure for a set of related participants that
transcends individual projects. The system maintains a
single authentication database that is used across
multiple  projects. The DCCM authentication
mechanism utilizes a system base key, or shared secret,
that is established when a participant joins the system
and authenticates for the first time, typically with a
public key mechanism. DCCM amortizes the high cost
of the public key authentication over the creation of
multiple projects.

2.2. Group lifecycle

All groups go through several phases during their
fife. The first phase of DCCM, even before any groups
are formed, is the induction of participants into a
DCCM system.  As previously noted, participants
authenticate themselves once to a DCCM system and
establish a shared key that is used for all future secure
operations.



During the next phase, a DCCM project is created
from the set of participants authenticated to the system.
One of the participants takes on the role of project
initiator. The project initiator specifies a list of
participants and a proposed security policy for the
project. The DCCM system infrastructure uses the
proposed policy in negotiation (see Section 4} with
cach of the proposed participants to derive a
cryptographic context for the project,

Once the cryptographic context and membership are
established for a project, the key management
mechanism establishes the group keys and distributes
them to ali of the participants (see Section 3, Key
management).  Participants then use the keys for
protecting their group comimunications. DCCM
mechanisms support cryptography at any level in the
network stack. Typically, group cryptography is found
at the network, transport, or application level.

The growp is actively managed during its lifetime
(see Section 2.3, Group operations). Participants may
be added or removed from the group; keys may expire;
and eventually the group is disselved.

2.3. Group operations

DCCM defines the following group operations for

each project:

e Add. Participants can be added to a project.
There are three security refevant aspects o
adding participants to an existing project. First,
the project initiator applies an access control
policy for the project to determine if the
participant can be added. Second, the project
policy must specify whether or not new
participants are  to  have  access  to
communications or information  generated
before they joined the project. If not, a new
project key has to be gencrated when a new
participant joins the project.  Fimally, the
project policy must specify how to negotiate the
project cryptographic context when  new
participants are added. Because the negotiation
process ensures that the project context is fully
compliant with the policies of all participants, a
new participant may require a change that is
mutually exclusive with an existing member.
An even more subtle problem during late
additions is that existing members may actually
have a different policy depending on the project
membership. A new member may require a
fresh negotiation for the project cryptographic
context.

e Remove. Participants can be removed from a
project. A remove is used when a participant is

no longer participating, but still authorized for a
group. There is no change to the group key.

» FEvict. When participants are evicted from a
project, their authorizations are revoked and the
group key is changed to prevent them from
obtaining further access to amy project
information.

¢ Freege, Freezing a participant is a special case
of removing a participant. When a participant
is frozen, they are not removed from the group
keying mechanism, but the system does not
send any further key updates to the participant.
This operation is useful for a member who
knows they will be unable to receive or protect
key information for a period of time.

e Thaw. Thawing a participant resumes the
distribution of key update messages to the
participant. A thaw reverses a freeze.

s Resync. Resynchronizing a participant resends
the latest key update information for that
participant only. In addition, it will thaw a
frozen participant. A resync operation is used
when a participant unexpectedly stops receiving
key update information or suspects that its
keying material is out of date.

In addition fo the project level operations, a participant
may also be evicted from the system, which results in
an eviction from any projects containing the
participant. A participant may choose to join or leave
sessions within a project, but those are not security
relevant operations. By definition in DCCM, ail
participants in a project are authorized for all sessions
within that project. That authorization is constani,
regardiess of a participant’s choice to exercise it

3. Policy

A security policy 1s a set of rules specifying how to
protect information. Policies can be described by
whom they cover and by what they cover. In DCCM,
every organizational entity has a policy. When a
participant joins the DCCM system, they bring with
them their security policy for the protection of their
information. 1t may be a pelicy specific to them, such
as in a flat group model, or the policy may be an
organization policy covering all of the members of
some hierarchy.

Policies can cover different security aftributes at
different levels of abstraction. For example, a high-
level policy would state that confidentiality must be
protected; a mid-fevel policy would state that strong
encryption must be used; and a low-level policy would
specify that triple-DES encryption in CBC mode must
be used. Policies can also specify allowable behavior
as a range of opticns. For example, a policy might



state that «f Jeas! maoderate strength integrity
mechanisms must be used.

A policy that contains a range, or set of allowable
actions, cannot be enforced by multiple participants
with any expectation of  interoperabilify.
Interoperability can only be achieved when it can be
guaranteed that all of the participants will enforce the
policy exactly the same. DCCM  accomplishes
interoperability by distributing a policy that is
compictely unambiguous; there are no ranges of
options. A policy that specifies a singular instantiation
in DCCM is referred to as a confext, specifically a
eryptographic contexi.

There are several problems, however, in creating a
cryptographic context that can be enforced by all
participants, regardless of their initial policy and their
security capabilities. The first problem is specifying a
common synfax for representing policy information.
There are other policy representations under research,
such as SPSL [91 and GSAKMP [12}, but neither of
them is designed to express group policy including
multiple levels of abstraction.

The second problem is specifying common
semantics for the interpretation of a policy. Many
common security terms and descriptions can he
implemented or interpreted in different ways. This
situation holds at both high levels and fow levels of
abstraction. For example, what is streng encryption?
Does it imply specific algorithms, specific key lengths,
specific protocols, or all of them? Is 64 bits of key
length strong, or is 1287 At low levels of abstraction,
does 3DES mean CBC mode and three key EDE?

Without common semantics there is no way to
support & comnon mapping or translation between
policy abstractions and implementing mechanisms
across the various participants in a project. DCCM
addresses this problem with a Cryprographic Context
Negotiation Template (CCNT) [3].

The CCNT is the common thread for policy
representation, distribution, and negotiation in DCCM.
It captures policy information at a low level of
abstraction to ensure comnion semantics and
interoperability between participants. Mapping from
high tevel constructs to a CONT can be performed
lecally; outward representation of policy 1s made only
at the level of the CONT.

The CCNT represents policy as an n-dimensional
space. Fach axis in the space represents a different
aspect of the policy. Each value along an axis is a
specific mechanism or configuration for that aitribute.
For example, confidentiality is the vertical axis in
Figure 1, and it has the possible values of IDES, CAST,
IDEA4, and RC4 DCCM  contexts, which are
unambiguous seis of mechanisms, are single points in
the n-dimensional space, Contexts can be proscribed

by only a single value on any axis. DCCM policies,
which are ranges or sets of aliowable mechanisms, are
sets of points in this space. Policies are proscribed by
ranges of values or separate discrete values on multiple
axes. Note that a pelicy is not required fo have an
intersection with every axis in the space. Policies can
have a “don’t care” with respect o that attribute.

Cortext sxamples:

{4,4,3) - OFT keyed 3DES
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Figure 1; Example cryptographic context
negotiation template

The CCNT is designed to represent a broad view of
group security policy. Possibie axes include:

e  Data confidentialify;

= Key management ;

e Implementation mechanismy

»  Temporal secrecy (forward secrecy, backward

secrecyl);

= Key lifetime;

s Key recovery;

e Group authentication;

»  Layer for group security;

e  Source authentication;

o Integrity;

*  Regquired data throughput;

«  Eviction; and

e Error handling.
The axes are not built into DCCM, but are specified in
a context file. Axes can be easily added to the policy
space by changing the context file; no other changes
are required to the system.

4. Policy negotiation

A project context is created through a negotiation
protocol during project creation in the DCCM system.
The Cryptographic Context Negotiation Protocol
{CCNP} [4] creates a fully specified cryptographic
context for the project that fulfills the individual



policies of the group participants. Viewed graphically
in Figure 2, cryptographic context negotiation finds the
intersection between the allowable policies of the
project participants.

1 Project indiator's
Organization or
Local Poicy
Constrairds

3

Particpants Local
Palicy Corsiraints

Figure 2: Cryptographic context negotiation

The process starts with the project initiator. The
project initiator proposes a policy {(area 2} for the
project. Whatever is proposed is constrained by the
initiator’s own local policy (area 1). FEach participant
finds the intersection (area 4) between the proposed
policy and their own local policy (area 3) and chooses
a response {area 5) from the intersection. The initiator
chooses the final project context from the inferscction
of the responses.

Careful selection of the proposal by the project
initiator can effect different negotiation strategies. If
the initiator creates a proposal that is actually a context,
ie., there is only one choice for each axis, then
negotiation becomes a directive action. The proposal
is the policy (context) for the project; accept 1t as it is
or do not join the project. A broad range of policy
values (up to the full set of their local policy) proposed
by the initiator increases the likelihood of an
intersection occurring between a wide ramge of
participants. The smaller the set in the proposal, the
higher the chances that some participants will be
unable to comply with or enforce the project’s policy,
and will, therefore, be unable to join the project,

5. Key management

The DCCM project requires a scalable method for
establishing session keys for large dynamic groups.
The method has to support efficient establishment of a
shared secret key, as well as changing this key when
group members are added or evicted. The following
types of methods were considered:

s Simple linear methods, such as a Simple Key

Distribution Center {SKDC), scale poorly to large
groups, but are easy and straightforward fo
implement and employ with small-to-moderate
size groups.

e [nformation-theoretic methods, such as Blundo’s
Symmetric Polynomials {BSP) [7] and Chiou-
Chen’s Secure Lock {CSL)y [10], require large
amounts of space per user and scale exponeniially
with the number of members in a group.

s Multi-party methods based on Diffie-Hellman key
agreement, such as the Group Diffie-Hellman
{GDH) method developed under the DARPA-
sponsored Cliques project {1], and Burmester-
Desmedt methods [8], require slow public-key
operations and typically scale linearly with the size
of a group. These methods seem better suited for
small-to-moderate size groups of 10°s or 100°s of
members. The GDH algorithm is especially
attractive when distributed or decentralized control
is needed. The Burmester-Desmedt method has
the unique quality of constant delay (relative to
group size) during initial key establishment.

o Distributed, fauli-tolerant systems developed by
Reiter et al. {14}, and related dvnamic virtual
private retwork (DVPNs) developed by Rodeh et
al. [13] mchude group key distribution techniques
that are better suited for small-to-moderate size
groups, but incorporate highly desirable fault-
tolerant characteristics,

e Hierarchical, tree-based methods inclode Wallner
et al’s Logical Key Hierarchy (LKH) [11][16].
These methods represent group members as the
teaves, and the group key as the root of a logical
tree, and update keys via encrypting node keys
down the tree. Time, space, and broadcast
complexity all grow logarithmically relative fo the
size of a group, and hence these algorithms scale
best to very large groups,

For further discussion of related work and additional

references, see [2] and [6].

5.1. One-way function trees {OFT)

The hierarchical methods are best suited for the
DCCM project. While exploring the use of LKH, the
DCCM project developed a new hierarchical method
for large dynamic group keying based on the novel
application of One-way Function Trees {OFTs) [5}{6]
[13]. The OFT method, hike LKH, represents group
members as the leaves and the group key as the root of
a logical tree. However, rather than “pushing” the
group key down the tree, the OFT method “pulls” the
group key up the tree, using one-way functions.



5.5.1. OFT structure. As shownin Figue 3, an OF T
is a binary tree, each node x of which is associated with
two ceyptographic keys: a node key £, and a blinded
node key k, = g (k). The blinded node key is
computed from the node key using a one-way functien
g; it is blinded in the sensc that a computaticnally
limited adversary cannot find &, from k.

group
manager [:1

group key

\ iogicat

N entities
N, —

szf\(k\xky) \

4y
A\

A

é‘\

\ /
HEE
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Figure 3: A one-way function tree

A group manager maintaing a one-way function
tree. Each leaf is assoclated with a member of the
group. The manager uses a symmetric cncryption
function £ to communicate securely with subsets of
group members, using unblinded keys as encryption
keys as explained below.

A randomly-chosen key is assigned to each
member. This key is shared with the manager (via an
external secure channel), and the key is assigned as the
node key of the member’s leaf. A vasiety of choices
are possible governing who chooses the keys. In
particular, the key could be chosen by the manager,
member, or a combination thereof (see Section 5.1.3).

Each internal node p of the tree has exactly two
children, The interior node keys are defined by the

rule:

ko, = 1 gk, £%)). (1

where x and v denote the left and right child of the
node p, respectively. The function g is one-way, and
can be based on a cryptographic hash function such as
MD5 or SHA-1. The function f does not need to be
one-way, it needs to mix its inputs—the bitwise
exclusive-or function XOR is a fast, simple, and
effective choice. The node key associated with the root
of the tree is the group key, which the group can use to
communicate with privacy among group members
andfor authentication of group membership.

The security of the system depends on the fact that
each member's knowledge about the current state of the
key tree is limited by the following invariant:

OFT security invarioni —~ each member knows the
unblinded node keys on the path from its node to
the root, and the blinded node keys that are siblings
to its path o the root, and no cther blinded or
unhlinded keys.

This invariant is maintained by all operations that
add members to the group, and by all operations that
delete members from the group.

McGrew and Sherman [13] discuss the properties of
7 and g in detail and give some preliminary
observations regarding the security of OFT. A
rigorous proof of the necessary and sufficient
properties of /and g needed to satisfy formal security
requirements for OFT remains an open problem.

5.1.2. OFT operations. The operations of adding and
evicting members rely on the communication of new
blinded key values, from the manager to all members,
after the node key asscciated with a leaf has changed.
To maintain security, each blinded nede key must be
communicated only to the appropriate subset of
members. If the blinded key & changes, then its new
value must be communicated to all of the members
who store it. These members are associated with the
descendants of the sibling of x, and they know the
unblinded node key k,, where v is the sibling of x. To
provide the new value of the blinded key to the
appropriate set of members, and keeping it from other
members, the manager encrypls &, with £, before
broadcasting it to the group. (Here and throughout, we
shall use the verb "broadcast” in the sense of "group
broadcast™—sending a message from the group
manager to all members of the group.)

Adding a member—when 2 new member joins the
group, an existing leaf node x is split, creating new
nodes lefi(x) and right(x}. The member associated with
x becomes assoclated with lefffx), and the new member
is associated with right(x). Both members are given
new keys. The old member receives a new key
because its former sibling knows the old blinded node
key and could use this information in collusion with
another group member to find an unblinded key that is
not on his path to the root. The new values of the
blinded node keys that have changed are broadcast
securely to the appropriate subgroups, as described in
the previous paragraph. The number of blinded keys
that must be broadcast to the group is equal to the
distance from x to the root plus two. In addition, the
new member i given its set of blinded node keys. In
order to keep the heighi A of the free as low as possible,



when & new member is added, the leaf closest o the
root is spiit,

Fvicting a member—when the member associated
with a leaf x is evicted from the group, the member
assigned to the sibling of x is reassigned to the parent p
of x and given a new leaf key value. I the sibling y of
x is the root of a subtree, then p becomes y, moving the
subtree closer o the root, In this case, one of the
leaves of this subtree is given a new key {so that the
evictee no ionger knows the blinded key associated
with the root of the subtree). The new values of the
blinded node keys that have changed are broadcast
securely to the appropriate subgroups, allowing all
members to construct the new group key. The number
of keys that must be broadcast is equal to the distance
from x to the root,

Initialization—group initialization is the process
through which the group establishes an initial group
communications key. For the OFT method, this
process involves two steps. First, the group manager
breadeasts some infermation to the group members
needed to apply the OFT key-updating procedures.
Second, the members compute a shared group
communications key, which is needed to begin secure
group communications,

Group initialization is separate from group
induction. During group irduction, each member
establishes an individual group base key known only
by the member and the group manager. Group
initialization assumes that each member has already
established an individual group base key.

In the first step of OFT group initialization, the
manager broadcasts every blinded node key in the OFT
to all group members. In this broadeast, each blinded
node key is encrypted by the unblinded key of the
sibling node, so that only members in the sibling
subtree can learn the blinded node key. All members
receive the entire broadcast, which consists of a
sequence of encrypted blinded node keys.

5.1.3. OFT properties. This section comments briefly
on the security, resource usage, and salient
characteristic features of the OFT method.

The security properties of OFT stem from the
system invariant stated above, from the strength of the
component one-way function, and from the random
selection of leaf keys. In short, evicted members
cannot read future messages, even with collusion by
arbitrarily many evicted members, and newly admiited
group members cannot read previous messages.

Evicted members have some information about the
key tree but not enough to directly compute any
unblinded node key, After a member is evicted, the
keys along the path from the member's node to the root
change. After this change, the evictee knows only the

blinded keys of the siblings of the nodes along the path
from the evictee to the root. These blinded nodes are
insufficient to directly compute any unblinded key.

interestingly, OFT is a centralized, member-
contributory method. OFT is centralized in the sense
that the group manager plays a special trusted role.
OFT is member contributory in the sense that each leaf
can contribute entropy to the group communication
key.

With the OFT method, the number of keys stored by
group members, the number of keys broadcast to the
group when new members are added or evicted, and
the computational efforts of group members, arc
togarithmic in the number of group members. The
hierarchical mnature of OFT  disiributes  the
computational costs of re-keying among the entire
group, so that the manager’s computational burden is
comparable to that of a group member. Table 1 below
summarizes the salient resource usage of adding or
deleting a member with OFT in terms of time,
memory, number of bits broadcast, and number of
random bits needed. In the table, » is the group size, K
is the size of a key in bits, and 4 is the height of the
OFT (& = lg » when the tree is balanced). Either the
member or the manager could generate the random bits
needed at the feaves. See [6] and [13] for more details,
including comparisons with other key establishment
methods such as SKDC and LKH.

Table 1: Summary of resource usage of adding
or deleting a member with OFT

Resource Group Member Group
Measure Cost Manager Cost
Time h h

Memory hK 2nK

Bits broadcast | 0 hK +h
Random bits o K

generated

5.2. Key management summary

OFT was chosen as the group keying method for the
DCCM project. While the simple SKDC, Group
Diffie-Hellman, and other group keving methods may
often be appealing for moderate size groups, many
applications will likely demand a method that scales
logarithmically in total delay and member memory
usage. For such applications, especiaily if the add-
member is more frequent than the evict-member
operation, the OFT and other hierarchical methods look
attractive for their constanttime add-member. LKH
and OFT are similar methods, with LKH offering
relatively simpler security semantics, and with OFT
requiring fewer bits to transmit for re-keying. If it is




critical for the application to minimize the number of
bits broadcast, the number of random bits generated, or
if a member-contributory method is needed, then OFT
may be the method of choice.

6. Emplementation architecture

The DCCM concepts described in this paper, in
particular OFT, the CONT, and the CONF, have been
instantiated in a set of toolkits for use in preducing
demonstrations of providing security for very large
groups. Two toolkits were produced, 2 group key
toolkit implementing the OFT algorithm, and a DCCM
toolkit implementing the DCCM group policy
management.

6.1. Constraints

The design of the DCCM toolkit assumed several
constraints. These constraints are a rvesult of the
existing structure on the Internet and the state of the
current deployment of multicast technologies. The
constraints are:

e No individual participant addressing. The
design must function without the ability to
address a participant individually on the
network. Participants may have unique
identities, but they may not be network
addressable due to private addressing schemes
kidden behind a firewall or network address
transiation box. A participant can address a
known server individually and set up a
connection, but the participant must initiate the
connection.

&  Firewalls will block unknown ports. DCCM
must not use unknown or nenstandard ports for
its comraunications. If unknown ports are used
and participants arc protected by a firewall,
then the communications will be dropped until
specialized configuration of the firewall can be
performed.

s  Muliicast communication is  unreliable.
Multicast does not provide a connection
paradigm. DCCM  cannct assume  that
messages arrive at any point in the DCCM
system. DCCM cannot assume that messages
arrive in order.

s  Multicast comnwmmication is subject 1o
fragmentation. Fragments may arrive out of
order or not at all. For simplicity, the DCCM
design assumes that a message cannot be larger
than the standard ethemnet MTU of 1500 bytes.

6.2. High-level architecture

The functionality of DCCM 1is provided through
several key software components that can be placed in
different parts of an overall system depending on the
application and its use of group security mechanisms.
As shown in Figure 4, there is a single system
corponent that services multiple instances cf the other
components.
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Figure 4: DCCM high-level architecture

The Sysiem component provides the long-term state
of a DCCM system. [t maintains the internal DCCM
participant list, role information, and authentication
shared secret. It enforces project contexts through its
implementation of the key management mechanism for
a project. The System component also supports the
creation and maintenance of individual projects by
storing the project membership list and mediating the
project context negotiation process.

The Participant component provides the long-term
state for an individual participant, It manages the
participant’s registration in & DCCM system, the
shared secret, a list of projects for the participant, and
the group keys for the projects that inciude the
participant. The participant enforces the cryptographic
context, specified in the CCNT, for each project in
which it participates.

A participant is represented during policy
negotiation Dby a Negotiation component. An
instantiation of the negotiation component represents a
single policy during project formation. All of the
participants with the same policy are represenied by the
same negotiation component. This procedure limits the
number of negotiators involved in a ncgotiation.
Depending on the organization of the members joining
a project, the negotiator may be used to rtepresent
different policies. In a hierarchical crganization, the
negotiation component  will  represent  the
orgsnization’s policy, and a participant wili not have a



choice of negotiztors. In & flat organization with
autonomous participants, the negotiators will represent
various public policies that participants will select
from. If none of the policies offered is acceptable, a
participant can be its own negotiaior.

A participant joins a DCCM system through a
System Registration component. There can be multiple
registration components, each understanding a specific
authentication and enrollment policy. In a DCCM
systemt  comprised of  previously  unrelated
organizations, the organization’s existing
authentication infrastructure can be used by a
registration component for each organization. The
regisiration component can also enforce enroliment
policy. For example, it can limit the negotiation
components used by participants, thus specifying the
allowable policies. The registrar can also limit the
roles allowed for a participant. Finally, a registrar can
remove or evict a participant from the system, and
force their removal from all projects as well.

The Praject Initiator component supports the entity
that creates a project, typically one of the participants.
It allows the creation of the initial pelicy proposal,
specified in a CONT; manages the negotiation protocol
(CCNP)y with the mediator in the system component
and the necgotiators; and manages the project
membership list with the system component. Ongce the
project is created, the project initiator will have the
authorily to perform group operations.

The Session Initiator supports the creation of
sessions within a project. The session initiator is the
interface between the DCCM keying mechanism and
whatever security mechanism is used for the session,
The session ipitiator will communicate the group
session key to the mechanism at session establishment,
and will then send key updates as they occur. There
can be multiple sessions within a project.

6.3. Demonstration system

A demonstration system has been implemented for
DCCM utilizing the architectural components, This
provides one example of how to utilize the DCCM
compenents in a simple system architecture. As shown
in Figure 35, the demonstration system, the components
are organized into a single client image and a server,
For the simplicity, the demonstration includes a single
registrar in the server. All of the roles for a participant
are included in the client.
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Figure 5: Demonstration architecture

7. Conclusions

Providing policy-based security for large dynamic
groups is a challenging problem, It is also a challenge
to envision maintaining the security of a group with
100,000 members. There are applications where a
secure group of that size is meaningful, and DCCM
provides solutions to several important aspects of the
problem. DCCM introduces the concept of a group
cryptographic  context  that  enforces  secure
interoperability among group members, A
Cryptographic Context Negotiation Template is used to
represent, distribute, and negotiate group security
policies. A Cryptographic Context Negotiation
Protocol is used fo creaie a group cryptographic
context for a project. During project operation, the
One-way Function Tree key mechanism achieves very
efficient re-key operations. Its overall cost in terms of
time and memory grows logarithmically with the size
of the group.

Future work should expand both the policy and key
management dimensions of DCCM. Future policy
work should focus on representing policy at higher
levels of abstraction, formalizing the languages used
for policy representation, negotiating group policy at
higher levels, and projecting abstract policy onto
concrete mechanisms. Policies need to be expanded to
represent applications where local autonomy of some
mechanisms is desired or necessary; interoperability of
security mechanisms may be necessary at the
communication level, but not at higher levels,

Future group key management work should provide
additionai security mechanisms for group security,
such as individual source authentication. There is also
significant opportunity to enhance group key
management techniques to efficiently handle surges in
membership and large changes in membership.
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