Trading Off Strength and Performance in Network Authentication:
Experience with the ACSA Project’

Jamison M. Adcock, David M. Balenson, David W. Carman,
Michael Heyman, and Alan T. Sherman’
Cryptographic Technologies Group
NAT Labs, The Security Research Division
Network Associates, Inc.
{jamison_adcock, david_balenson, david_carman, michael_heyman, alan_sherman}(@nai.com

Abstract

The Adaptive Cryptographically Synchronized
Authentication {ACS4) Project offers a rew approach fo
data authentication i networks by irading off
authentication strength and performance. In ACSA, the
communicants select among various authentication gears
to balance their performance and security needs. These
gears include three basic groups: (1} conventional
mechanisms that are computationally intensive but
considered highly secure; (2} higher-speed, lower-
strength mechanisms including Universal Message
Authentication Codes (UMACs) and our novel inner-
Junction group (IFG) with bit scattering, and (3) Partial
MACs (PMACs) that calculate the authentication tag on
only a subset of the message. We are implementing a
prototype ACSA System based on the popular [Psec
protocols and are demonstrating its effectiveness on high-
speed retwork applications.

1. Introduction

Conventional authentication mechanisims do not
operate at speeds fast enough to meet the demands of
ultra-fast networks [1][18][23]. This disparity presents a
great chalienge for high-speed applications thai demand
network authentication. Much work has focused on
devising fast authentication algorithms. The Adapfive
Cryptographically Synchronized Authentication {(ACSA)
Project [7] provides 2 new solution to this challenge by
trading off authentication strength and performance to

achieve data origin authentication and connectionless
integrity.

1.1. Motivation and overview

Some of the applications that motivate our work
include real-time high-speed video, high-performance
distributed computing, high-speed distributed storage,
and 3-D virtnal reality. Such applications might run on
conventional platforms with high-speed network devices
(e.g. Gigabit Ethernet or ATM networks on Pentium class
machines without cryptographic hardware), on special
platforms with conventional cryptographic hardware, or
on computationally limited single-processor devices. The
ACSA Project offers a practical and flexible selution fo
high-speed network authentication that can be
implemented 1n software or hardware.

Figure 1 illustrates hypothetical strength-performance
tradeoffs that ACSA might achieve. For example, the
uger can select a lower-speed, high-strength
authentication mechanism, a higher-speed, lower-strength
mechanism, or a high-speed Partial Message
Authentication Code (PMAC) that authenticaies only a
portion of the message. In Section 7.2, we present a
concrete instantiation of Figure 1 showing the actual
strength-performance levels achieved by our
implementation of an ACSA prototype system,

Throughout, we use the term “network authentication”
to mean data origin authentication and connectionless
integrity, as defined in Internet standards [13]. This type
of authentication is without regard to the ordering of the
message in a stream of messages.

! This work was supported by the Defense Advanced Research Projects Agency {DARPA) under Air Force Research Laboratory {AFRL) Contract

No. F30602-98-C-0215,

? Sherman is alse with the Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County (UMBC),

By “authentication strength” we mean the
computational difficulty of producing a forgery. By
“performance” we mean computational complexity {(CPU
time, memory space). The ACSA project aims to lighten
the processing loads of the sender and receiver by
requiring fthem to spend less processor resources
{especially CPU time) on data authentication.

Partial MACs

Fast{ .. S Higher-spead,

- ey tower-sirength

% s mechanisms
g @ T Lower-speed,
€2 P high-strength
B E K + conveniional
5 mechanisms
€ 5 S

e

(%4

k=S .

+
Slow R
Weak Strong

Authentication Strength
{forgery probabiity}

Figure 1. Hypothetical strength-performance tradeoffs
for network authentication.

Most previous approaches to network authentication
focused on providing high strength, with speed as a
secondary concern. By contrast, we adopt the point of
view that not all applications require high-strength
authentication, and that faster authentication speeds can
be achieved by accepting lower-strength {yet adequate)
authentication methods, The ACSA System adaptively
adjusts its authentication strength and speed to meet
current needs based ‘on security policy, observed
suthentication error rates, alarms from host or network
defenses, and processor loading.

The ACSA System: embodies a spectum of
authenticztion mechanisms—I1ike gears of an automobils
transmission—that provide various strength-performance
levels of network authentication, These authentication
gears are organized in the following three classes:

s lower-speed, high-strength conventional
mechanisms;

¢ higher-speed, lower-strength mechanisms; and

¢ PMACs that authenticate only a portion of the
INSSSALES.

The lower-speed, high-strength mechanisms include
algorithms such as HMAC-MDS3. The higher-speed,
lower-strength ACSA gears include other Message
Authentication Codes (MACs) and our novel inner-
function groups (IFGs) with bit scattering.

A significant benefit of the ACSA approach is that it
supports communicants with the option of using multiple
authentication tags, For example, with little overhead,
the sender can compute two or more suthentication tags
with different strength-performance levels for the same
message packet. Then, the receiver—independently from
the sender—could in real time select which tag fo veriy,
This flexibility is useful in wnicast and multicast
environments when the receiver cannot predict future
processor loads, and in multicast environmenis where
there may be many receivers with different processor
capabilities.

Te demonstrate the sirength-performance levels
achievable by the ACSA approach, we designed and
implemented a prototype ACSA System. We based this
prototype on the Imternet Protocol Security {(IPsec)
protocols [13] and Internet Key Exchange (IKE--
formerly ISAKMP/Gakley) protocol [11] because they
are commonly used and provide the type of
connectionless, data-origin authentication that ACSA
supporis.

Cur prototype implementation illustrates the
effectiveness of this approach to the 1Psec architecture on
two 400 MHz Pentium I computers operating Linux
connected via a 100 MBit Ethernet network. This
implementation is built from our ACSA developer’s
toolkit, which we are freely distributing.

In comparisen with the high-strength HMAC-MD3-
96, pur prototype achieves speedup faciors of greater than
a factor of 10 for the higher-speed, lower-strength
UMAC-MMX-15, and greater than a factor of 100 for
PMAC-64 (using UMAC-MMX-15 as the underlying
MAC algorithm). These approximate speedup factors are
based op empirical measurements, as described in
Section 7.

The ACSA approach is suitable for a wide range of
high-speed applications. It is especially suitable for long
packets such as video strearns in applications that can
tolerate lower levels of authentication strength. This
approach, however, is not appropriate for all
applications—for example, we do not recommend it for
financial applications such as banking transactions
requiring high levels of authentication security.

1.2. Alternative approaches

Previous work on the challenge of providing high-
speed cryptographic network authentication has foellowed
four basic approaches: First, engineers have provided
separate special-purpose accelerated cryptographic
hardware {1}, Despite the attractiveness of dedicated
cryptographic hardware, such hardware s often
expensive, supports only a limited set of algorithms and

platforms, and is soon rendered obsolete by software
operating on rapidly advancing general-purpose CPUs.

Second, software engineers have attempted to speed
up algorithms with paraliel implementations (for
example, see Nahum ef of. [18]). Whatever gains can be
achieved by this strategy can alse be applied within and
independently of ACSA.

Third, cryptographers have designed fast
authentication mechanisms. For example, there have
been significant recent advances with the Bucket
[23319], MMH [10], NMH [10], and UMAC {4}
algorithms. But, if a communication system depends
only on one such fast mechanism, then the system is
inflexible and cannot adapt to changing needs. Also,
existing communication systems alope cannot easily
change the cwmwent authentication mechanism in use
without a costly rencgotiation of the established security
association.

Fourth, some researchers have attempted to increase
overali security ~ performance by combining
confidentiality and authentication functions in a dual-
purpose algorithm [9]. Although it can make sense to
compuie, for example, AES and AES-MAC in a single
dovetailed fashion, dual-purpose confidentiality and
authentication algorithms risk securify weaknesses and
forsake the flexible engineering benefits of using separate
interchangeable components.

The ACSA project distinguishes itself by taking a
broad and flexible engineering approach to providing fast
network authentication. Although the ACSA approach
can be sped up with hardware, parallelism, and faster
algorithms, its gains go beyond these optimizations
through offering a fundamentally different strategy of
adaptively trading authentication strength for speed.

1.3. Qutline

The rest of this paper is organized in seven sections.
Section 2 describes the ACSA system archifecture,
meluding its components, gears, and adaptive control.
Section 3 explaing the particular authentication
mechanisms used within ACSA—namely conventional
MACs, inner-function groups, UMACs, and PMACs
Section 4 analyzes the security of ACSA. Section 5
explains the application of ACSA to IPsec. Section 6
overviews our prototype implementation, including our
developer’s toolkit. Section 7 reports on our axperiences
with our protoiype implementation, concretely analyzing
the system’s performance and illustrating achievable rigk-
performance tradeoffs. Section 8 discusses issues raised
by ACSA and summarizes our conclusions. In addition,
Appendix A gives pscudocede for ouwr bit-scattering
algorithm.

2. Archifecture

The ALSA System [2] provides network
authentication between a sender and a receiver. For cach
message {Le. packet), the sender computes an
quthentication fag, which is appended to the message in
the data channel. The receiver verifies the received
message by recomputing the authentication tag and
comparing it with the received tag. If the recomputed and
received tags match, the receiver deems the message
authentic.

In addition to the data channel, there is also a control
channel between the sender and receiver. Using this
control channel, the sender and receiver establish a sef of
securify associations. These security associations specify
a suite of authentication gears and shared authentication
keys. Periodicaily, the sender and receiver exchange
control information that can influence dynamic gear
changes. All control messages are protected using
standard confidentiality and authentication techniques.

2.1. Goals and requirements

The goals of the ACSA System are to make available
a spectrum of network authentication mechanisms with
various strength-performance tradeoffs, and to support a
methoed for selecting when to apply these mechanisms. In
addition, we impose the following two engineering
requirements: the ACSA System must be able to operate
on a wide range of network devices (eg firewalls,
security gateways, and reuters}); and the architecture must
be consistent with the IPsec and IXE protocols.

2.2. System components

As shown in Figure 2, the ACSA System s organized
into five major modules: ACSA contreller; local security
and resource managers; security association and key
management; network application; and security services,
Figure 2 shows this view of the ACSA System for the
sender; the receiver has a symmetrical organization. In
this figure, arrows represent flow of application data and
control information.

The mam purpose of the controller is to determine
which authentication gear o use. In making this
decision, the controlier relies on inputs from the local
security and resource managers and from the network
application, Additionally, when the system is performing
the sender role for a given connection, the controller may
receive inputs from the receiver regarding authentication
errors and the receiver’s processor foad.

securty
association and
i control messages

|

Locat Sscurity ﬁ ‘ Security
and Resource | | Association and |%
| Key Management

Managers |

: { ACSA \s Services
‘\Comrciief/" Partiel W1ACs |
' f BN i Higher-Spee
/ . i Lower-Strangh
fo—————ter N i application data
i? AN T and ACSA
H Matwork g fﬁ”ﬁ;ﬁgﬁﬁ ; authentication tags
{| Application = | echaims | >
{ LR application data | | Mechanisms

SO

Figure 2. ACSA archiiecture.

The local security and rescurce managers represent
components that may be provided by a host system.
These modules offer information such as security and
resource policy, processor load information, and possibly
alarms from host or network defenses.

The main purpose of the security association and key
management module is to establish and maintain security
associations and cryptographic keys between
communicants. ACSA further requires that the security
association and key management module establish and
maintain & suite of security associations that correspond
1o the ACSA gears supported for a given connection.
Control messages are also sent from the receiver to the
sender via the security association and key management
module. In our prototype implementation, these security
associations are negotiated using IKE [6].

In a system that supports ACSA, the network
application may communicate to the controlier ACSA-
specific security and resource policy for its connection.

The main purpose of the security services module in
ACSA is to perform the authentication tag computation
for the gear specified by the ACSA centroller. In the
prototype, the 1Psec module will perform all the functions
of the ACSA security services module. When operating
in receiver mode, the security services will also detect
and report received authentication errors 1o the controller.

2.3. Gears, synchronization, and adaptive control

Initially, the sender and receiver agree on a sel of
acceptable authentication gears to use. Specifically, for
consistency with IPsec protocols, for each connection, the
sender and receiver initially negotiate a separate security
association for each possibie gear. To change gears, the
controller within the sender system then sclects among

these agreed upon security associations based on security
policy and processor load. The controlier within the
recetver system can effect gear changes by notifying the
sender of observed authentication errers and processor
resource Himitations in the receiver for the current gear.

For consistency with IPsec, for cach packet in our
prototype system, the Security Parameter Index {SPH
7121 in the packet header specifies which gear was used
to authenticate the packet. By specifying the current gear
in the $PT of each packet, no other out-of-band
mechanism is needed to achieve gear synchronization
hetween the sender and receiver.

Recovery from dropped packets is performed at the
application layer and is not independently guaranteed by
the ACSA System. Dropping packets will not cause loss
of cryptographic synchronization since the authentication
gear and any derived secondary keys (see Section 2.4)
depend only an the security association and the packet
header.

2.4. Key management

ACSA needs key material for keyed conventional
authentication mechanisms, for PMACs, and for our bit-
scattering process.

During the negotiation of each connection, the ACSA
System relies on the underlying network security protocol
{e.g. TKE) to establish a common key between the
comununicants. This key, which we call the primary
authentication key, is assumed to be valid for the entire
lifetime of the connection. Conventional authentication
mechanisms use the pritary authentication key directly
to compute the autheptication tag. In our prototype
implementation, cach primary key is at least 128 bits
long.

To mee! the needs of additional functionality offered
by ACSA, the ACSA security association and key
management module derives secondary authentication
keys from the primary authentication key using a
deterministic one-way function. For example, our
prototype system derives secondary authentication keys
using the SHA-1 algorithm unsing techniques similar to
those described by Matthews [17].

When performing the bit-scatiering operation of IFGs
or the word-selecting operation of PMACs, the ACSA
System derives a secondary authentication key for cach
packet, By using a shorter-lifetime secondary
authentication key rather than the longer-lifetime primary
authentication key in these instances, we limit loss of any
compromised keys due to any use of lower-strength
authentication mechanisms.

it is important that these secondary keys be unique for
different packets within a security association, Our
prototype implementation achieves this objective by

seeding the generation of each secondary key for a packet
with both the primary key (of the security association)
angd with the nnique packet sequence number available in
iPsec to prevent replay attacks.

3. Authentication mechanisms

The authentication gears of the ACSA System are a set
of authentication mechanisms that achieve s wide
spectrum of strength-performance levels. They are
organized in three basic classes: {1} comventional
mechanisms, including lower-speed, high-strength
algorithms; (2} higher-speed, lower-strength MACs; and
{3} Partial MACs (PMACs). By appropriate cheice of
their operational parameters, PMACs can run at & variety
of strength-performance levels, including ultra-fast,
lower-strength levels. This section describes these
mechanisms, together with ACSA’s use of multiple
authentication tags.

3.1. Conventional authentication mechanisms

The lower-speed, high-assurance gears of the ACSA
System inchude conventional authentication mechanisms,
such as HMACs [3][14]. Our prototype implementation
supports the following twe IPsec mechanisms: HMAC-
MD35-96 [15] and HMAC-SHA-1-96 [16].

These HMACs infuse a key & into a message x by the
nested MAC (NMAOC) rule:

NMACux) = fu(Fealx)), (1

where £/ and k2 are subkeys derived from k; [is a keyed
“outer” function; and £ is a keyed iterated “inner”
function. For the conventional [Psec mechanisms above,
both [and ¥ are based on the same underlying hash
function (e.g. SHA-1).

This NMAC construction enjoys some desirable
security properties, as explained by Bellare er al. [3]:
under suitable security assumptions, the NMAC is at least
approximately as strong as the inner function. We also
use this NMAC construction in the other gear classes.

3.2. Higher-Speed, lower-strength MACs

Currently, the ACSA System includes two types of
higher-speed, lower-strength MACs: inner-function
groups {IFGs) and UMACs.

Both IFGs and UMACs gain speed within the NMAC
construction by using a higher-speed, lower-strength
iterated inner function together with a slower-speed,
high-strength outer function. Because the inner function
is apphed many times over a long message, and the outer
function is applied only once, this design offers

significant speed-ups over conventional MACs. As
pointed out by Bellare, Canettl, and Kraweyzk {31, the
security assumptions on the inner function can be
significantly relaxed while still maintaining a high level
of security for the entire NMAC. The application of this
observation in creating higher-speed, lower-strength
NMACs is a significant contibution of the ACSA
project.

We intentionally use the terms “inner functicn” and
“guter function” to aveid unwanted security connoflions
associated with the terms “MAC” and “cryptographic
hash function.” In particular, in an ACSA-style NMAC,
the inner function needs to satisfy only & weak collision-
resistance property (weaker than that typically reguired of
2 MAC), and the outer function might have to satisfy
pseudorandomness security properties (stronger than
those typically reguired of a MAC).

Following this NMAC design principle, we developed
IFGs with bit scattering. Later, after learning about the
recent work of Black er al. [4], we also incorporated the
UMAC mechanism inte ACSA. Although UMACs do
not use bit scattering, both UMACs and IFGs exploit the
NMAC construction for greater speed. Both UMACs and
IFGs are related to the universal hash function paradigm
of Wegman and Carter [24]. Wegman and Carter,
however, invented their paradigm for strength; we exploit
their paradigm for speed and strength.

3.2.1. Inner-function groups with bit scattering. IFGs
are based on nested MACs [3] and consist of two or more
faster-speed, lower-strength inper functions that feed a
high-strength cuter function. Additionally, IFGs contain
a bit scattering function that pseudorandomly selects
which bits of the message feed into which mnner
functions.

The main cryptographic purpose of bit scattering is to
prevent an adversary from knowing which parts of the
message are processed by which inner functions. Even if
an adversary couid create collisions in one or more of the
fower-strength inner functions when attacked in isolation,
the adversary would have difficulty mounting an attack
against the IFG because she would not know the inpuis to
the inner functions. The main performance advantage of
IFQs sterns from being able to use faster-speed inmer
functions.

As shown in Figure 3, the sender creates an IFG
authentication tag in three sieps: bit scamering;
compression with inner functions; and outer function
computation.

To perform bit scatiering, the sender pseudorapdomly
throws bits of the message in one of two or more
temporary buffers called dins. Bit scattering is simply a
data-moving operation that performs no compression. To
enabie the sender and receiver to synchronize

crypiographically, a function based on a secondary
authentication key controls the pseudorandom scattering
PrOCESS.

To scatter bits, ACSA uses the following algorithm.
First, the sender pseudorandomly creates a bit mask as
long as the longest packet size to be supported. Second,
the sender pseudorandomly sclects a starting point {which
we call a mask offset) within the mask. Third, processing
pairs of data words at a time, the sender logically ANDs
and ORs the data words with the corresponding mask
words (and their bitwise complements) to select and
interleave bits for the two bins {see Appendix A}

To save computation time, the mask can be reused
within 2 security association. Our prototype generaies
one mask (as long as the maximum packet size) for each
security association. This mask is created by expanding a
secondary authentication key in a manner similar {0 the
key expansion algorithm used in IKE [11]. The sender
and receiver then use per-packet secondary authentication
keys to compute the mask offsets for cach packet.

message
l } I O O A P {]
/ lk l bit
i | J scattering
| Bin A | Bin B i
i 1
fnner inner
Function A Function B

[

Outer
Function

authentication tag

Figure 3. An ACSA NMAC realized by a two-element
inner-function group with bit scattering.

Although conceptually simple, scattering bits into bins
is nontrivial to perform at high speeds. On a Pentium i,
our bit-scattering algorithm runs in less than 1.5 clock
cycles per byte. The time to scaiter bits is a significant
cost of the IFG technique.

After performing bit scattering, a separate inner
fanction is applied to each of the bins. Each inner
function is keyed using a secondary authentication key.
Candidate inner functions include MD4, AHA [206],
MMH [10], NMH [10], Square Hash [8], Bucket [21],
Evaluation Hash [22], and Division Hash [22].

The outputs of the inner fanctions are concatenated
and fed into a high-strength outer pseudorandem function
(PR¥) such as SHA-1 or RC6 [4]. The PRF is keyed

using the secondary authentication key as discussed in
Section 2.4, The PRF ocuiput constitutes the IFG
authentication tag.

3.2.2. UMACs., UMAC s a new fast imessage
authentication algorithm by Black ef of [4] that runs an
order of magpitude faster than high-strength conventional
mechanisms such as HMAC.SHA-1, itis based on a new
universal family of hash fanctions called NH (nonlinear
hask), and the inventors of UMAC have proven security
bounds {probability of forgery} of UMAC based on
assumed bounds of NH. UMACs it in very nicely with
ACSA as plug-in higher-speed, lower-strengih gears.

UMAC follows a slight modification of the
aforementioned NMAC formula:

UMAC(x} = fiu(s, NHial)), (2)

where s is a nonce provided by the sender. Thus, as do
IFGs, UMAC achieves fast speeds by using a bigher-
speed, lower-strength inner hash. Unlike the Bucket,
MMH, and NMH hash function descriptions, the UMAC
paper [4] provides a complete MAC specification.

The NH function computes a tree of multiplications
with increasing word sizes. NH is paralielizable and by
design achieves a high performance on MMX™.enabled
processors. Black ef al. propose a family of UMACs of
different strengths by truncating the NH trec of
multiplications at different heights (word sizes).
Although the inventors did not explicitly say so in their
paper, their family is an embodiment of an authentication
strepgth-performance tradeofl,

The ACSA Systern applies a set of UMACs covering a
range of strength-performance levels.

3.3. Partial MACs

ACSA uses the novel concept of a Partial MAC
{PMAC) to achieve even faster authentication speeds than
those attained by UMACs and by IFGs. In a PMAC, a
UMAC or bigher-speed, lower-strength HMAC is applied
only to some portion of the message body. Because the
message header contains critical information, ACSA
always authenticates the entire 1essage header
{alternatively, one might always authenticate each header
with strong authentication). Care mmst be exercised when
selecting the PMAC gear: PMACs are appropriate only
for applications that can tolerate some medified bits in
the message body.

We may view cach message as a header followed by a
sequence of message body parts (2g 04-bit words),
Each PMAC has an associgted parameter that specifies
with what probability each message body part will be
authenticated. We call this parameter the message-

selection perceniage. Although there are scveral
different ways in which PMACs can be realized, the main
effect is the same: applying an authentication algorithm
only to sclected parts of the message can save significant
fine.

Abstractly, it is appealing to think of PMAUs as
follows. For each message body part, the sender tosses a
biased coin to decide if that part is autheaticated. On
HHeads, the sender includes that part in the computation of
the authentication tag. On Tails, the sender does not
include the part in the compuiation.

The coin flips are geperated in & determinishc
pseuderandom fashion using a secondary authentication
key derived from the primary authentication key. This
way, the receiver can synchronize cryptographically with
the sender to know what message body pasts to mclude in
the authentication tag computation.

PMACs use a very fast inner function {e.g. NH) to
perform compression on the selected parts of the
message. As with UMAC or IFGs, the cuter function is
still a high-strength conventionai PRF. In using the
NMAC construction, we do not have {o generate any fake
authentication tags that might otherwise have been
needed.

In our prototype system, we pseudorandomly select
words of the message body to authenticate as follows,
We start at the beginning. The next word te be selected is
determined by a pseudorandomly-chosen offset from the
currently chosen word, uniformly chosen from the
interval [1, 2L]. Here, L = 1/p (rounded to next highest
perfect power of 2), where p is the message-selection
percentage.

When computing PMACs, our prototype selects 64-bit
words and uses UMACMMX-15 as the underlying
authentication algorithm. We chose to operate on 64-bit
words to exploit the Pentium 1 processor’s efficiency at
handling that data size.

Finally, note that cyclic redundancy codes are not
promising inner-function candidates because they are
slower and much weaker than UMAC-MMX-15. For
example, we have estimated that CRC-32 execuies at
approximately one cycle per byte on the Pentium 1L at
least twice as slow as UMAC-MMX-135.

3.4, Multiple authentication tags

The ACSA Systern allows and supports the use of
multiple authentication tags. That is, the sender can
compute two or more different authentication tags for the
same packet, reflecting different strength-performance
tevels. This concept can be realized in a variety of ways;
its implementation is especially efficient for UMACs and
IFQGs.

in our prototype implementation, the sender cam
compute muitiple authentication tags for IFGs with
relatively little overhead. For example, if an IFG has two
inner functions, 4 and B, then a total of three
authentication tags can be separately computed for 4, 5B,
and A and B combined, with oniy three applications of the
{non-iterated) outer function. A similar but different
strategy could also be applied with UMACs and PMACs.

Multiple authentication tags afford the receiver with
increased flexibility in choosing sirength-performance
levels adaptively. For example, in unicast or multicast
communications, the receiver could choose which tag to
use in real time based in part on local processor load,

Multiple authentication tags are aiso useful in
multicast environments where different receivers may
have different processor capabilities or security policies,
and where the sender typically has more powerful
computing capabilities than do the receivers. We are not
aware of any previous suggestion to use multiple
authentication tags in this fashion.

To ameliorate possible security vuinerabilities caused
by making multiple authentication tags of the same
message available to the adversary, the ACSA System
uses a separate secondary authentication key to compute
each multiple tag.

4, ACSA vulnerabilities and defenses

The gosl of an adversary is to tamper with one or more
data words of a packet without detection. Such
tampering may include modifying, deleting, inserting,
padding, perrusing, or replaying bits or data words
within a packet or in an authentication tag. An adversary
might try attacking the ACSA System by attacking its
control mechanisms and by attacking its component
functions.

The strength of the system can be analyzed by
considering both the computational difficulty of forging
an authentication tag, and the probability of modifying a
message without detection.

4.1. System attacks and defenses

To attack or influence the ACSA control mechanisms,
an adversary might try to spoof, modify, or replay control
information. By using strong confidentiality,
authentication, and anti-replay services from the
underlying network security protocol, the ACSA System
protects against such attacks.

An adversary can, nevertheless, block control
information. Such interference can result in degradation
of service, but not loss of authentication security. The
ACSA System does not try to prevent denial-of-service

attacks, which are existing vulnerabilities of IPsec and
IKE,

A more subtle attack iz to modify the communicant’s
environment, 1o cause the ACSA controller to use a
weaker gear than it might otherwise use. For example, if
the adversary could cause the sender’s processor load to
increase significantly, then the sender may switch o a
weaker and faster gear. This vulnerability cannot be
solved within ACSA. Each ACSA platform should
protect its resources from tampering, not use resource
loads to determine ACSA gears, or set an acceptable
minimum strength gear.

In our original design of ACSA, for added protection,
we had planned to keep the gear choice secret from the
adversary. Te comply with [Psec protocols, howsver, the
gear selection in our prototype implementation is
communicated as part of the SPI, which is authenticated
but sent in the clear in each packet header. Fortumately,
when IFGs are used, knowing the gear does not enable
the adversary to determine which data bits and words
contribute to which inner functions. Similarly, knowing
the PMAC gear does not enable the adversary to
determine which data words contribute to the
authentication tag computation.

Because ACSA computes 2 single tag (or single set of
tags in the case of multiple authentication tags) for each
packet, it is not possible to use external {iming
information to determine which data words coniribuie to
which inner functions, nor to determine which words are
selected for partial authentication. Timing information
can, however, reveal gear choices and the proportional
mix of inner functions within an IFG.

4.2. Authentication mechanism security

For authentication mechanisms, the basic measure of
security we consider is probability of forgery under the
best possible attack. In this section, we estimate and
bound the forgery probabilities for authentication
mechanisms in each of the three major gear classes by
reviewing the best known attacks on these mechanisms,

We also note that the security of bit scattering and
PMACs depends crucially on the unpredictability of the
secondary authentication keys. These keys are protected
through the strong pseudorandom functions that generate
them, and through the inclusion of the packet sequence
number in their generation.

4.2.1. Conventional mechanisms. The probability of
forgery for BEMAC-SHA-1 and HMAC-MDS3 is directly
related to the keyed collision resistance of the SHA-1 and
MD3S algorithms, respectively [3]. The best known
keyless cellision attacks on the underlying hash functions

are birthday attacks, so the best known attack on these
HMACs has a forgery probabiiity of less than %,

4,22, Inner-Functien groups with bit scattering. The
security of IFGs depends on the security of the inner
funciions, the security of the outer function, and the effect
of bit scattering. Since ACSA uses IFGs with a high-
strength outer function and with higher-speed, lower-
strength inner functions, for the purpose of the analysis,
we may assume that the secwrity of [FGs depends
primarily on the inner functions and bit scattering.

Consider an IFG containing two inner functions 4 and
B, Without bit scattering, the adversary would know
which message words fed into 4 and which words fed
into B, As a result, the forgery probability of the
ensemble would be at least that of the weaker of the two
inner hashes, Therefore, bit scattering is a crucial
security-enhancing operation for IFGs.

When an [FG employs bit scattering, an adversary has
two possible attacks: successfully guess which message
hits are processed by which inner functions and attack
one of the inner functions; or construct an attack that
succeeds regardiess of how the message bits are scattered.
Since the later possibility seems implausible, it appears
that to attack an IFG with bit scattering requires the
adversary to guess how the bits to be modified are
scattered.

Let » be a typical message length (in bits), and
suppose that approximately k of the message bifs are
scattered into inner hash function 4. Suppose further that
the adversary wishes to modify / message bits. The
chance of correctly naively guessing how these 7 message
bits were scattered is:

(k t nY. (3}

In this sense, the bit-scattering operation appears to
enhance authentication strength greatly. We assume that
the adversary knows »n and %, since these values could be
approximated from network and timing analysis. Finally
note, that from Equation 2, the scattering process creates
significantly greater uncertainty for the adversary when
carried out on a bit-by-bit basis rather than on words.

An adversary might try chosen-plaintext attacks in
which she observes several message-authentication tag
pairs computed from a common mask. However, the per-
packet mask offsets, the strong outer function, and the
per-packet rekeying of the outer function deter an
adversary from gamering information about the mask.

£,2.3, UMAGCs. Black ef a/ [4] and Rogaway’ describe
forgery probabilities for varions UMACs, We summerize
these probabilities in Table 1.

Table 4. UMAC probability of forgery.

UMAC version Probability of Forgery
UMAC-MAMX-80 o8¢
UMAC-MMX-45 2%
UMAG-MMX-30 ¥
UMAG-MMX-15 2

4.2.4. PMACs., The probability of forgery of a PMAC is
based overwhelmingly—not on the strength of the
underlying MAC-—but on its message-selection
percentage. For PMACs with very small message-
selection pergentages, the probability of forgery is very
high {nearly unity).

The utility of PMACs stems not from their ability to
detect short modifications of a message; their utility
arises from their ability to deteci the modification of
many bits or words. To this end, consider the probability
¥, of successfully modifying at least ¢ message words.
This probability is:

¥i=(1-p), (4)

where p is the message-selection percentage.

Evaluating PMAC security in the context of the
number of modified data words is useful for many high-
speed applications (e.g. high-speed video)} that can
tolerate some data modifications without & significant
loss of fidelity.

5. Application to IPsec

ACSA is applicable to the commeon network security
Psec protocois. Specifically, ACSA can enhance
network authentication service in 1Psec by adding higher-
speed, lowerstrength mechanisms, and by providing an
adaptive conirel system that adaptively switches among
[Psec authentication transforms.

Currently, IPsec uses only lower-speed, high-strength
authentication algorithms. The two mandatory-to-
implement authentication algorithms HMAC-SHA-]1 and
HMAC-MDS are so computationally intensive that they
must be Implemented in special-purpose hardware to
support very high-speed network applications. iPsec also
specifies HMAC-TIGER as an optional alternative.
HMAC-TIGER, however, does not provide significant
performance improvement over HMAC-SHA-! and
HMAC-MIDS, except on 64-bit processor platforms.

® Phil Rogaway, personal correspondence (May 4, 1999).

Therefore, the higher-speed, lower-strength mechanisms
from ACSA offer atractive options for speeding up
network authentication in IPsec.

The ACSA control systern can be applied in IPsec fo
select authentication transforms adaptively based on
current security policy, detected authentication errors,
and processor load. Using the IKE protocol, ACSA
initially determines s suite of authentication gears
common to the communicants (see Section 2.3}, This
systemn of adaptive conirol gives [Psec a practical strategy
for adaptively choosing from ameng a wider range of
strength-performance levels,

6. Prototype system: Design, implementation,
and feolkit

The main poals of the ACSA prototype are o
demonstrate the feasibility of the ACSA model in
enhancing network authentication performance, and to
develop a freely available developer’s software toolkit
that performs and allows others to experiment with and
use ACSA functions. At its highest level, the ACSA
prototype software comprises an ACSA developer’s
toolkit, processor-specific optimizations, prototype
demenstration software, and third-party network security
software.

The ACSA developer’s toolkit contains the core
functionality that every ACSA implementation must
perform. Primarily, the toolkit provides functionality for
the controlier module. The ACSA developer’s toolkit
also contains additions designed to integrate easily within
most IKE and IPsec implementations.

The ACSA prototype contains processor-specific
optimizations for the various supported authentication
mechanisms. Optimization of conventional aigorithms is
important to provide an accurate bascline of the
achievable authentication performance of curent
implementations. Optimization of the proposed
authentication mechanisms such as UMACs and PMACs
is necessary to demonstrate the performance
enhancement that ACSA is capable of providing.

Demeonsiration software and third-party network
security software is also included in the ACSA prototype
to provide a fully operational system capable of showing
the advantages of ACSA, The third-party software
performs the IPsec and IKE protocols. The target
platforms for the ACSA prototype are two 400 MHz
Pentium I} computers operating Linux connected via a
100Mbit Lthernet network connection.

In considering the costs of integrating ACSA, it is
important 0 consider the development cost of adding
ACSA 1o an existing IPsec implementation. Although
ACSA controller software is in a self~contained module,
significant modifications are reguired of the existing

iPsec module {o perform AUSA. Specifically, new
higher-speed, lower-strength authentication mechanisms
st be added, and the ability to handle multiple security
associations for a single connection is meeded
Modifications to the existing 1Psec module can be costly
since changes may be required to the operating system’s
kernel code, or to hardware or firmware in an IPsec co-
processor, Modifications to support ACSA must also be
made to the IKE module, including additions to interact
with the ACSA controller, to negotiate multiple security
associations per connection, and to communicate ACSA
control messages.

7. System performance

The computational performance of the ACSA system
is almost entirely dependent on the performance of its
authentication mechanisms. The administrative overhead
establishing a gear suite, retrieving local processor load
and security condition information, deriving keying
material, and determining the appropriate gear s
relatively small when amortized over all computations
required to create or verify authentication tags for a high-
speed network connection.

We give performance measurements for the Pentium [
for twe reasons. First, in order to give any meaningful
detailed high-performance measurements, it is necessary
to optimize implementations for some particular
processer. Second, we implemented our prototype
systemn on the commonly used Pentium H. Owr Pentium
1t benchmarks calibrate our performance results.

The following two subsections discuss the
performance of our prototype implementation on the
Pentiwm 1I, focusing on the computational costs of
performing selected authentication mechanisms and onb
the achieved strength-performance levels,

7.1, Analysis of system performance

This section describes the performance of each of the
three major gear classes in our prototype implementation.

7.1.1, Conventional algorithms. For the large packet
sizes that demonstrate the greatest advantages of ACSA,
the computational performance of the HMAC-SHA-1 or

Ff::} ﬁ PMAC-1024
01 .
e Probabifity of successfully oAG 2an >
= 4+ forging at least 5§12 bytes PMAC-128 | &
= 1% PMAC-64 | =
z R . PMAC-32 | 3
=] - -
& e PMAC-16] =
2 0.1 PO B
o 2 - PMAC-2 | O
2 g -+ UMAC-MMX-15 |
6 - “+ UMAC-MMX-30 | =
£ 8 4 UMAC-MMX-45 | 2
8% -+ UMAG-MMX-60 | &
T ° .
& 5 B
o T , n

i -+ HMAC-MD5-96 | o3

iy 7]

E Probability of successfully

£ 10 forging at least 1 bit

e ~4 HMAC-SHA-1-95

Slow
2-1 5 2»3{} 2‘45 2»69 2—7 5
Weak Strong

Authentication Strength

forgery probability)

Figure 4. Strength-performance tradeoff measurements for our prototype implementation of the ACSA system.

HMAC-MDS3 algorithm is almost entirely dependent on
the performance of the underlying SHA-1 or MD3
algorithms, respectively, The fastest assembly language
implementation of HMAC-SHA-1 we encountered runs
at 12.6 clock cycles per message byte, according to Black
gt al [4].

As for MIDS, Bossalaers [5] reports that his optimized
version on the Pentium runs at 5.3 cycles/byte. Since the
Pentium 11 effers increased computationsl efficiency over
the Pentiwm for most operations, we expect an optimized
version of MDS on the Pentium {1 to perform even faster.

7.1.2. Bigher-Speed, lower-strength aigorithms. Since
the ACSA prototype will use the Pentium H processor,
we may take advaniage of the dramatic performance of
the UMAC-MMX family of algorithms that use MMX
functionality for much of their computations. Black er
al. [4] teport thai their implementations of UMAC-
MMX-60 and UMAC-MMX-306 run in 0.98 and 0,31
cycles/byte, respectively. Ted Krovetz reports that his
implementation of UMAC-MMX-15 runs in 032
cycles/byte.” These measurements were taken on
message data that reside in the Pentium I L cache.

Thus, when using an IFG with two separately-keyed
inner UMAC-MMX-15 functions, the total speed of IFGs
with bit scattering is approximately 1.5 +2 * (0.32 * 12)
= 1.82 cycles/byte on an MM X-enabled Pentium IL

7.1.3. Partial MACs. The performance of PMACUs is
dependent primarily on selecting message words and
compressing the selected words. Although selecting the
data words s a linear operation in message length, its
dominant per-byte cost is the product of the percentage of
datz selected and the cost to select each data word.
Similarly, the per-byte cost of compressing these words is
the product of the percentage of data sclected and the per-
byte cost of the inner hash function. Thus, the dominant
cost is reduced multiplicatively by the selection
percentage. For example, in our protolype when
selecting one word per 64 message words, the PMAC
cost is approximately 0.05 clock ecycles per message
byte—over 10 times faster than our fastest non-PMAC
authentication algorithm, and over 100 times faster than
HMAC-MD3-%6.

7.2. Strength-Performance tradeoff

Figure 4 summarizes the strength-performance levels
achieved in our prototype implementation on a Pentium
I Specifically, Figure 4 shows, for various
autheniication mechanisms, speed versus the probability
of forgery. A notable characteristic of this tradeoff is the

* Personal email from Ted Krovetz (May {1, 1999).

iarge span of secwrity-performance levels over which
ACSA provides authentication. Also notable is the
dramatic worsening of the forgery probability when
PMACs are used. This increase in the forgery
probability, however, is less dramatic when evaluated for
iarge ameunts of modified data.

8. Discussion and conclusion

ACUSA Systern provides a new approach for meeting
performance and authentication demands of high-speed
networks. In ACSA, the communicanis can choose
various strength-performance levels, and they can change
their choices within a communication association. This
flexibility to choose, and to change within a connection,
offers advaniages over simply always using one
authentication mechanism.

Irt addition to its overall gear-switching approach, the
ACSA Project contributes and applies the novel ideas of
Partial MACs (PMACs), inner-function groups (IFGs)
with bit scattering, and multiple message authentication
tags. Limitations of the ACSA System include lack of
provable security (e.g. the security of IFGs with bit
scatfering is now heuristic), possibility of system attacks
{e.g. an adversary might be able to alter the processor
lead and thereby cause a gear switch), and additional
complexity. For example, in comparison with
implementing a single authentication mechanism, it is
more costly to implement the ACSA System and it is
more difficult to verify the correctness of such an
implementation. Nevertheless, such system attacks and
implementation problems would likely at worst result in a
lower-strength gear being used.

Our immediate fusure plans for ACSA are to complete
and test our prototype system implementation 1o measure
its speeds empirically at various strength levels, We also
plan to investigate additional ways of choosing and
changing gears adaptively, such as automatically sensing
and responding to varying degrees of redundancy in the
data stream, and including Quality of Service
mechanisms of applications in the security association
negotiations. In addition, we plan to write a draft
specification (Internet RFC) for implementing ACSA
with IKE and IPsec.

Open questions raised by the ACSA Project include
the foliowing. (1) What is the security of bit scattering
and how much advantage does this operation contribute
in relstion to its performance cost? {2) Is it possible to
extend ACSA ideas to data confidentiality? Although it
is possibie to combine ACSA with precomputed stream
ciphers for fast confidentiality, we do not see how to
extend such ideas as IFGs and PMAGs to data
confidentiality.

Using a variety of engineering techniques, the ACSA
Systern offers a practical approach for providing data
authentication on high-speed networks by trading off
petformance and authentication strength,

Acknowledgments

We thank Dennis X. Branstad for originally proposing
the ideas of suthentication strength-performance
tradeoffs, partial message authentication, and gear
groups. Phil Rogaway contributed very helpful detaited
comments on our preliminary work, Ted Kroveiz
provided us with assistance in implementing UMAC.
Also, we thank Hugo Krawczyk for comnstructive
feedback.

References

[11 S. Abbotz, “Cryptographic interfaces; supporting 100mbps
and beyond,” Proceedings of the 1999 R34 Data
Security Conference.

{21 D. Balenson, D. Carman, M. Heyman, and A. Sherman,
“Adaptive Cryptographically Synchronized Authentication
(ACSA) Model and analysis,” Revision 1.0 {December 7,
1998). 53 pages.

i3] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash
functions for message authentication” in Advances in
Cryptology: Proceedings of CRYPTG 96, LNCS 1108, N.
Koblitz, ed., Springer-Verlag (1996), 1-135.

[4] I. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P.
Rogaway, “UMAC: Fast and secure message authentication” in
Advaneces in Cryptology: Proceedings of CRYPTQ 99, LNCS
1666, M. Wiener, ed., Springer-Verlag (1999), 216-233.

[5] A. Bosselaers, “Even faster hashing on the Pentium,”
presented at the rump session of Burocrypt '97.

[6] D. Carman, J. Adcock, D. Balenson, M. Heyman, and A.
Sherman, “Adaptive Cryptographicailly Synchronized
Authentication (ACSA): Prototype system design,” Revision
1.0 (May 12, 1999). 56 pages.

[71 DARPA ITO ACSA Web Page, htip//www.darpa.mil/ito/
psum{ 998/G374-0.htmi.

[8] M. Etzel, S. Patel, Z. Ramzan, “Square hash: Fast message
authentication via optimized universal hash functions,” in
Advances in Creptology: Proceedings of CRYPTO 99, LNCS
1666, M. Wiener, ed., Springer-Verlag (1999), 234-251.

9] V. Gligor, and P. Donescy, “integrity-awars PCBC
encryption schemes,” Security Protocols - 7th International
Workshop, LNCS, B. Chrisianson, B. Crispo, and M. Roe, ed.,
Cambridge, UK., Springer-Verlag {April 1999).

[i0] 8. Halevi and H. Krawczyk, “MMH: Software message
authentication i the Gbit/second rates” in Fast Sofbware
Encryption, LNCS 1233, Eli Biham, ed., Springer-Verlag
(1997), 172-189.

1111 D, Harkins and D. Carrel, “The Internet key exchange
(IKEy,” RFC 240% (November 1998} fip/fipisiedufin
notes/rfc2409, L.

[121 §. Kent and R. Atkinson, “IP authentication header,” RFC
2407 (November 1998}, fip//fip.isi.edu/in-notes/ric2402 mt.

{131 8. Kent and R. Atkinson, “Security architecture for the
internet protocol,” RFC 24861 (November 1998}
fip//fip.isi.edw/in-notes/rfc2401 txt.

{14] H. Krawcyzk, M. Bellare, and R, Canetti, "HMAC: Keved-
hashing for message authentication,” RFC 2104 (February
1997). fipi//fip.isi.edu/in-notes/sfc2 104.txt.

{151 €. Madson and R. Glenn, “The use of HMAC-MD35-96
within ESP and AH” RFC 2403 (November 1998).
fip://fip.isi.edu/in-notes/rfc2403 xt.

[16] C. Madsen and R. Glenn, “The use of HMAC-SHA-1-56
within ESP and AH,” RFC 2404 (November 1998},
fip//ftp.isi.edw/in-notes/rfc2404. txt.

[17] T. Matthews, “Suggestions for random number
generation,” RSA Laboratries’ Bulletin, No. (January 22,
1996). 4 pages. httpi/Awww, rsa.com/rsalabs/html/
pulletins. hml.

[18] E. Nahum, S. O’Malley, H. Orman, and R. Schroeppel,
“Towards high performance cryptographic software,” Technical
Report TRY5-04, Dept. Computer Scicnce, University of
Arizona (1995).

[191 P. Rogaway, “Bucket hashing and its application to fast
messege authentication” in Advances in Cryptology:
Proceedings of CRYPTQ 95, LNCS 963, D, Coppersmith, ed,,
Springer-Vertag (1995), 313-328.

{201 P. Rogaway, “Design and analysis of message
authentication codes,” Proceedings of the 1996 RSA Data
Security Conference (January 19, 1996),

{211 P. Rogaway, “Bucket hashing and its application to fast
message authentication,” Journal of Cryptology, Vel. 12, No. 2
(Spring 1999).

{221V, Shoup, “On fast and provably secure message
authentication based on universal hashing,” ddvances in
Cryptology: Proceedings of CRYPTO '96, LNCS 1108, N.
Koblitz, ed., Springer-Verlag (1996), 74-83.

[2311. Touch, “Report on MD5 performance,”
RFC 1810 {June 1995). 7 pages. http//www.isi.edu/touch/pubs/
rfc] 810 html

{241 M. Wegman and L. Carter, “New hash functions and their
use in authentication and set equality,” Journal of Computer
and System Sciences, Vol. 22 (1981), 265-279,

Appendix A. Pseudocode for bit scattering

SeatterBits

Input: message, mask, mask_offset, binA,
binB

Result: binA and binB are modified

Description:

Under the conirol of a pseudorandomly-selected
mask, scatter the bits of the message two words
at a time into bins A and B. Seatter the next two
message words as follows. Twice use the next
mask word to mark bits in the next fwo message
words, Interleave the marked bits of the first
word with the unmarked bifs of the second word,
and toss the result into bin A. Interleave the
unmarked bits of the first word with the marked
bits of the second word, and toss the result into
bin B. In the beginning, start with the mask
word at the specified mask offset position,

Begin

BN e

AN

o o0

End

L = length{ message)
for X, ¥ being the next pair of words in message
with M being the next word in mask

from mask_offset do

% 0-fill unmarked X bits; 0-fill marked Y bits
interleaved = (X and M) or (¥ and {not M)
push interleaved into binA

9% 1-fill marked X bits; 1-fill unmarked Y bits
interleaveB = (X or M) and (¥ or (not AN}
push inferleavel8 inte binB

endfor

