

APPROVAL SHEET

Title of Thesis: EBIDS-SENLP: A System to Detect Social Engineering Email

Using Natural Language Processing

Name of Candidate: Allen Brian Stone

M.S. Computer Science,

May 2007

Thesis and Abstract Approved: _________________________
Dr. Alan Sherman

Department of Computer Science and Electrical

Engineering

University of Maryland Baltimore County

Date Approved:

Curriculum Vitae

Name: Allen Brian Stone

Permanent Address: 3008 Baybriar Rd, Dundalk, MD, 21222

Degree and date to be conferred: M.S. Computer Science, May 2007

Date of Birth: March 2, 1980

Place of Birth: Baltimore, MD

Secondary Education: Archbishop Curley High School, Baltimore, MD

Collegiate institutions attended:

University of Maryland Baltimore County, B.S. Computer Science, 2003

Major: Computer Science

Professional positions held:

Tools Integrator (Software Developer and Researcher) (Aug. 2003 to current)

(formerly a Network Security Analyst)

Jacob & Sundstrom, Inc.

401 E. Pratt St, Ste. 2214, Baltimore, MD, 21204

ABSTRACT

Title of Thesis: EBIDS-SENLP: A System to Detect Social Engineering Email Using

Natural Language Processing

Allen Brian Stone, M.S. Computer Science, 2007

Thesis directed by: Dr. Alan Sherman, Dr. Sergei Nirenburg, Dr. Charles Nicholas

Keywords: Social Engineering, Natural Language Processing, OntoSem, Intrusion

Detection

 EBIDS-SENLP is an Ontology-based Intrusion Detection System that uses natural

language themes, specifically manipulative themes for the purpose of Social Engineering

(online fraud), to detect such manipulation in email text. The project includes a

performance test against two industry standard intrusion detection systems, Snort and

SpamAssassin, to see if the new approach is feasible and how it stacks up initially. The

project features a novel algorithmic approach to detection of malicious content by

utilizing the Natural Language Processing capabilities of the UMBC ILIT Laboratory’s

OntoSem project to parse and understand the email text to ferret out the concepts of

manipulation in the emails. This project was shown to present an immediate value to the

realm of Network Defense, because, although it was outperformed by SpamAssassin in

testing, it still showed an impressive 75% detection rate with only four detection rules in

its signature set and a very low 1.4% false positive rate. The detection rate is low for a

production system, but it is a promising start by any means, and the false positive rate is

much lower than anyone involved in the project expected. Thus, if the signature set is

updated significantly, this product can approach the performance of SpamAssassin and

do so with a much smaller and more easily adaptable signature set (it is based on English

Language concepts instead of digital signatures).

EBIDS-SENLP: A System to Detect

Social Engineering Email Using Natural

Language Processing

by

Allen Brian Stone

University of Maryland, Baltimore County

Thesis submitted to the Faculty of the Graduate School

Of the University of Maryland in partial fulfillment

Of the requirements for the degree of

Master of Sciences, Computer Science

2007

© Copyright Allen Brian Stone 2007

Dedicated to my long-suffering friends and family

ACKNOWLEDGEMENTS

 The author would like to thank all who have made this work possible. I want to

thank Jacob & Sundstrom, Inc., and their client staff for being patient and flexible and

supporting my academic career. I would also like to thank Dr. Jose Nazario, who

provided the phishing corpus and provided support to me. I would like to personally

thank Jesse English for all of his help understanding and utilizing OntoSem through the

Dekade II interface, along with thanks to Dr. Nirenburg. I would like to thank Dr.

Sherman for guiding me and encouraging me in this endeavor, despite the relative dearth

of research on the topic when I began. I would like to thank Dr. Nicholas for all of his

help throughout my academic career at UMBC. Most of all, I want to thank the friends

and family who believed in me for all of these years and sacrificed time spent with me to

allow me to advance to this point.

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . v

LIST OF TABLES . vi

Chapter 1 Introduction to the Problem: Social Engineering 1

1.1 Section title ………………………1

Appendix B Appendix title ……………………2

 A.1 section title……..2

REFERENCES ……………….3

LIST OF FIGURES

LIST OF TABLES

Chapter 1

Introduction to the Problem: Social Engineering

Social Engineering is the act of gaining unauthorized access or information from

a computer system or business location by deceiving the humans that have knowledge

about the target, usually through charm and cunning. It represents a significant threat to

even the most technologically secure networks, because it exploits the human element.

According to Kevin Mitnick, one of the world’s foremost “social engineers”, “A

company may have purchased the best security technologies that money can buy, trained

their people so well that they lock up all their secrets before going home at night, and

hired building guards from the best security firm in the business. That company is still

totally vulnerable” (Mitnick & Simon, The Art of Deception, pg 3). Its most common

means of reaching the user now is email. It usually involves impersonation of some

official-sounding person or organization, some exploitation(s) of human psychology, and

then a request for action, which usually involves either opening the email, clicking a link,

logging into some server, or passing personal or network information back via web or

email. It is extremely common to see these emails as they relate to stealing information

with the intent of financial fraud, or “phishing”, where they will refer to a user’s financial

accounts that may already be on the internet in some form.

The mechanisms that exist to foil Social engineering are varied, some more

effective than others. Personnel resistance training is the most effective, since the

“wetware” (human user) is what the attackers are targeting specifically. Training of this

sort involves introducing the user base to the sort of attacks that can happen and

providing them with the correct action and outlet for when such things occur. This is

very effective, especially in the time directly after training occurs, since it is fresh in the

user’s mind. Training of this sort requires that the organization issuing it knows which of

its employees need what extent of training. That organization also has to set mechanisms

in place for handling the event that such things occur, so that attacked users have an

outlet for response, since they will most likely not be the only users/employees targeted.

This is effective, because an informed and prepared human user can be vigilant and

confident, and confidence and knowledge of the problem are the best ways to thwart any

social engineering attempts.

However, this approach also has major drawbacks. People can forget or ignore

the training over time or are not always going to detect that it is occurring, since people

have a tendency to build a false sense of confidence as time passes without seeing such

attacks. Plus, the average human end user does not think in terms of exploiting other

people similarly or why some information is sensitive, so the detection rate is low, even

when training is fresh in their minds. And naturally, some people are less motivated or

capable at their positions than others and will not go the extra step of being prepared and

vigilant against these attacks.

Figure 1. Subtly different exploit emails. Notice the similarity in the theme of the

emails and the slightly different terms applied to achieve the same goal.

Intrusion Detection Systems exist that can detect malicious traffic by a number of

digital signature mechanisms, such as string-based signatures (Signature-based IDS) or

network traffic anomalies (Anomaly-based IDS). Intrusion Detection is a field that has

been around for some time, and Intrusion Detections systems still generally adhere to the

models and concepts discussed in Dorothy Denning’s “An Intrusion-Detection Model”

(1986) and Mukherjee, Heberlein, and Levitt’s “Network Intrusion Detection” (1994).

These two papers are seminal to the practice of computer forensics using detection

methodology. They outline the basic mechanisms of Network Intrusion Detection, where

the Intrusion Detection System is basically a part of one’s network, and it sits between

systems, or between networks, and reads some part of the traffic coming through,

studying some facets to make a determination on whether or not that traffic is malicious,

and then performing some action in response/mitigation.

Signature-based intrusion detection/prevention, including spam filtering, uses

digital strings to detect attacks as they occur. This can be used to some success in

detecting strings and characteristic bits of code relating very specifically to protocol-

specific packet-level text, such as the bytecode for a specific exploit or the specific flags

of a packet. It can be used to judge just about everything about exploitive mails, but if it

were used on its own to detect literal strings in email text, the approach would either fall

short or the signature list would grow so much as to negatively impact performance.

Because social engineering can be flexible about all of the strings in the email, this

approach can only delay the attackers and can be prone to false positives. Figure 1

demonstrates this issue by showing two nearly identical emails that attempt to exploit the

user using nearly identical stories and approaches, but with slight variants that may

require a standard signature-based IDS to change its rule set radically.

Anomaly-based intrusion detection/prevention uses traffic analysis to try and

recognize abnormal patterns in traffic. An example of such a system is MINDS, the

Minnesota Intrusion Detection System (Ertoz, Eilertson, Lazarevic, Tan, Srivastava,

Kumar, and Dokas). However, while it may be possible to detect large swings in email

traffic due to a high-profile distribution, not all social engineers are going to utilize a

wide and fast distribution. Thus, as long as the traffic remains under the radar of

anomaly, it is not detected. There are other issues with anomaly-based IDS, but that is

the major flaw that applies to this problem set, the fact that a subset of social engineering

emails rely on the appearance of network normalcy.

Natural Language Processing is the science of teaching computing systems to

interpret the context of written human language. UMBC’s OntoSem project is the large-

scale NLP system (Nirenburg, McShane, and Beale, “Operative Strategies in Ontological

Semantics”) that EBIDS will interact with through “DEKADE II” (English), a Java API.

The purpose of such a system is to be able to translate context from natural human

language, as it is written, to something that a computer system can recognize. It achieves

this purpose through a multi-layered approach. There is a semantic analyzer that

recognizes the definitional details of words, including what groups the word belongs to

inside of the ontology. The ontology itself is the knowledge base of categorization that

all words fit into, defined through data acquisition phases. The referential analyzer

attempts to recognize links between words, for example when a pronoun refers to a

previously mentioned proper noun. There are other components of the system, but within

the scope of this project, only these first three elements are necessary. NLP is

traditionally used for things like large-scale email analysis or document analysis. A

knowledge base has to be built up front in order for it to be effective, but that is a one-

time cost and maintenance updates are trivial.

Figure 2. An F. F. Poirot Ontological Signature

Ontology-based phishing detection systems exist, such as the F. F. Poirot project,

which relies on a pre-built database of terms and definitions to detect phishing attacks

against financial institutions in several different languages over email. However, this

project is of a very narrow focus and may be difficult to expand. It works by having

users build a database of ontological knowledge about phishing attacks. It then

recognizes the knowledge and looks in depth at the email text, looking specifically to

recognize certain tendencies, in some cases the very elaborate tall tales woven by Social

Engineering attacks by focusing on high level concepts such as “the addressee will be

lured into paying advance fees to enable the transfer”, rather than the underlying text.

There are a few problems with the ways in which the rules here are built. Firstly,

although the signature developed becomes more accurate when built to the very rigid

specifications of F. F. Poirot Rules (see Figure 2), it also makes their rules less flexible

and hard to update. Simply stated, it does not obscure the problem text enough for social

engineering attacks, still requiring a huge signature set. Another issue is that the data

bank here is built solely around phishing, whereas the OntoSem Ontology can be updated

comfortably to handle phishing knowledge, as well as other types of Social Engineering,

such as targeted impersonation attacks and worm spread emails. That capability of F. F.

Poirot remains to be seen, since it is not publicly available, so it may also have that

capability, but the project has no stated purpose to transcend this niche of social

engineering limited to phishing. There are publicly available research papers which

outline the ways in which the system was developed and its signatures developed. These

include: “Knowledge-based Information Extraction: A Case Study of Recognizing

Emails of Nigerian Frauds” by Gao and Zhao, “Knowledge-based Information

Extraction: A Case Study of Recognizing Emails of Nigerian Frauds” by Kerremans,

Tang, Temmerman, and Zhao (the best reference on the whole system), and “Engineering

an Ontology of Financial Securities Fraud” by Zhao, Kingston, Kerremans, Coppens,

Verlinden, Temmerman, and Meersman. In these papers, it is laid out how F. F. Poirot’s

signatures begin with stories and generalize to pick up specific cues from within the

stories, such as “Foreign Royalty presenting an opportunity.” As was found out in testing

EBIDS and its competitors, many fraud emails do not involve elaborate stories anymore.

In fact, only a very small number of emails had a deception any more elaborate than

claiming to be from a financial institution.

In the realm of signature development for an Intrusion Detection System, the

approach used by F. F. Poirot is very counter-intuitive. For example, when addressing a

problem with a very specific digital signature for a complex exploit, perhaps something

that takes advantage of a buffer overflow vulnerability on a certain line in a very specific

piece of code, then it is a good idea to make the electronic signature used to detect it as

specific as possible, since it is unlikely that this exploit will change forms, so it is a good

idea in that case to rigidly define a lengthy signature. However, if a class of highly

variable attacks are all coming out against a similar target, which is the case with social

engineering, then the signature should be written to be as general as possible within the

bounds of acceptable false positives, so that signatures do not have to be constantly

created and modified as often as the attacks, since that is largely infeasible and is, at best,

catching one’s tail. The proper approach is generalization, using one stone to kill two

hundred birds and possibly an innocent chipmunk or two in doing so. To elaborate, using

a single signature to catch the majority of attacks against a network is worth a small

amount of innocuous traffic being flagged as harmful and relying on responsible analysis

to determine if the traffic was indeed malicious or not.

EBIDS-SENLP is an Email-Based Intrusion Detection System to detect Social

Engineering using Natural Language Processing. It uses OntoSem to analyze plain text

in email to determine whether or not the language used is indicative of Social

Engineering. It mixes the ideas of ontology-based social engineering detection with

signature-based IDS in a new and unique way. It is intended to be more generally

defined to detect all forms of social engineering on a broad scale, and its basis in

OntoSem’s library of terms makes it potentially much more powerful than F. F. Poirot,

since OntoSem can hold a nearly unlimited number of terms. Although relegated to

English Language and email for now, there may be efforts to expand OntoSem that can

expand the capability of EBIDS in the long run. The project transcends normal

signature-based IDS, because instead of looking only for literal strings, the EBIDS rules

can be written to look for generalized contexts and themes, which will then act as

equivalence set names that are produced by OntoSem. Thus, instead of matching on

“send us your account information”, EBIDS can match on the concept of “request for

personal information”, which may refer to any number of similarly phrased terms, which

would be defined in OntoSem for a one-time-cost up front with slight tweaking time in

the middle. The entire concept of EBIDS is to use OntoSem’s processing constructs to

create equivalence sets of strings that, when used together, constitute a theme of social

engineering’s flavor of user manipulation. In comparison to the very strict and rigid

definitions of F. F. Poirot’s rules, which include cues such as “Foreign Royalty

presenting an opportunity,” EBIDS generalizes even that concept more to “Anyone

presents a financial opportunity,” because not every phishing scam that promises money

uses foreign royalty, so when an email that offers free money as part of a bogus internet

offer from a reputable company comes through, Poirot will either miss it or require a

second rule be written, but EBIDS will identify it. Part of the focus of EBIDS is to keep

the signature set small and sophisticated, because standard IDS rule sets can often

become large and unmanageable, and natural language is a very large rule set. The

logical conclusion of this line of thought is to use a system that already categorizes the

English language, OntoSem, to create a very small set of focused signatures that are

easily recognizable and easily modifiable, in an attempt to “keep up with” and adapt to

the readily changing medium of electronic social engineering, using the tenants of

standard signature-based IDS to write effective signatures.

Chapter 2

Email-Based Intrusion Detection System to find Social

Engineering using Natural Language Processing

2.1 Concept

 As social engineering is a relatively difficult thing to defend against, the question

arises of whether or not it can be defended with technology at all, and then if so, does

there exist a technology which can be applied to perform the task. Social engineering is

a unique problem in the scope of computer security, because the onus of sophistication

does not lie necessarily within a code exploit or machine solution. Rather, it lies with

the language and variability thereof in order to make a social engineering attack

effective and adaptable. So, in order to target a social engineering attack, one can

either doggedly create literal signatures out of the exploits and web links used in certain

attacks, updating frequently, such as a Symantec solution in their Norton AV software,

or one can focus on the other element, the one that varies far more except in its tone and

theme, the natural language itself. By focusing on the recurring themes of deception

within the email, EBIDS should be able to discover new and emerging attacks, because

even though English Language can vary incredibly, the types of deceptions used to

exploit the human psyche are pretty much defined and well-known. Thus, the scientific

leap that EBIDS takes is to use a natural language processing system to perform the

task of providing the thematic insight to the system to detect when deceptions are being

performed over email. OntoSem was not purpose-built for this, but it could be

expanded and tuned to incorporate it. Thus, the problem exists and, arguably, the

technology to provide a solution.

Figure 3. A social engineering email, highlighted by recognizable concepts.

 Specifically, the problem that this system attempts to solve is one of recognizing

concepts in email text. Figure 3 on the previous page shows an example of a fraudulent

email indicative of a social engineering attack. Separate sections of the deception are

highlighted differently. The text highlighted in green signifies the more “official”

looking corporate parts of this email. The language included is meant to suggest that

the email is an official corporate email from eBay regarding the target’s eBay account.

Highlighted in blue is text that suggests that the user’s account has been compromised

by an outside, probably unauthorized, user, to give the user a reason to acquiesce to

their request, specifically to help eBay help the user supposedly. The text in yellow

represents a request for account information, which is being asked for shamelessly here.

More sophisticated attacks have more subtle and indirect ways to ask for information,

for example by suggesting a login as a necessary go-between for some greater end. The

text highlighted in grey above is a significant psychological trigger. It tells the user that

there is a deadline, presumably not long after the email was sent, by which they must

comply, lest some denial or limitation of their service be experienced. This is a tactic

often employed in social engineering to get the victim to respond quickly before

they’ve had time to think it through. The concept behind EBIDS is for it to focus on

the concepts represented in the colored boxes, not the text or exploits themselves. For

example, an EBIDS detection rule can be seen below in Figure 4. The format may be

confusing in the figure, but focusing on the left-most field on each line, one can see the

concepts mentioned above: a corporation name, some consequences suggested as an

alternative to acquiescence to the information request, some text about account

compromise, and the information request itself.

Figure 4. An EBIDS detection rule.

 OntoSem has the capability to read raw text, evaluate the meanings and relations

within sentence structure, and perform many wondrous functions based upon that

knowledge. EBIDS will only use a subset of this functionality, and it will do so

completely within the bounds of the DEKADE II Java API. DEKADE II is a project

intended directly to provide a safe and easy interface to OntoSem’s computational

knowledge, and in one of the most striking advances of DEKADE, you can access it

through a Java API with very few method invocations. This therefore led to the

decision to code EBIDS in Java, although there are plenty of other great reasons to do

so, considering Java’s extensive standard use in academia and industry, along with its

considerable portability across operating systems and ease of use within object-oriented

design. There was initially a plan to use Perl to provide some scripting language

finesse in making a better presentation to the end user, but that can be trivially added at

any time, so the decision was made to leave Perl out completely and just use Java for

the time being. Perl was used to write execution and testing scripts, but it is not a part

of the system itself.

 Much of the initial coding of the system was to parse email and present the

natural language that is the message text. EBIDS reads each email in as a text file. It

would not take a huge leap to expand its functionality to read the email from pcap, but

since it can be proven that such things are readily accessible and done, the decision to

just use plain text email files was made. It was also much easier to find corpuses online

which presented the emails in text file format. The back end of the program is a simple

text parser that feeds OntoSem with text through the DEKADE API, and then reads the

XML results, running a simple string match algorithm to determine if the requested

social engineering context was detected. When testing, it was determined that

OntoSem cannot, in its current state, provide the equivalence matrix needed to identify

terms as being associated with certain deceptions or exploits, so as a temporary fix, the

equivalence sets for detection will be written directly into the underlying Java code of

the system (hard-coded), but only because Dr. Sergei Nirenburg has shown repeatedly

in his research (Nirenburg and Mahesh, “A Situated Ontology for Practical NLP”, and

Nirenburg, Raskin, and Sheremetyeva, “Lexical Acquisition”) that data acquisition,

although a lengthy process, can be used to tailor OntoSem for several varied purposes,

and the use that EBIDS needs is certainly within its domain. The hard-coding is

certainly not a desirable long-term solution, as the data set is likely to need periodic

updates, and not only is it much easier to do this with OntoSem, but as the ontology

grows, it will quickly outgrow EBIDS, but OntoSem’s knowledge base could easily

support it. It was also discovered very early on that using OntoSem to analyze email

text took a very long time, so the initial goal of using an email corpus from the Enron

scandal, which was gigantic, was abandoned in favor of a much smaller corpus. The

end result was to be a set of less than 100 emails, because it would simply be extremely

impractical to put that strain on OntoSem. Future efforts, however, would certainly

encourage scaled-up testing of the system with a large corpus, after data acquisition. In

this case, because the equivalence sets were built into the project itself, the connection

to OntoSem is bypassed and the testing corpus can be scaled up to over 500 emails,

making for a more robust test bed. It should be noted that EBIDS has been written to

perform as it was initially intended, through interaction with OntoSem, but that the

hard-coded equivalence sets with avoidance of OntoSem is a functional workaround

that can be taken out after OntoSem has been put through a lengthy data acquisition

process. That process is only lengthy once, since it currently has no concept

whatsoever of this data type, but expanding/adapting it is considerably quicker.

2.2 Hardware

Figure 5. Simple Hardware Diagram

 The hardware for this project is largely in the ILIT lab, which is OntoSem and the

cluster which hosts it. That system communicates with the system that runs EBIDS,

and presumably, that system will be set up to talk to the network that is to be defended.

For now, the system simply runs on one laptop, but it could easily be installed and run

on any machine. If this system were to run in a production environment, the OntoSem

component would either have to be productized and run on a production cluster or

would have to be somehow replicated to run without dependency on that specific

laboratory, because otherwise it is not scalable. However, the diagram in Figure 5 is

how it is being run currently to prove the concept.

2.3 Software Specs of EBIDS System (not including OntoSem)

 EBIDS, for the moment, is set up to run on an MS Windows System

Environment. Because it was written in Java, with very minor code tweaks, it could be

made to run on a Linux or Solaris environment. It is currently running on Java 1.5, and

that is all that it has been built and tested on, so that is the recommended version for

future distributions. For the evaluation of EBIDS, two current free detection systems

have been downloaded and installed, Snort 2.6 and Spamassassin 3.1.6, along with

Winpcap 3.1 for network capture capabilities. Snort is being run with an open source

rule set from Bleeding Snort, an industry standard rule developer, current to early 2006,

as well as the Snort standard rule set, most recent to the date of this research. To run

the testing on Snort, Apache 2.2 had to be employed on a separate testing system to

pass the test corpus over a pcap process, since Snort cannot run with plain text files as

input unless they are being passed over the network. EBIDS is reliant on the DEKADE

II Java API being installed and available.

2.4 EBIDS Architecture

 EBIDS consists of five components, a front end reader, a text parser, an OntoSem

interface module, a rule builder and detection mechanism, and an output mechanism. It

is a very simplistic model with the onus of complexity on the rules themselves and the

hard-coded equivalence matrix, which will eventually be removed when OntoSem

acquires the knowledge to make it obsolete, which will place all of the complexity

squarely on the rule set. In the long term, that is likely to be an undesirable situation

because it should not be necessary to know OntoSem intimately to use this program, so

another area of future work this problem brings up is a mechanism for adding

signatures that abstracts the complexity from the end user.

 The Front End Reader of the system is very simplistic. All it does is read the file

specified by the user and forward it on to the Text Parser. The driver passes the name

of the file(s) to be processed as emails to the text parser by invoking an instance of the

Email Parser class, which both reads the email and performs preliminary parsing steps,

which is technically part of the next component, the text parser.

 The Text Parser is an extremely complicated and distributed piece of code that is

scientifically insignificant for this project. It simply parses out the message text and

removes characters that would make OntoSem choke. It is not perfect in this effect but

was tuned to at least accept a majority of the training corpus. Email Text Parsers exist

out there, so this piece of the program, just like the front-end reader, is expendable and

insignificant to the scope and aim of the research. It is written into EBIDS as the Email

Parser and Email Parts classes, which simply strip out all html tags, the various

expected email fields, and things such as newline characters in order to pass on only

raw natural language from the email body. The essentials of how and why code was

stripped from the emails can be attributed to familiarity with the email protocol, as

noted in Volumes 1-3 of TCP/IP Illustrated (Stevens and Wright).

 The OntoSem Interface Module (OSIM) is one of the significant pieces of this

program. After the text parser forwards on the email message body that was readable,

the OSIM uses calls to the DEKADE API to connect to OntoSem and pass it the email

text (DEKADE provides simplified method invocations to utilize OntoSem, including

the capabilities to connect and request specific analysis of given text), which is then

processed and fed back to EBIDS in this module. OSIM them writes the XML results

from OntoSem to file for later processing and exits gracefully. OntoSem actually

becomes the key component in this chain at this point. It is the part of the OSIM that is

the key scientific advance for the project. It is almost overkill at this point, since

OntoSem is processing the data for every single possible use for OntoSem, rather than

focusing on one specific thing. Future research could write an EBIDS-specific

interface with the system to improve performance in this aspect. But, in most general

terms, this component takes the email text and generates an XML file. Currently, this

step take about 2 seconds per email to parse out the text body, but it can take up to 20

or 30 minutes, depending on the email, to actually process in OntoSem, especially if

Referential analysis is also required. Thus, this performance bottleneck represents a

vital part of the system that requires improvement before it can enter a production

phase.

 The Rule Builder and Detection Mechanism (RBDM) is the other significant

portion of EBIDS. Its job is to build a collection of detection rules from a specific text

file. After doing so, it then runs the rules from that file against the literal email

message text and the OntoSem Analyzer XML files, both Semantic and Referential,

depending on which file the signature specifies. Again, the onus of complexity was

passed on to these very specialized rules. They include multiple lines to build a multi-

signature rule, spaces for comments, places to specify what string should be located,

and in a step toward targeted abstraction, a field to specify whether the signature line

for a rule is to be matched against the email text or either the semantic or referential

results, the latter two of which is how EBIDS uses OntoSem to build a virtual

equivalence set, by specifying high-level definitional concepts to match against the

meanings behind the words instead of literal strings themselves. Refer to Figure 4 for

the exact rule format. In the future, it would be optimal to house the rules in a database,

but again, simplicity and accuracy were the chief concerns, rather than storage or speed.

Once a rule has fired (based on a %-threshold of signature lines within a rule), it is

forwarded to the output mechanism. The algorithm that guides detection is less focused

on speed performance than it is on simplicity and accuracy. It relies on Java’s plain-

text matching procedures from the java.lang.String class. For future optimization, it is

not out of the question to use one of the more advanced string matching algorithms for

this purpose, especially if EBIDS is to be run on larger networks. Basically, the

Detection algorithm breaks down as follows:

1. Given the literal text string that contains the message body and the names of

the XML files containing the output of OntoSem’s Semantic and Referential

Analyzers, copy the entire contents of those three strings into large String

objects.

2. Iterate through the rules array. For each rule, iterate through each signature in

the rule by doing the following.

a. Determine which signature type (Semantic, Referential, or Literal) it is

and match the string associated with it (either a literal string or an

OntoSem ontological concept string, i.e. “INFORMATION”) by

testing the appropriate string for whether or not that signature string is

a substring. In special cases, the subroutine chain match is called,

which does the following.

i. Since the Semantic or Referential concept requires several

strings within an equivalence set to be matched, for example if

the string “ACCOUNT_COMPROMISE_SET_1_OF_2” was

to trigger, it may need a few strings from other sets to appear.

So, iterating over the range specified in that string, in this case

the requirement is two sets having matches, so attempt to

match both “ACCOUNT_COMPROMISE_SET_1_OF_2” and

“ACCOUNT_COMPROMISE_SET_2_OF_2”, and if both

match, then alert, and if one does not match, then do not alert.

b. If a match has been established, add the weight of this signature to the

total rule weight and move on.

3. For that rule, if the total rule weight of the match outweighs the threshold for

that rule, then alert on that particular rule, adding it to a string of the rules that

fired, and repeat step 2 until all rules have been checked.

4. If no rule fired, return the string “clean”. Else, return a string built up from

the rules that fired successfully.

 The Output Mechanism is also very simple. It writes to a text file the email

details, a summary line of which rules fired, and a snippet of text from the email itself

to better show the user at first glance what the email is saying.

Figure 6. Sample OntoSem XML Output for the sentence, “Attached is the

information you have requested.”

The two key components of the system, the OSIM and RBDM, work hand-in-

hand as follows, beginning with the OSIM. It fully processes the text, writing its

semantic and referential knowledge of the sentences passed to it in ontological terms,

represented as XML tags. Each sentence is processed within “tmr” tags, which

encapsulate the literal sentence itself, followed by the ontological breakdown of each

phrase or term within the sentence that is recognized by OntoSem. It is here that the

abstract step of creating equivalence sets for literal natural language strings can be

made. Since OntoSem recognizes the literal and creates XML data that represents that

term’s role(s) in the Ontology of the overall system, the EBIDS detection rules can be

set to look for those ontological concepts by string matching the XML results in the

Detection Mechanism (described below), thus matching on a theme rather than a literal

string, as seen in Figure 6 if you were to match on either of the equivalent terms “data”

or “information” by string matching the XML Attribute “INFORMATION”. And to

build context, terms can be broken down to ensure that greater complexity exists than

just one of a set of terms.

There may need to be a match of one of a set of terms for some number of terms,

making the rules more strict and accurate. For example, for the rule example from

Figure 4, the Account Compromise rule, examining just the line about “compromise

event”, the equivalence set would look theoretically similar to an example set of

{{account, access}, {compromise, hijack, unauthorized, password failure, fraud,

discrepancy, discrepancies}}, where the subsets represent the fact that for the set to be

considered matched, a term from each of its subsets must be matched. Thus, a sentence

like “Your account shows signs of unauthorized access” would match, while a sentence

like “Your account may have been hacked” would not, since only the term “account” is

matched, and nothing from the other subset matches. In order to achieve a similar

effect in OntoSem, such sets could be defined with numerical definitions. So, if

“COMPROMISE EVENT” was an OntoSem tag, it could be broken into

“COMPROMISE EVENT-1” and “COMPROMISE EVENT-2”, where both would

have to be matched to match the original concept, and if any single term was a dead

giveaway for a compromise event on its own, it could be added to both sets, thus

causing both to match. Again, all of this can be added up front in a lengthy data

acquisition process, but after that price is paid in full once, it is later paid less

drastically as small modifications become necessity to advance with trends.

2.5 EBIDS Signature Set

A Signature-Based IDS is only as good as the rules that define how it alerts. This

is one of the subtler problems with Intrusion Detection. There is a real art to defining

specific and accurate signatures. If the signature is too specific, then it may be too

limited to be useful. If it is not specific enough, then the false positive rate associated

with that rule may be too high for analysts to bear as end users. Thus, the EBIDS

signature set was defined using a number of themes taken directly from The Art of

Deception. Some best practices for signature writing were followed from the entire text

of Intrusion Signatures and Analysis, which is less a guideline for signature writing as a

whole as it is a snapshot of effective signatures for that timeframe, but good practices in

signature writing can still be gleaned from following the flow of the text.

The signature development, similar to the system as a whole, was partially

defined using the training half of the Nazario phishing corpus. It was decided to go this

route so that the rules could target some of the specific language that might be used in

the testing half of the corpus, since the emails from both corpuses were from around the

same time period and were likely to overlap. Since the English language is so vast and

these attacks vary in terminology to suit trends, to avoid the risk of a higher-than-

necessary miss rate, the signatures were designed thusly, also with the hope of

preserving time, which was limited to begin with.

Figure 7. The EBIDS Rule Set

The rules were defined to allow for multiple lines of definition, so that the

signatures involved could really be drilled down to get specific, since the individual

matches imply a level of abstraction. One would not want to match a rule solely on an

“information request” signature, which asks for language indicative of asking someone

to click a link or email their account information. Even though that is the one common

signature found in all of the rules in Figure 7, that alone is not enough to flag an email

as malicious, since some malicious emails will not explicitly request information. Also,

there is reason to believe that some traffic may match part of a rule instead of the whole

thing, so a threshold scheme was utilized, with the weights for each signature within a

rule signified as the last field in the line. There are also times where one might want to

utilize the referential analysis from OntoSem, or to match a literal string, rather than

just a semantic one. In the below example, taken from the original test set for system

development, one can see in the second field in each line exactly how to specify what

aspect of the system gets used in matching.

START Cheater Rule

Congratulations::sem::CONGRATULATION::9

A genuine thank you::sem::THANKS-INTERJECTION::4

Asking the user to look::ref::INVOLUNTARY-VISUAL-EVENT::7

Threshold Test – this literal will never appear::lit::smoochydies::1

END

Comments in this rule set are achieved in two ways. Any general comment can

be enclosed in “###” delimiters, and any comment for a single-line signature within a

rule can be specified in the first field. If there is no comment for a line, just start that

line with a “::” delimiter. The second field is the mode of matching for that line: “sem”

for Semantic, “ref” from Referential, and “lit” for literal string matching. Semantic

matching is most often used, as it is the definitional and contextual meaning for a term

within a sentence. Referential may have use to determine if an unspoken relationship

exists between two words. Literal string matching capability was more or less an added

capability, and it can be useful if there is a definite signature associated with an attack,

but it is more or less extra in the scope of this project. The above reasons are also why

all of the signatures used to test the program, noted in Figure 7, are all completely

dependent on Semantic signatures. Figure 8 shows the literal strings in the underlying

equivalence set for each of the conceptual signatures. These sets of literals are literally

coded in as a temporary workaround, but eventually, OntoSem would be able to hold

this information conceptually if the data was acquired into it in specially defined

Ontological branches.

The rules defined in Figure 7 look for phishing emails specifically. The goal of

this project is to eventually expand beyond this, but time was a limiting factor, so the

rule set had to be focused on the corpus that was available by using the training half.

The rules, as they exist for testing, are as follows:

1. Account Compromise – This rule is set up to detect whenever an attacker

falsely claims that a user’s account or computer may be hacked,

compromised, or otherwise in the hands of unauthorized users. It looks for

four specific themes in the email.

a. Language that intimates an account compromise, seen later in Figure 8

in the deceptions_intrusion string equivalence set.

b. A corporation name to make the entire thing sound official. This is

detailed in the corporations string set.

c. Threat of denial of service (DoS) to the user’s account, which may

appear as “We will suspend your account until you verify your

information.” This is obviously the threats_dos set.

d. Information request, which is any language asking a user to follow a

link or reply to the email with their account information, specified

below as action_info_request.

2. Financial Opportunity – This rule is set up to detect any time a windfall offer

is being sent to the user that specifically deals with monetary value

(specifically spelled out in plain language).

a. Congratulatory language, which usually accompanies financial

windfall emails, detailed below in the offer set. This type of language

is used to hype the user up to believe that indeed they are being offered

an exciting offer.

b. Money language, dollar amounts, the word “free”. This is very basic,

but essential to this specific rule. This is found in the money_term set.

c. Corporation name, as above.

d. Information request, as above.

3. Change/Update to Account – This rule is set up to detect any time that account

verification is being requested due to a change to a user’s account. A

common justification for requesting a user’s info is that it has been lost or

their account is somehow being refreshed or modified. This rule aims to catch

such activity.

a. Language that applies that a user’s account is being updated or

changed in some fashion. This is found in the acct_change set.

b. Corporation name, as above.

c. Information request, as above.

d. Threat of denial of service, as in the compromise mail, because most

times when someone is requesting an information update, they will

suggest that there is a time deadline before the account is deactivated.

4. Opportunity – This rule is set to detect all windfall offers that do not strictly

refer to money. This could include vacation offers, credit card offers, and

stock tips. For the purposes of this experiment, it was mainly focused on

credit cards, but it can be expanded/changed later.

a. Language that refers to credit cards, as seen below in the

credit_card_terms set.

b. Congratulatory language, as above.

c. Corporation name, as above.

d. Information request, as above.

These rules were rigidly defined around the training corpus, based on

psychological triggers mentioned in The Art of Deception, which is further detailed

later in this section.

Figure 8. Equivalence Set that defines the signature sets

The concepts used from The Art of Deception include some of the following,

citing specific psychological triggers. These triggers are cited on pages 247 through

249, in Chapter 15 of the book.

1. “People have a tendency to comply when a request is made by a person in

authority. … a person can be convinced to comply with a request if he or she

believes the requestor is a person in authority or a person who is authorized to

make such a request.” This drove the decision to look for corporation names is

some of the rules, since the attacker will often pose as a legitimate company that

an end user is likely to have a financial account with, such as Paypal. This is also

why the idea of an account denial of service threat becomes more believable from

a user standpoint, and is thus why that set of ideas is included in many attacks,

and thusly the signature set. The psychological trigger referred to here is

Authority.

2. “We may automatically comply with a request when we have been given or

promised something of value. … When someone has done something for you,

you feel an inclination to reciprocate. This strong tendency to reciprocate exists

even in situations where the person receiving the gift hasn’t asked for it.” This is

the psychological trigger known as Reciprocation. This takes many forms in

attacks, and is involved with all of the EBIDS rules. The premise of phishing

emails is nearly always going to be an information request of some kind, based on

the false pretext that the requestor is reliable and providing some benefit to the

end user. So, the “opportunity” rules in the signature set use false congratulations

and the intimation that some great gift is being given to or won by the user, even

though that user most likely didn’t request it, and all the social engineer is asking

in return is for the user’s information, possibly to help along in the process of

getting them their gift faster. That breaks down to: “I’ve given you a gift, so now

please give me something.” It is much the same with the “account compromise”

rule. Here, the social engineer is using the pretext that he/she has found the user

has possibly been hacked. That phony information is the perceived value

provided to the user, with the reciprocation step being whatever the attacker asks

for in return. In the “change/update to account” rule, there are a number of

triggers used. This rule is very generalized, but some of the pretenses cited as

false benefits to the user include: adding new features to one’s online account,

theft/fraud prevention, an inability to find the user’s proper records. Whatever the

“reason” for the email, the perceived value is that the organization is now asking

for verification in return for what they’ve done already.

3. “People have the tendency to comply after having made a public commitment or

endorsement for a cause.” This is what is called Consistency. The

“change/update to account” rule was designed for this reason, and this also has to

do with the threat of DoS being a potent and believable threat, because the

attacker will falsely cite rules or terms of one’s account as being the reason for

discrepancy, and thus asking the user to verify their information in order to

comply with rules or terms that they already have committed to, publicly or not.

The idea that one’s account can be suspended or limited because of this is very

troubling, and most people will do what they can to stand by the guidelines that

they may have signed up for, even if they did not read the terms of service when

they created their account.

4. “People have the tendency to comply when doing so appears to be in line with

what others are doing. The action of others is accepted as validatin that the

behavior in question is the correct and appropriate action.” Social Validation is a

strong trigger, and it appears in phishing emails in a number of ways. In some of

the windfall/stock tips emails, it is mentioned that smart investors are getting on

board with these requests. Also, perhaps more poignantly, in several emails, a

phony security audit is cited as the reason for the verification, saying that the user

was randomly selected, which implies that other users are selected and that it

happens all the time. This trigger did not explicitly guide rule creation for this

testing, but it is significant, because it shows up in the testing corpus later.

5. “People have the tendency to comply when it is believed that the object sought is

in short supply and others are competing for it, or that it is available only for a

short period of time.” This is the concept of Scarcity. This is an important trigger

that Mitnick does not go into great enough detail on. The concept of limited time

or supply is a trick that salesmen often exploit. The main reason to do so is not

only to have the user believe that whatever it is may be more valuable than it

actually is, as Mitnick suggests, but it is also to put the user in the state of mind

that they have to make a decision immediately, rather than to think it out. This is

a trigger that relies on one of the other triggers having been successful. For

example, telling a person that their account will be shut off if they do not comply

in general is scary enough, but telling them that it will be shut off if they do not

comply within three days makes the emotional shock of losing account access

more strong and present in one’s mind, since they now have little time to make

their decision. This is why one of the key points in Personnel Training is usually

to tell people to take their time before responding. It gives them a chance to think

objectively and logically before moving forward. This did not specifically lead to

any of the rules used in the EBIDS evaluation, but it could be employed later,

since almost all of the emails with a threat of denial of service or extra fees was

accompanied by a time deadline. This also appears in other forms. For example,

in one particular phishing email, it is noted that a stock tip is only offered to a

limited number of people, and that many of the slots to own the stock are filling

up, putting the stock in short supply. This is a trigger well worth consideration

for signature development, but it was too general, too large a data set, to include

for the purposes of this project’s evaluation.

The signature set is a complex and significant part of the success of this project,

and it was thoroughly and rigidly defined for that purpose, based both on the common

psychological triggers that social engineers hope to exploit and the language and

terminology familiar to the Nazario phishing corpus. It is because of this familiarity

with the material and a knowledge and background in signature analysis and writing, as

well as a knowledge of the basic working mechanisms of OntoSem (here bypassed by

hard-coded equivalence sets), that EBIDS stands a chance of reaching its performance

goals in the testing phase. Signature writing, especially for the use of EBIDS, is not to

be taken lightly. If falsely tuned with access to OntoSem’s extensive knowledge base,

EBIDS could have the potential to overwhelm OntoSem, the user’s system, or the

analyst who looks over the data. It is vital that a trained professional write these

signatures, because this aspect is such a heavy component of a relatively simply

designed system. Future iterations of this project should take steps away from needing

to know the specifics of the underlying architecture, such as OntoSem’s ontological

names for terms. A layer of abstraction can benefit users greatly and make EBIDS

usable to the general Network Security field.

Chapter 3

Testing and Results: Three Systems and Two Corpuses

3.1 Testing Parameters

 The corpus of this project is complexly defined, but defined for specific reasons.

The first corpus, the all-known-bad corpus, has been built from a publicly available

phishing corpus, compiled by Jose Nazario, PhD. Although publicly available, Jose

was contacted for his permission to use this corpus for this specific project, to which he

consented and provided extra insight. This corpus, found at

http://monkey.org/~jose/phishing/phishing0.mbox , is composed of a large number of

phishing emails in plain text. This set was divided in half, one to be defined as the

“training” set, and the other to be defined as the “testing” set. The training set is

defined with the specific purpose of being a testbed for the definition and primary

testing of EBIDS during primary development. The testing set is left completely

untouched until the testing phase. It will then be the all-known-bad portion of the

system evaluation, and it will be run against Snort (Roesch, “Snort – Lightweight

Intrusion Detection System”) and SpamAssassin (Schwartz, SpamAssassin) to evaluate

their effectiveness. The emails in Figure 1 are examples of social engineering from the

Nazario phishing corpus. The all-known-good corpus will be separately defined from a

chunk of the Enron Corpus, also publicly available.

 The systems will be evaluated on their effectiveness in detection rate, which is

how many of the malicious emails were actually detected as malicious, and false

positive rate, which is how many of the innocuous emails from the Enron corpus falsely

flagged as malicious. The expertise to do this comes from years of Network Security

Analysis, following methodologies derived from the following list of publications:

Practical UNIX Security (Garfinkel and Spafford), Hacking Exposed: Network Security

Secrets and Solutions, Third Edition, 3
rd

 Edition (McClure, Scambray, and Kurtz),

Intrusion Detection: An Analyst’s Handbook (Northcutt), Security Warrior (Peikari and

Chuvakin), Hacker’s Challenge 2: Test Your Network Security & Forensic Skills, 2
nd

Edition (Schiffman, Pennington, Pollino, and O’Donnell), and the TCP/IP Illustrated

series (Stevens and Wright). All three systems, EBIDS, Snort, and Spam Assassin, will

be tested in this manner. Performance and scalability are not going to be included here,

because OntoSem is not set up to perform to the needs of an IDS and although

scalability will ultimately be a major concern, the purpose of the EBIDS project is to

prove the concept that the approach is feasible. Future work may be done to answer the

question of whether or not it can be done within a reasonable time.

3.2 Expected Results

 Although the corpus will be flatly divided between known-bad and known-good

traffic, there is bound to be a miss rate and false positive rate in all three systems. The

expected run on Snort is going to likely be both high miss rate and false positive rate,

since Snort is largely not focused on catching phishing attempts. Spam Assassin, the

http://monkey.org/~jose/phishing/phishing0.mbox

email filter, is expected to fare much better, since its signature list should include

information from at least some of the attempts. Its false positive rate should be rather

low. EBIDS is expected to outperform them, since its rules are being defined with the

training corpus, so it is custom tailored to this sort of data. Its false positive rate is

going to be a chief concern, however, since the signatures are based in natural

language, which has such a variety of use that it is difficult to predict in what other

context words may be used that end up falsely firing the system. Also, since EBIDS is

looking at only the natural language of the email body, exploitive language in the

subject line or emails that have no text (but are only images or code) will go unnoticed.

EBIDS has a rule threshold in this run of 70%, which means that at least 70% of a

rule’s matches have to occur for it to alert.

3.3 Testing Methodology

 For EBIDS, the code was simply set to loop over email in text files in a directory,

reading in each one individually and outputting to a corresponding output file. Because

the text parser for html formatting was written from scratch, a small number of the

testing corpus was excluded due to exceptions in execution.

 For SpamAssassin, no extra steps were necessary to run the tests. The files were

simply piped in as input at the command line, and the output piped to similarly named

output files. A quick PERL script was written to perform this task en masse.

 Snort has no option to analyze plain text files, so in order to get snort to analyze

the data, Apache 2.2 was loaded onto a system with the testing corpus loaded on it in

order to have it act as a web server. Meanwhile, the laptop which had snort installed on

it was taken to another location to utilize another internet connection and connect to the

web server, downloading each of the files one by one by clicking links in a simple html

page created just for the purpose of hosting the files, while snort ran in detection mode

to try and pick out exploits in the plain text. A PERL script was also employed here to

very simply create that html file.

All PERL scripts for running the testing code have been included in the

appendices, along with the signature sets of all three detection tools.

The total testing corpus was composed of around 230 emails from Jose Nazario’s

corpus, which were untouched during the training and tuning phase of EBIDS, along

with around 300 emails from the Enron data corpus, publicly available at

http://www.cs.cmu.edu/~enron/ (Carnegie Mellon University). The Enron data set is

assumed to be mostly void of social engineering attempts, so it was cleanly merged

with the known bad set to be a test of false positive rate.

3.4 Testing Results

 When judging any Intrusion Detection System, one has to consider very carefully

a number of performance metrics. As this is highly theoretic work at this point and

http://www.cs.cmu.edu/~enron/

more of a proof-of-concept, the focus in testing is on how well the system achieves its

goal of accuracy, rather than testing performance numbers. OntoSem has not been

optimized to run in real time speeds for this sort of querying in the manner that current

industry standard IDS systems have, so time efficiency was not a key factor in choosing

the algorithms used for matching, and so even after the signature set’s equivalence sets

were coded into the program, the algorithms were simply left as they were, focused

more on accuracy of results over performance.

 The metrics of accuracy usually related to Intrusion Detection Systems involve

two very key statistics, the hit rate, which refers to how much of the bad traffic is

actually being flagged when it is seen, and the false positive rate, which refers to how

many times completely innocuous traffic is being flagged wrongly as being possibly

malicious. There is a tradeoff, and it usually varies from signature to signature, based

on the threat the signature is set up to mitigate, and that tradeoff is basically what

number of false hits is acceptable to the end user for the ability to keep the hit rate high.

The rates are related, since they both involve how often alerts are triggered, and best

practices with regards to signature writing can minimize false positive rate while

compromising hit rate as little as possible. For the end user, these accuracy measures

are crucial to how they perform their task. Too low a hit rate, and the user is assuredly

missing malicious traffic. Too high a false positive rate, and the user is potentially

inundated with false hits, making it harder to find the malicious traffic and wasting the

time of the analyst using the tool by following false leads.

 EBIDS is being held to another standard in addition to the rest. Because the

experiment’s signature set is based on string matching natural language, a very realistic

fear exists that not only will the number of false positives skyrocket, but also that rules

will more often fire when they are not supposed to during correctly firing rules. An

example of such a false hit is an instance that occurred during the testing of EBIDS

quite frequently, where an email would be formed requesting information verification

fraudulently but without mention of account compromise as the cause, but the account

compromise would fire in addition to the rule that picks up fraudulent information

requests. In that case, it is clear that the account compromise rule should not have

fired. However, the converse is a case that is not true. In almost every instance where

the account compromise rule fires correctly, there is some request within the email text

to update or verify account information, so in those cases when both rules fired, it was

not deemed a “partial false positive,” unlike the prior case. So, in the below stats,

“partial false positive” refers to alerts where a rule fired when it shouldn’t have, but the

correct rule fired on malicious traffic in addition to the incorrect rule. Because of how

extensive the Snort and SpamAssassin signature sets are, it would take too long to

analyze when a partial false positive occurred with each correctly flagged malicious

email, so that step was avoided altogether.

 The fields for each summary are:

1. Number of total emails in the test corpus, which varies because the

EBIDS email parser was written by hand, so it could not handle all of

the various html and smtp coding styles of the email corpuses, and

SpamAssassin was unable to handle 2 emails as well.

2. Number of emails in the Nazario phishing corpus, which are all

known-bad phishing emails.

3. Number of emails from the Enron corpus, which consist of no social

engineering emails.

4. Number of total alerts that fired, including both correct alerts and false

positives.

5. Number of total alerts that fired on malicious traffic accurately.

6. Number of total alerts that fired on innocuous traffic wrongly (false

positives.

7. (EBIDS Only) Number of alerts where rules fired wrongly on

malicious traffic, where the correct rule also fired.

8. (EBIDS Only) Number of false positives and incorrect rule fires.

9. Hit Rate, defined as the ratio of accurate alerts to total known-bad

emails from the Nazario phishing corpus.

10. False Positive Rate, defined as the ratio of false positives to total

innocuous emails.

11. (EBIDS Only) Adjusted False Positive Rate, defined as the ratio of

false positives and partial false positives to total emails.

Figure 8. EBIDS Output File with Partial False Positive: From the text “snippet”,

it can be discerned that no Account Compromise is being alleged, yet the rule

fires. The other rule, the Change/Update to Account, fires correctly.

Summary of Results: EBIDS

Total Emails: 536

Total Known-Bad Emails: 224

Total Non-SE Emails: 312

Total Alerts: 175

Total Correct Alerts: 169

Total Completely False Alerts: 6

Total Partially False Alerts: 71

Total Adjusted False Alerts: 77

Hit Rate: 0.75446

False Positive Rate: 0.01923

Adjusted False Positive: 0.14365

Figure 9. SpamAssassin Output, showing the usual message, followed by the

summary of technical signatures that fired and their explanation.

Summary of Results: SpamAssassin

Total Emails: 549

Total Known-Bad Emails: 241

Total Non-SE Emails: 308

Total Alerts: 230

Total Correct Alerts: 219

Total Completely False Alerts: 11

Hit Rate: 0.90871

False Positive Rate: 0.03571

Summary of Results: Snort

 Total Emails: 551

 Total Known-Bad Emails: 241

 Total Non-SE Emails: 310

 Total Alerts: 0

 Total Correct Alerts: 0

 Total Completely False Alerts: 0

 Hit Rate: 0

 False Positive Rate: 0

3.5 Evaluation of Results

0

50

100

150

200

250

1 41 81 121 161 201 241 281

Emails in Corpuses

A
le

rt
s

EBIDS Correct

Alerts

SpamAssassin

Correct Alerts

Snort Correct

Alerts

EBIDS False

Positives

SpamAssassin

False Positives

Snort False

Positives

Table 1. Total Alerts by Tool

 The performance of EBIDS was impressive. With only four detection rules

written, it achieved a relatively high hit rate of 75%, which is being compared

unfavorably only to SpamAssassin’s 90% hit rate, whereas SpamAssassin has a much

more extensive signature set. So, as far as detecting malicious social engineering

emails as they occur, it did not outperform SpamAssassin, but the system outperformed

SpamAssassin when it came to false positives, although both systems fared relatively

well in that regard. False positives were expected to be high with EBIDS because of

the nature of its algorithm as it relates to string matching plain English.

 There were a few common foibles of EBIDS that led to its higher-than-expected

miss rate (inverse of the hit rate). One such problem was a subset of the Nazario

phishing corpus that included emails where the subject line of the email contained the

actual misleading natural language and the body of the email was simply an image or

executable/zipped text. This was a foreseen problem with the system, but there were

more of that type of email than expected. Also, this seems to be a problem which can

be corrected with slight changes that include checking the subject of the email and

testing for blank email bodies that include only executable/zipped text and/or images.

EBIDS also partially false fired on a specific Paypal security audit fraud, and since that

fraud was the most frequently occurring email in the Nazario corpus, the adjusted false

positive rate was higher than expected. Of course, due to the lower-than-expected false

positive rate, the adjusted rate just about leveled out to expectation with the high

adjusted false positives.

 SpamAssassin performed much better in its hit rate. It caught 90 percent of the

phishing emails, looking for technical points in each email, such as the structure of the

email code, the legitimacy of the sender and date fields, along with other such criteria.

It is finely tuned to detect spam as it comes in, and the emails in the corpus are not

extremely recent, so it fared as well as it was expected, if not a little better. However,

its false positive rate was higher than expected, nearly doubling the rate of EBIDS. In

perspective, the rate was still manageable at around 3%, which is not bad for most

practical applications. Overall, SpamAssassin would be the better choice to run in a

production environment, even if the current iteration of EBIDS was feasible in

production, but with a more complete signature set, EBIDS may compare more

favorably in the future.

 Snort did not perform at all. One by one, the emails were downloaded through a

web browser as plain text over port 80, which is the port and style that some web-based

email clients run. Snort was run in verbose mode and was seen reading the packets, but

not one single alert triggered. Thus, neither side of the corpus triggered a single

detection rule from Snort’s own native rule set or Bleeding Snort’s rule set. To be fair

to Snort, its focus is mainly on other types of exploits, largely because products like

SpamAssassin exist. But it should have found something wrong with 241 malicious

emails crossing its tripwire. Snort is still a viable IDS tool, but I think that this

demonstration is at least an indicator of one of the tenants of computer systems

security, that it should be layered, and there do exist people who rely on only Snort,

only Norton’s Anti-Virus, only a firewall, or only some anti-spyware software to secure

their system/network. EBIDS or SpamAssassin could be a valuable addition to what

Snort seems to be lacking here. Because of its reputation and versatility for finding the

forms of intrusion that it specializes in, one can never recommend passing on Snort, but

for this one specialized purpose, it would at least be in the interest of anyone running

Snort by itself to either find or write social engineering signatures that are not in its or

Bleeding Snort’s standard signature set.

Difference

0

10

20

30

40

50

60

1 25 49 73 97 121 145 169 193 217 241

Known-Bad Emails

S
p

a
m

A
s

s
a

s
s

in
 v

s
.
E

B
ID

S

Difference

Table 2. SpamAssassin’s numbers in comparison to EBIDS for Correct Alerts

Difference

-2

0

2

4

6

1 37 73 109 145 181 217 253 289

False Positives

S
p

a
m

A
s
s
a
s
s
in

 v
s
.

E
B

ID
S

Difference

Table 3. SpamAssassin’s numbers in comparison for EBIDS for False Positives

 Taking in all three systems objectively from these results, it is clear that for the

current time being, SpamAssassin is the best detection system for electronic social

engineering in email, but EBIDS fared well in its conceptual stage and initial run and

thus may be worth further investigation and tuning, and Snort’s rule set is not at all

appropriate for finding this sort of traffic. In both of the tables above, SpamAssassin

ends up with the higher value. The hit rate difference is more favorable for

SpamAssassin, and while the false positive rate is less favorable for it, the numbers are

not significantly large.

Table 4. EBIDS performance numbers (hits vs. false positives)

Table 5. EBIDS performance numbers (hits vs. false positives vs. partial false

positives)

 EBIDS alerts, shown in both Tables 4 and 5, can be looked at in two ways. The

number of hits vs. complete false positives is amazing. When the system alerts,

chances are that it is dead on the money. Only three percent of its alerts were fired on

completely innocent traffic. In table 5, however, one can see the growing concern of

partial false positives, which involves rules that were never intended to fire firing

alongside the correct rule. This is not as big a deal in the realm of security, since the

data itself was malicious, so alerting on it draws attention where it is needed, but it is

still worthy of concern, because it could lead to greater completely false positives down

the road. This result is not to take away from the fact that EBIDS needs a higher hit

rate in general, but it means that the rules have to be tuned to not only increase the hit

rate, but also to lower that partial false positive rate. Now, for a comparison to

SpamAssassin, Table 6 shows that when SpamAssassin triggers an alert, there is a

higher probability that it is a false positive. Also, SpamAssassin’s correct alerts were

not investigated in depth to look for any partial false positives.

Table 6. SpamAssassin performance numbers (hits vs. false positives)

Table 7. EBIDS and SpamAssassin performance numbers (Hit/Miss/False

Percentages)

 In the big picture, however, as demonstrated here in Table 7, SpamAssassin’s

gains in hit rate are significant enough to override the concern about a higher false

positive rate, and it is not unreasonable to assume that the false positive rate of EBIDS

might climb slightly as improvements were made to increase its hit rate. So, for the

time being, EBIDS has more accurate alerts, but SpamAssassin has alerts that catch

more of the malicious traffic, and that is what is most important in IDS at the end of the

day. EBIDS held its own in this test, and it can be discerned that this methodology can

be made to bear fruit with the right amount of attention and future work.

Chapter 4

Discussion and Future Work

3.1 Conclusions

 With the current state of IDS, it appears that SpamAssassin represents a viable

solution to combating social engineering, in addition to Personnel Training, but EBIDS

has shown here that it is also a fairly effective tool and has done so with a very small

signature set relative to SpamAssassin. In order for this work to move forward and

become applicable in the real world, its signature set must be updated/expanded to look

for more than just phishing, and its interaction with OntoSem must either be sped up

dramatically, achieved through some new addition to OntoSem, or dropped altogether

for a newer, more efficient and focused Natural Language Processing system, the latter

of which would in most cases be entirely infeasible. Many standard IDS packages

come with hard-coded signature sets, the way that most antivirus software does, but this

project was borne under the same philosophy that Snort takes to IDS, that the rule set

should be customizable by the user, in order to tailor the set to each user’s specific

network. Thus, hard-coding is not the long-term answer, and so OntoSem must be

updated to include this very specific function. However, the overarching conclusion

that has been realized from this work is that it can be done effectively. EBIDS may be

the start of something new in the world of Network Security.

3.2 Research Questions and Future Work

 EBIDS raises many interesting research questions. With only four signatures, the

system produces a high hit rate on a phishing corpus. Would expanding or fine tuning

the signature set raise that hit rate significantly? How would this current signature set

fare against another phishing corpus? Most importantly, how much larger does the

signature set need to grow to make EBIDS achieve the level of success of a

SpamAssassin? Does it save the user on the size of the signature set over time, as was

intended in its design? Even though it is assumed that data acquisition can be

performed on OntoSem to expand its capabilities to interact with EBIDS, can it in fact

be expanded as such, and if it can, is that really the optimal way to handle such a thing,

or should a specialized process/ontology be gleaned from OntoSem to more efficiently

perform this task? As has been mentioned a few times throughout the paper, can the

idea of signature writing be abstracted from the specifics and internal mechanics of

OntoSem, so that future users can more easily write signatures? With the EBIDS-

OntoSem interaction, can the speed of execution be increased dramatically to put

EBIDS on par with industry standard products?

 EBIDS has proven through this research that it is at least well along its way in

providing a viable solution to the social engineering problem where phishing is

concerned. It would behoove security minds to experiment with expanding the

signature set to incorporate more than phishing and to test this project against a new

corpus. Outside of phishing, social engineering is used to infiltrate networks and

machines through worm spread emails and via other tactics, such as targeted

impersonation, pretending to be management to get users to open word documents that

compromise their systems. There are other motivations than money which exist, and

there are many other media to deliver social engineering messages electronically, such

as system messages (pop-ups that tell the user that they need to update or clean their

computer) and websites. This project also has the capability to grow into a full-fledged

signature-based IDS, since it can match on literal strings. Work could be done to

expand EBIDS to do so, probably requiring a faster string match algorithm than just the

internals of Java working on plain text.

Works Cited

1. Cooper, Mark, Stephen Northcutt, Matt Fearnow, and Karen Frederick. Intrusion

Signatures and Analysis. Thousand Oaks, CA: New Riders Publishing, 2001.

2. Denning, Dorothy E. “An Intrusion-Detection Model.” Symposium on Security and

Privacy in Oakland, California (1986).

3. English, Jesse. “DEKADE II: An Environment for Development and Demonstration

in Natural Language Processing.” Unpublished Master’s Thesis, University of

Maryland Baltimore County, May 2006.

4. Ertoz, L., E. Eilertson, A. Lazarevic, P. Tan, J. Srivastava, V. Kumar, P. Dokas. “The

MINDS – Minnesota Intrusion Detection System.” Data Mining: Next Generation

Challenges and Future Directions. Hillol Kargupta, Anupam Joshi, Kirshnamoorthy

Sivakumar, and Yelena Yesha. AAAI Press, October 1, 2004.

5. Gao, Y., and G. Zhao. “Knowledge-based Information Extraction: A Case Study of

Recognizing Emails of Nigerian Frauds.” 10th International Conference on

Applications of Natural Language to Information Systems, NLDB 2005, held in

Alicante, Spain (June 2005).

6. Garfinkel, Simson, and Gene Spafford. Practical UNIX Security. Sebastopol, CA:

O’Reilly & Associates, Inc., 1991.

7. Kerremans, Koen, Yan Tang, Rita Temmerman, and Gang Zhao. “Towards

Ontology-based E-mail Fraud Detection.” 12th Portuguese Conference on Artificial

Intelligence, Workshop on building and applying ontologies for the semantic web

(2005)

8. Mahesh, Kavi, and Sergei Nirenburg. “A Situated Ontology for Practical NLP.”

Proceedings of the Workshop on Basic Ontological Issues in Knowledge Sharing,

International Joint Conference on Artificial Intelligence in Montréal, Canada (1995).

9. McClure, Stuart, Joel Scambray, and George Kurtz. Hacking Exposed: Network

Security Secrets and Solutions, Third Edition, 3
rd

 Edition. McGraw-Hill Professional,

2001.

10. Mitnick, Kevin D. and William L. Simon. The Art of Deception. Indianapolis, IN:

Wiley Publishing, Inc., 2002.

11. Mukherjee, B., L. T. Heberlein, and K. N. Levitt. “Network Intrusion Detection.”

IEEE Network. Vol. 8, no. 3 (May-June 1994): 26-41.

12. Nirenburg, S., M. McShane, and S. Beale.”Operative Strategies in Ontological

Semantics.” Proceedings of HLT-NAACL-03 Workshop on Text Meaning.

Edmonton, Alberta Canada (June 2003).

13. Nirenburg, S., V. Raskin and S. Sheremetyeva. “Lexical Acquisition.” Proceedings of

NATO Advanced Science Institute on Lesser Studied Languages in Ankara, Turkey

(2000)

14. Northcutt, Stephen. Network Intrusion Detection: An Analyst’s Handbook. Thousand

Oaks, CA: New Riders Publishing, 1999.

15. Peikari, Cyrus, and Anton Chuvakin. Security Warrior. Sebastopol, CA: O’Reilly &

Associates, Inc., 2004.

16. Roesch, Martin. “Snort – Lightweight Intrusion Detection For Networks.”

Proceedings of the 13th Large Installation System Administration Conference,

(1999): 229-238

17. Schiffman, Mike, Bill Pennington, David Pollino, and Adam J. O’Donnell. Hacker’s

Challenge 2: Test Your Network Security & Forensic Skills, 2
nd

 Edition. McGraw-

Hill Osborne Media, 2002.

18. Schwartz, Alan. SpamAssassin. O’Reilly Media, Inc., 2004.

19. Stevens, W. Richard. TCP/IP Illustrated, Volume 1: The Protocols. Addison Wesley,

1994.

20. Stevens, W. Richard. TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP,

NNTP, and the UNIX Domain Protocols. Addison Wesley, 1996.

21. Wright, Gary R., and Richard W. Stevens. TCP/IP Illustrated, Volume 2: The

Implementation. Addison Wesley, 1995.

22. Zhao, G., J. Kingston, K. Kerremans, F. Coppens, R. Verlinden, R. Temmerman, and

R. Meersman, “Engineering an Ontology of Financial Securities Fraud”, 10th

International Conference on Applications of Natural Language to Information

Systems, NLDB 2005, held in Alicante, Spain (June 2005).

