
A Conjunction, Language, and System Facets for Private Packet

Filtering

Michael Oehler, Dhananjay S. Phatak, and Alan T. Sherman
Cyber Defense Lab

Department of Computer Science and Electrical Engineering
University of Maryland Baltimore County

Baltimore, Maryland
Email: {oehler1,phatak,sherman}@umbc.edu

ABSTRACT

Our contribution defines a conjunction operator for
private stream searching, integrates this operator into
a high level language, and describes the system facets
that achieve a realization of private packet filtering.
Private stream searching uses an encrypted filter to
conceal search terms, processes a search without de-
crypting the filter, and saves encrypted results to an
output buffer. Our conjunction operator is processed
as a bitwise summation of hashed keyword values
and as a reference into the filter. The operator thus
broadens the search capability, and does not increase
the complexity of the private search system. When
integrated into the language, cyber defenders can
filter packets using sensitive attack indicators, and
gain situational awareness without revealing those
sensitive indicators.

I INTRODUCTION

Cyber defenders engage in collaborative efforts that
share threat data, intrusion details, and attack indi-
cators. These indicators are then used within defen-
sive systems to identify subsequent adversarial activ-
ity on a network [1]. Through these efforts significant
benefits are derived and for all collaborative partners.
These indicators are initially derived from analytic
processes, and at great cost.

The advantage however, is lost when an adversary
discovers the indicator. The adversary can affect sub-
tle changes to the attack infrastructure, delivery, in-
stallation, and to the malware. The value of the in-
dicator is rendered ineffective.

The defender is faced with a challenge. There is a
need to share indicators without revealing those in-
dicators. To achieve this, many indicators are only
shared with trusted partners, and with handling re-
strictions, like “monitor, but do not block.” There
are procedural controls too. Security researchers are
known to submit newly discovered vulnerabilities di-
rectly to the developer, and prior to public announce-
ment. Additionally, corporate policies may prevent
indicators from being shared with subsidiaries or with
international partners.

Our contribution realizes the association between this
challenge, and the capability provided by private
stream searching. Specifically, we adapt the private
search capability presented by Rafail Ostrovsky and
William Skeith [2, 3], while retaining the advance-
ments presented by Danezis and Diaz [4,5], and create
a high level language for private packet filtering.

Using our language, the defender constructs a query
consisting of sensitive indicators, encrypts the query,
and transfers the encrypted query (a filter) to the
partner. The partner performs a private search on
a stream of packets, and returns encrypted packets.
If a matching packet is discovered, the defender no-
tifies the partner of the adversarial activity, and co-
ordinates a response. In this collaborative environ-
ment, the defender maintains situational awareness,
controls which attack indicators are revealed, and ad-
vises the partner of current threat activity without
revealing every sensitive indicator [6].

We designed the language to be intuitive, readable,
and for the needs of the cyber defender. There is
more to our conflation of private search and private
packet filtering. We designed a conjunction opera-

1

tor to broaden the private search capability [7]. The
original private search system provides a result based
on a logical disjunction; if the indicator (privately)
matches “any sensitive indicator in the encrypted fil-
ter”, then return the packet. Our conjunction re-
turns packets when an indicator and another pri-
vately match. We have also analyzed the number
of false positives that result from the tagging mecha-
nism used during document recovery [8].

The conjunction, specification of a language, and
analysis of private stream searching did not address
the system facets that are critical to realizing an
implementation of private packet filtering. Much
was left unsaid: the elimination of the public dictio-
nary, use of a hashed-index approach for filter entry
lookup, a modified document tagging method, a doc-
ument partitioning method, iterative document re-
covery, and packet re-assembly.

We provide a full discourse of experiences and insight
to guide future implementers and researchers of pri-
vate stream searching.

II PRIVATE STREAM SEARCH

We describe the salient features of private stream
searching in terms of client, provider, document, and
keywords. These are a generalization of terms that
provide clarity and an illustration of private search.
In our context, these terms are synonymous with the
cyber defender, partner, packets, and attack indica-
tors respectively.

Private stream searching is a system of crypto-
graphic methods that preserves the confidentiality of
the search criteria and results. The näıve solution
would transfer an entire data set from an information
provider to a client. Admittedly, this would conceal
the queries, but would divulge the entire data set
without cause. This is unrealistic. Ignoring band-
width costs and a required client-side search, few
would relinquish an entire information asset. Alter-
natively, if the search criteria could be kept secret,
but knowledge of the retrieved documents was re-
vealed, the structure of a query could be inferred.
This is also unacceptable.

These concepts thus, establish the fundamental prop-
erties of a private search system and introduce
the participants: the information provider gains no
knowledge of the queries, the provider cannot infer
information about the queries from the retrieved doc-
uments, and client access to the provider’s data set is

limited to results matched by legitimate queries [9].

Ostrovsky and Skeith created a clever private search
system using (partial) homomorphic encryption to
conceal the search criteria, perform a query on this
concealed criteria, and return only relevant docu-
ments in an encrypted form [2] [3]. The client gen-
erates the query, the provider performs a search,
and returns a result. The homomorphic property of
the cryptosystem assured that no information would
be revealed about the search, the results from the
provider, and the client would only receive matched
documents.

The client constructs a search by selecting a list of
search terms from a public dictionary. The client
then creates a list of encrypted ones and zeroes that
correspond to the keywords and non-relevant words
respectively, and sends this filter to the provider. The
provider initiates a search by computing a product of
entries taken from the filter that associate with words
found in a document, calculates an exponentiation,
and calculates a second product to save the results to
an encrypted output buffer. Documents are retrieved
if any keyword existed in the document.

Ostrovsky’s system fundamentally provides a private
search capability based on a logical disjunction of
search terms. Furthermore, multiple documents were
stored in an encrypted output buffer, leading to the
creation of a system that could stream results, a pri-
vate stream search system.

The private search system is based on the asym-
metric cryptosystem defined by Paillier, and utilizes
the additive homomorphic property of the cryptosys-
tem [10]. A brief summary of the cryptosystem is
provided: If we denote Paillier encryption as a func-
tion from plaintext to ciphertext E : ZN → ZN2 and
the decryption routine as D : ZN2 → ZN , relative
to a public and private key, and public modulus N,
then the homomorphic property can be expressed as:
D(E(x) × E(y)) = x + y, for plaintext messages x
and y. Also notice that a constant multiple of an
encrypted value produces a scaled plaintext message,
D(

∏
k E(x)) = kx, and clearly, D(E(x)k) = kx for

some constant number, k ∈ ZN .

This relationship is used extensively in the formation
of the private search system, but the association of
values may be counter intuitive: A fixed value, either
one or zero is encrypted for values of x, and document
values are used for k, as explained below.

The Paillier cryptosystem is randomized. Thus, an

Page 2 of 17
©ASE 2013

encrypted value will be indistinguishable from an-
other, even for the same encrypted value, using the
same public key. For instance, a particular encryp-
tion of E(1) is indistinguishable from some other
value of E(1). Last, the Paillier cryptosystem is based
on the problem of computing the n-th residue class,
which is believed to be computationally difficult.

1 THE QUERY

In Ostrovsky’s system, the client creates a query
by selecting a public dictionary of words D =
{w1, w2, w3, . . .} and a set of private keywords K ⊆
D. The client then constructs an encrypted filter
F = {f1, f2, f3, . . . , f|D|}, where fi = E(1) for an
associated keyword wi ∈ K. Otherwise, fi = E(0).
This encrypted filter establishes a one-to-one associa-
tion between words of interest and all other words in
a dictionary without exposing the private keywords.
The client sends the encrypted filter and dictionary
to the information provider.

2 THE SEARCH

The information provider creates an output buffer
of tuples B = {{E(0), E(0)}, {E(0), E(0)}, . . .} that
store the encrypted number of matching keywords in
the first element, and the document in the second.
The provider then performs the following steps for
each document d that exists in a data source:

Extract a set of words W from d such that W ⊆ D.
These are the search terms that determine if the doc-
ument is a match.

Compute the encrypted value s =
∏
|W | fi = E(m)

where every value of fi (from F) associates with a
corresponding search term wi ∈ D. The value s is
the encrypted match value (the client will decrypt
this value to recover the number of distinct keywords
present in the document m = |W ∩ K|.) Note that
an equal number of filter terms |W | appear in the
product of s and correspond to the number of search
terms found in the doucment.

Append k bits to the document where each 3-bit
triple has a Hamming weight of one, d′ = d << k.
The provider then computes the exponentiation r =
sd

′
. The encrypted search result r is either E(m×d′),

or E(0) when no keywords occur in the document.

Note that a document d is a numeric representation of
a textual document, network packet, database record,

file, etc. For long documents, d may be partitioned.
Last, a matching document d is scaled by the match
value m. That is, m× d.

The provider then saves the result {s, r} to the out-
put buffer. Specifically, the provider selects random
buffer positions B′ ⊆ B, and performs a (pairwise)
modular multiplication B′ = B′ × {s, r}. The new
values for B′ are then reassigned back to their asso-
ciated positions in B. This multiplication step in the
encrypted domain performs an addition in the plain-
text domain; the provider is adding the result to the
buffer.

When no keywords appear in a document, the result
is {s, r} = {E(0), E(0)}. The pairwise multiplica-
tion of a non-matching document does not change
the plaintext values of the buffer; non-matching doc-
uments are accumulated as a summation of plaintext
zeroes. The buffer thus, optimizes the communica-
tion cost of the search, and assures that non-matching
documents are not transmitted back to the client.

The provider returns the encrypted buffer to the
client after searching all documents.

3 THE RESULT

To recover documents, the client decrypts the buffer,
performs an integer division on each non-zero tuple
in the buffer, and detects any surviving documents.
Specifically, the client divides the recovered number
of matching keywords by the scaled document value.
In some instances, a tuple in a buffer position may
contain a linear combination of multiple documents;
the non-integer results of the division are discarded.

For instance, if a the linear combination at buffer po-
sition bi = {mi,mi×d′i} is divisible mi|(mi×d′i), the
client will attempt document detection. Otherwise,
the collision of documents at bi is discarded.

For divisible documents, the client initiates a docu-
ment detection routine. In Ostrovsky’s approach, the
client detects a document when the Hamming weight
of each appended 3-bit triple is one. Since multiple
copies of a document are saved to the buffer, the client
removes any duplicate documents, only one copy will
be returned. Thereafter, the client halts processing.
Notice that the client makes a single pass through the
buffer. There is only one iteration of the document
recovery routine in the original system.

Page 3 of 17
©ASE 2013

Table 1: An Illustration of Private Stream Searching

Client: Generates the query:
Define a public dictionary: D = {gelato, sherbet, snowball, sorbet, zebra}

Select private keywords: K = {sorbet}
Construct an encrypted filter: F = {E(0), E(0), E(0), E(1), E(0)}
Send D and F to the provider.

Provider: Performs the search:
Receive the dictionary D and the filter F .

Construct an encrypted output buffer of tuples: B = {{E(0), E(0)}, {E(0), E(0)}}
Perform a Search for each document: d = “unlike gelato sorbet has no calories”

Extract dictionary words from document: W = {“gelato′′, “sorbet′′}

Calculate a product of filter terms: s =
∏
|W |

fi = f1 × f4 = E(0)× E(1) = E(1)

Append k-bits such that each k/3 triple has wt(k/3) = 1: d′ = d << k

Calculate the search result as the exponentiation: r = sd
′

= E(1)d
′

= E(d′)

Store the result to a randomly seclected buffer position: b1 = {s, r} × b1
= {E(1), E(d′)} × {E(0), E(0)}
= {E(1), E(d′)}

Return the buffer to the client: B = {{E(0), E(0)}, {E(1), E(d′)}}

Client: Processes the result:
Decrypt the buffer: B = D({{E(0), E(0)}, {E(1), E(d′)}})

= {{0, 0}, {1, d′}}
Identify the document and remove the k appended bits: d = d′ >> k

Recover the matching document: d = “unlike gelato sorbet has no calories”

4 ILLUSTRATION OF PRIVATE SEARCH

Table 1 illustrates a simplified example of the private
search system. The client defines a public dictionary
D with five words, and a filter F containing five en-
crypted values. The fourth entry is an encrypted one
E(1) and expresses a private keyword that associates
with “sorbet”.

The provider constructs the output buffer B, a list
arranged as tuples of encrypted zeroes. The search
entails a single document d. The provider calculates
a product of filter entries, f1 and f4, corresponding
to words that exist in the document and dictionary.
The result of this product is the encrypted number
of matching keywords s = E(m) in the document.
The provider appends k bits to d, and calculates an
exponentiation r = sd

′
= E(m× d′).

Although the number of matching keywords is one in
this example, a document d is scaled by the number
of matching keywords in practice. The provider ran-
domly selects a buffer position b1 and saves the result
{s, r} to the buffer as a pairwise multiplication.

The client decrypts the buffer, and recovers the doc-
ument. Our example saves one copy of the result for
brevity.

III RELATED WORK

Ostrovsky’s original design saves multiple copies of
the result {s, r} to randomly selected buffer posi-
tions. Intuitively, this random selection perpetuates
the survival of at least one document copy (Ostro-
vsky formally presents this idea as the color survival

Page 4 of 17
©ASE 2013

theorem.) However, and at a buffer’s capacity, the
majority of buffer positions are chosen multiple times.

This collision of documents eliminates surviving
copies. The private search system thus, has a non-
zero probability that some documents will not sur-
vive. Large buffers may minimize this condition, but
this results in storage inefficiencies that are subopti-
mal.

Researchers recognized that a collision of multiple
documents in a buffer position did not entirely de-
stroy information. In fact, a collision produces a
linear combination of documents. For example, if
n documents are stored at a buffer position b (a
buffer position is a tuple of two values), then b =
{E(

∑n
i=0mi), E(

∑n
i=0(mi × di)} where the first el-

ement of the tuple is the summation of matching
keyword values and the second is the summation of
scaled document values.

Research has thus, qualified external structures, ad-
ditional processes, and leveraged the redundancy of
multiple copies to improve the document storage al-
gorithm and thus, the number of documents recov-
ered from an output buffer.

1 STORAGE AND RECOVERY

Bethencourt presents a private search scheme in
which (encrypted) knowledge of a matching docu-
ment’s index is passed to the client [11, 12]. The
client then uses this knowledge to extract matching
documents by solving a system of linear equations, a
strategy to improve the document storage and recov-
ery rate.

Query construction is identical to Ostrovsky’s sys-
tem. The difference occurs during the search and
retrieval phases. Namely, the scheme defines an ad-
ditional buffer, known as the matching-indices buffer
M , and a seeded pseudorandom function g(i, j) →
{0, 1} where i is a document index and j refers to a
buffer position.

The provider saves the encrypted match value s =
E(mi) of the i-th document at positions designated
by multiple hash values of the index i to buffer M .
The provider then saves the result of the search
{si, ri} to buffer positions in B as designated by the
result of the function g(i, j). If the search produces
a non-matching result, an encrypted zero is added to
both buffers; the plaintext contents of the buffer are
unaltered.

To recover documents, the client decrypts both
buffers and uses the matching-indices buffer as a
Bloom filter to validate a document’s membership in
the output buffer. The client then uses the result
of this membership test and the result of g(i, j) to
establish a set of linear equations to solve.

Danezis and Diaz introduced a (simpler) iterative
method to improve the document recovery rate [4,5].
Their salient contribution noted that if knowledge of
a document’s position could be implicitly conveyed,
then uncertainty could be removed from the decoding
system.

Their resulting algorithm thus, defined a determinis-
tic function for buffer position selection. Specifically,
buffer positions were calculated as the hash of the
summation of the document and a copy value:

positions = {H(di + 1), H(di + 2), . . . ,H(di + l)

for each document di, and for a pre-determined num-
ber of inserted copies l.

Using these l positions, the provider saves a copy of
the result {si, ri} to each buffer position via modu-
lar multiplication. Their algorithm still stores mul-
tiple copies, and relies on the underlying principle
that some copies must survive to recover a document.
However, this manipulation does not alter the under-
lying private search system, require transmission of
an additional structure, and does not induce a signif-
icant computational cost.

To recover documents, the client iterates the follow-
ing steps after decrypting the output buffer: Identify
a document, calculate the positions that the docu-
ment was stored too, subtract the document value
from those buffer positions, and repeat until no fur-
ther documents are discovered or the buffer is empty.

Due to the simplicity and improved recovery rate over
that of the original approach, we use Danezis’s iter-
ative method in our prototype. A detailed example
of this iterative method as used in our prototype is
given in Section IV-5. Recovery rate and the optimal
number of document copies is discussed as part of our
simulation results in Section VI-1.

2 CONJUNCTION FILTERS

Ostrovsky and Skeith extended their private stream
search system to form a conjunction from two lists
of (private) keywords [2]. Their resulting “AND” op-
erator returns a matching document if any keywords

Page 5 of 17
©ASE 2013

from the first list and any from the second appear in
the document. We can generalize this with the ex-
pression: A∧B where A and B are lists of keywords.
This extension uses the public-key cryptosystem de-
fined by Boneh, Goh, and Nissim [13]; the cryptosys-
tem is additively homomorphic, and supports at most
one multiplication of plaintext values, using a bilinear
map.

In this scenario, the client selects two lists of key-
words, creates two encrypted filters from each list,
and sends both to the provider. For each document,
the provider calculates two products of filter terms
where terms associate with the words in the docu-
ment. The result of the search (products s1 and s2)
are the encrypted number of matching keywords, and
serve the same purpose as described by their original
work. Ostrovsky then applies the bilinear map to
these two ciphertext values s = e(s1, s2). The result
in the plaintext domain is a product of the number
of matching keywords: a zero if no keywords occur in
a list, or the product of keywords if matching words
occur in both. The matching document is then saved
through bitwise encryption.

Yi and Bertino also created a private search system
with a conjunction based on the Boneh cryptosys-
tem [14]. In their search, the provider returns a docu-
ment when any conjunction of two keywords matches.
We can generalize this with the expression of conjunc-
tive terms: (a1∧b1)∨(a2∧b2) . . . (an∧bn) where sub-
scripted a and b are distinct words. This expression
provides a greater degree of specificity over Ostro-
vsky’s conjunction, but incurs significant complexity
to achieve.

The client computes a (sparse) matrix of filter values
(encrypted ones and zeroes.) This filter matrix has
a row for every conjunctive term, and a column for
every word in the public dictionary |F | = n × |D|.
In each row, the client inserts an encrypted one cor-
responding to the words of the conjunctive term. A
row will therefore, have two encrypted ones in it. The
filter is sent to the provider.

For each dictionary word in a document, the provider
will iterate over each row in the filter matrix (test
each conjunctive term) by removing entries corre-
sponding to words that are not in the document. The
provider then calculates a “sum” of the remaining fil-
ter entries, and a ”product” with the filter entry asso-
ciated with the current and examined word. Since a
row contains two encrypted ones, the result is either
one (the sum of zeroes and a one, then multiplied by
one), or zero when the conjunction fails. Of course,

the calculations are done in the encrypted domain.
The sum is a product of ciphertexts, and the multi-
plication is computed as a bilinear map. The process
must repeat over each row and word, as a means of
validating all conditions of the conjunctive expres-
sion.

Bethencourt indicates that a limited conjunction op-
erator can be constructed from a hash of concate-
nated words [11]. Namely, the client would construct
a filter containing a concatenation of private key-
words, for example “w1||w2”, hash this concatena-
tion, and then store the encrypted value of one in the
filter position indexed by the hash value. An informa-
tion provider would then concatenate adjacent words
from the document, hash these adjacencies, and pro-
ceed by extracting the filter entries associated with
the hash values. Our method for conjunction also
utilizes a hashed-index approach, but takes a differ-
ent direction to form a conjunction operator. See
Section V-1.

IV SYSTEM FACETS FOR PRIVATE
SEARCHING

On the path to implementation, we discovered a va-
riety of system facets to address. These included:
the elimination of the public dictionary, a hashed-
index, the development of a document tagging and
detection method, a need to partition “large” doc-
uments (packets in our scenario), an integration of
the iterative document recovery method, and packet
re-assembly. Our solution consists of modifications
to the original private search system, adaptation of
prior research, and a utilization of aspects specific to
our problem space, private packet filtering. Each of
these facets is discussed in the subsections below.

We transition and use the word, packets and network
indicators since this reflects our application. These
terms are synonymous with document and private
keyword.

1 ELIMINATION OF THE DICTIONARY

The original private search system exposes words in
the public dictionary. Consider the example from Ta-
ble 1. Although the encrypted filter precludes inter-
est in the keyword “sorbet”, the overall interest in
frozen desserts is evident. This is an example of the
inference problem [15].

For this reason, the public dictionary is assumed to

Page 6 of 17
©ASE 2013

be diverse or unabridged. The approach works for
common nouns, general terminology, etc. However,
proper nouns and domain specific terms are not as
easily obfuscated. Exposure in a small set may be
sufficient to divulge knowledge, and enumerating the
full set may not be possible.

Network indicators are domain specific and cannot be
exposed in a public dictionary, even if the indicators
were intermingled with a large number of unrelated
(chaff) indicators. The adversary need only look for
their address, domain name, user-agent, host name,
etc. Furthermore, it may not be possible to enumer-
ate every indicator. Our design does not reference
filter entries through an association in a public dic-
tionary.

Bethencourt notes that the public dictionary can be
replaced by a hash function [11]. The client would
use the hash of their private keywords as an index
into the encrypted filter, and to create the filter. The
provider would then use the hash during the search
to calculate the number of matching keywords as a
product of filter entries indexed by the hash values of
every unique term in the document.

Using this hashed-index approach, the dictionary is
eliminated. This modification to the original scheme
creates a system in which sensitive terms, geographic
locations, proper nouns, and other domain specific in-
formation can be searched without having to create a
dictionary with every conceivable location, name, or
data value. It is even possible that the information
provider will not know all of the possible values, but
will know how to perform the hash.

There is a downside to this hashed-index approach.
A hash collision between a private keyword and an
unrelated word could introduce a false positive dur-
ing the search. While this is not generally an issue
for full length hash values, we use a truncated hash.
A balance between false positives and the size of the
filter is required.

2 HASHED-INDEX TO FILTER ENTRIES

In our implementation, we utilize the hashed-index
approach to eliminate the dictionary and to prevent
the disclosure of sensitive network indicators (IP ad-
dresses and ports.)

Consider a private search for a set of sensitive IP
addresses (Figure 1.) To construct a filter, the client
hashes each address, truncates the hash to the defined

size of the filter F , and sets the filter entry indexed
by each hash value to an encrypted one E(1). All
other filter entries are set to an encrypted zero E(0).

An encrypted filter F:

E(0) E(0) E(0) E(0) E(0) E(1) E(0) E(0)

(H(1.2.3.4) & 7) = 5

Figure 1: Locating a Filter Entry through a Hash

For the search, the provider hashes the address h =
H(address) from the packet, truncates the hash, lo-
cates a single entry from the filter s = fh, and cal-
culates the result as an exponentiation r = spacket.
(Partitioning large documents is discussed below.)

We emphasize that a singular datum is used in the
search. A single IP address, either source or des-
tination, is tested. In Ostrovsky’s original system,
multiple words from a document are extracted, and
an equal number of associated filter entries are used
as the product and in calculation of the encrypted
match value s. Our search for a single datum (IP
address, port, host name, etc.) imputes a reference
to a single filter entry, and eliminates the calculation
of a product of filter entries; the value for s is either
E(1) or E(0), and eliminates the scaling factor m.
The result r is not scaled.

A buffer thus, stores only the result r and is half the
size in our implementation. This modification also
induces a change to the tagging mechanism.

3 DETECTION TAG

The client must be able to identify a packet saved
to the output buffer from a collision of packets in a
buffer position. Ostrovsky suggested a method that
appended k-bits, divided those bits into three bit
triples, and set a bit in each triple to one [2]. The
provider embeds this encoding, and the client detects
a packet when all triples have a single bit set. Oth-
erwise, the client knows that the buffer position con-
tains a collision of packets.

Our work assessed the number of false positives re-
sulting from k/3 appended triples, and offered an al-
ternative based on appended hash values [7]. Both
methods were probabilistic and are applicable when
performing multiple keyword searches.

Our application for private packet filtering is special
case. Since the provider only references a single fil-

Page 7 of 17
©ASE 2013

ter entry, the result r is not scaled by the number
of matching keywords m; s is either E(1) or E(0).
The provider can thus, append each packet with a
fixed width detection tag : 0x0001. The client detects
a packet only when the lower sixteen bits equal one
in a buffer position. Otherwise, the client knows that
the position contains a collision (and the number of
collisions in that position.)

Our tagging scheme is used in conjunction with our
packet partitioning method.

4 PACKET PARTITIONING

Packet are expressed as a binary string, or more sim-
ply, a packet value. Large packets p then, refer to
values that exceed the modulus, p /∈ ZN . The large
document problem refers to methods that enable pri-
vate searching for large values. One approach equates
with a (short) link or reference. The provider would
then store the link to the buffer, and the client would
then utilize the link to retrieve the document from a
trusted third party.

A direct storage of packet data in a buffer was bet-
ter suited for our needs, but this necessitated a
packet partitioning method. Fortunately, working
with packets is a special case of the large document
problem. Packets sizes could be bound to a Maximum
Transmission Unit (MTU) size. We did not need to
address arbitrary length documents, and could thus,
employ a simple and fixed partitioning strategy.

Our partitioning strategy segments each packet such
that each p′ ∈ ZN , and then appended each packet
with a 48-bit partition designator. This designator
consists of four bit fields as shown in Figure 2: the
dection tag, the match identifier (match ID), the
partition total, and the current partition number.
The provider sets the detection tag to 0x0001, the
matchID to the current packet count value, the par-
tition total to the number of partitions used to seg-
ment this packet, and the partition number to the
reference value of the specific partition.

Partition
Number

Partition
Total matchID 0x0001

0

Partitioned Data

16 1540 3944 43 48 47
Bits Postions:

Figure 2: Format of the Partition Designator

The provider partitions each packet value, appends
the designator, calculates the search result as the ex-

ponentiation over each of these appended partitions,
and saves the result r to selected buffer positions

We provide a brief example. Imagine that a packet
consisted of 2 bytes, p = 0xAABB, that this packet
was the fourth document to be inserted into the
buffer, and the packet had to be partitioned on a
byte boundary: p′ = 0xAA and p′′ = 0xBB. The
encoded partitions would form a list:

p = {0xAA120000040001, 0xBB220000040001}

During recovery, the client detects to two partitions
since both document tags are 0x0001, recognizes that
both have the match ID (0x000004), recognizes that
this packet consists of two partitions, and that both
partitions were recovered. The client reassembles the
partitions, and creates the packet. A Packet Capture
(PCAP) file is created, and common tools used for
further analysis. At the limit of the buffer’s capacity,
some packets may be lost when all partitions are not
available.

Table 2 depicts our modified private search for a
packet p, shows three packet partitions, that the fil-
ter entry is referenced through a hash of the indicator
(an IP address), and that the exponentiation is cal-
culated over each partition.

Table 2: Searching with Partitioned Data

Provider: The Search
Partition a packet: p = {p′, p′′, p′′′, ...}

Append designators: p = {p′||0x130000990001,

p′′||0x230000990001,

p′′′||0x330000990001}
For convenience, let: p = {p′1, p′′1 , p′′′1 }
Retrieve filter entry: s = fH(ip) = E(1)

Calculate result: r = s{p} = E(1){p}

= E(1){p
′
1,p

′′
1 ,p

′′′
1 }

= {E(p′1), E(p′′1), E(p′′′1)}
Save to buffer positions: B ← r

As a design decision, an MTU of 1500 bytes was as-
sumed. Given that a PCAP header is 16 bytes per
packet, a packet requires at most 12 partitions when
a 1024-bit modulus is used. We additionally need to
account for the partition designator in each partition.
At most, 13 partitions are required for a 1500 byte
packet. A histogram of these partitions appears in
Section VI−3.

Page 8 of 17
©ASE 2013

5 ITERATIVE DOCUMENT RECOVERY

Our prototype utilizes Danezis’s iterative method to
recover documents from the buffer [5]. The simplicity
and acceptable recovery rates justified use. Recovery
rates are discussed in Section VI-1.

We present an example of the iterative document re-
covery method described by Danezis, and offer two
modifications. First, the buffer positions are calcu-
lated from a hash chain. Hash chains are discussed
in [16]. Briefly, a hash chain is a cryptographic primi-
tive based on the successive invocation of a hash func-
tion for a given seed value. The values from the hash
chain provide a pseudorandom source of buffer po-
sitions that can be derived by both the client and
provider.

For example, letH l(p′) represent a hash chain, seeded
by a partitioned packet p′ with length l using hash
function H(x). The values of the hash chain are then:

positions = H l(p′) = {H(p′), H(H(p′)), . . . ,H l−1(i)}

In practice, hash chains may repeat values. Imple-
menters will need to delete repeated values, and ex-
tend the calculation of a hash chain to assure that all
values in the chain are unique.

The packet value acts as the seed, and the sequence
of (truncated) hash values from the chain reference
buffer positions. When the provider and client pos-
sess a packet, the same buffer positions can be calcu-
lated.

This means that truncated hash values are used twice
in our system, and for two different purposes: The
provider hashes the indicator as a reference into the
filter, and the provider uses the hash chain of the
packet to designate where copies of the (encrypted)
packets are stored too. Upon discovering a packet,
the client can calculate the same hash chain, subtract
the packet value from all copies in the buffer, and re-
peat until the buffer is empty or no new packets are
discovered.

Assume that the provider creates a buffer B with
eight positions, initializes each position to {0}, en-
crypts the buffer with the client’s public key, and
agrees to store three copies of a packet in the buffer.
In this example, the provider conducts a search of a
database containing four packets T = {p1, p2, p3, p4},
and does not know that all four matched a filter entry
associated with a sensitive network indicator.

The provider appends the partition designator to

each packet. Each packet consists of a single par-
tition for simplicity in Table 3:

Table 3: Partitioned Packet Values

Packet Packet and appended designator
partition

p′1 p1||0x110000010001
p′2 p2||0x110000020001
p′3 p3||0x110000030001
p′4 p4||0x110000040001

The provider calculates the hash chain on the four
partitioned packets in Table 4:

Table 4: Hash Chain Values

Packet Hash chain Hash Chain Values
p′1 H3(p′1) {0, 1, 5}
p′2 H3(p′2) {1, 3, 4}
p′3 H3(p′3) {2, 3, 5}
p′4 H3(p′4) {2, 3, 4}

The provider saves three copies of each to the buffer,
and returns the buffer to the client. The client de-
crypts the buffer as shown in Table 5:

Table 5: Client Decrypted Buffer

Buffer Buffer values
position

0 {p1||0x1100010001}
1 {(p1 + p2)||0x220000030002}
2 {(p3 + p4)||0x220000070002}
3 {(p2 + p3 + p4)||0x330000090003}
4 {(p2 + p4)||0x220000060002}
5 {(p1 + p3)||0x220000040002}
6 {0}
7 {0}

The client detects a single packet p′1 in buffer po-
sition zero (the lower sixteen bits equals 0x0001),
removes the full partition designator, calculates the
hash chain of p′1, and subtracts the packet value from
the buffer tuple values in positions {0, 1, 5}. The re-
sulting buffer contains the following entries as shown
in Table 6:

Page 9 of 17
©ASE 2013

Table 6: Client Decrypted Buffer - First Iteration

Buffer Buffer values
position

0 {0}
1 {p2||0x110000020001}
2 {(p3 + p4)||0x220000070002}
3 {(p2 + p3 + p4)||0x330000090003}
4 {(p2 + p4)||0x220000060002}
5 {p3||0x110000030001}
6 {0}
7 {0}

In the next iteration, the client identifies two new
packets: p′2 and p′3 in positions 1 and 5. Calculates
their hash chain values, and subtracts their values
from the buffer positions, respectively. The result of
this second iteration is shown in Table 7:

Table 7: Client Decrypted Buffer - Second Iteration

Buffer Position Buffer Tuple Values
0 {0}
1 {0}
2 {p′4||0x110000040001}
3 {p′4||0x110000040001}
4 {p′4||0x110000040001}
5 {0}
6 {0}
7 {0}

In the final iteration, the client detects packet p′4,
subtracts the packet values, and detects that every
buffer position contains zero. The client halts pro-
cessing, Table 8:

Table 8: Client Decrypted Buffer - Final Iteration

Buffer Position Buffer Tuple Values
0 {0}
1 {0}
2 {0}
3 {0}
4 {0}
5 {0}
6 {0}
7 {0}

6 PCAP RE-ASSEMBLY

In our prototype, the client performs one final step:
The client uses the time stamp from the PCAP packet

header, sorts all packets based on this timestamp, and
produces a sorted output. The client then prepends
the PCAP header to these sorted packets, and writes
a PCAP file.

V OUR METHOD FOR CONJUNCTION

Our objective was to broaden the private search capa-
bility, and to explore conjunctive methods that could
be integrated within the system facets just described.
Our conjunction operator thus, uses the structure
from Ostrovsky’s private search system, uses the Pail-
lier cryptosystem, and uses a hashed-index approach
for filter entry lookup.

1 SUMMED HASH CONJUNCTION

The client creates an encrypted filter F by selecting
pairs of sensitive indicators {w1, w2} where each ele-
ment associates with a field from a packet. The client
then produces a hash value of each pair, h′ = H(w1)
and h′′ = H(w2), and calculates the bitwise summa-
tion (exclusive OR) of these hash values h = h′⊕ h′′.
The client then truncates the summation to a bit
length. This length is chosen such that the formation
of the encrypted filter has an acceptable probability
to minimize a hash collision with unrelated indica-
tors.

The resulting set of summed hash values H repre-
sents the conjunction values of interest. The client
uses the hash values as an index into the encrypted
filter F and encrypts a value of one E(1) at each in-
dex. All other positions in F are assigned to E(0).
The filter and the names of the fields are sent to the
information provider.

E(0)

E(0)

E(1)

E(0)

E(0)

E(0)

E(1)

E(0)

(H(1.2.3.4)⊕H(80)) & 7

(H(1.2.3.4)⊕H(8080)) & 7

(H(1.2.3.4)⊕H(443)) & 7

An encrypted filter F:

Figure 3: A Summed-Hash Conjunction Filter

Page 10 of 17
©ASE 2013

Table 9: Private Stream Searching with a Conjunction Filter

Client: Generates the query:
Select private keywords: K = {{1.2.3.4, 80}, {1.2.3.4, 8080}, {1.2.3.4, 443}}

Calculate the hash of keywords: H = {2, 6, 6}
Construct an encrypted filter: F = {E(0), E(0), E(1), E(0), E(0), E(0), E(1), E(0)}

Send F and record names to the provider.

Provider: Performs the search:
Construct an encrypted output buffer: B = {E(0), E(0), E(0), E(0)}

Perform a Search on a packet: p = {1.2.3.4,80,packetData}
Calculate the filter index for the conjunction: h = (H(1.2.3.4)⊕H(80))&7 = 2

Retrieve the filter entry: s = fh = f2 = E(1)

Append the partition designator: p′ = packetData||0x110000010001

Calculate the exponentiation: r = sp
′

= E(1)p
′

= E(p′)

Calculate the hash chain: C = H3(p′) = {0, 1, 3}
Save copies of the result to buffer positions: b0 = r × b0

b1 = r × b1
b3 = r × b3

Return the buffer to the client: B = {E(p′), E(p′), E(0), E(p′)}

Client: Processes the result:
Decrypt the buffer: B = D({E(p′), E(p′), E(0), E(p′)})

= {0, p′}
Recover the matching packet: p = (p′ >> 48) = {packetData}

For each packet p in a database, the provider will
extract two record entries w1 and w2, and calculate
their hash values, h′ = H(w1) and h′′ = H(w2). The
summation of these hash values h = h′ ⊕ h′′ is used
as an index into the filter (as before, the hash is trun-
cated to the size of the buffer.) The filter entry s = fh
is extracted from F , and multiple copies of the result
r = sd are saved to the output buffer B.

As an example, lets generate a query for an IP address
and port. In Figure 3, the client generates a filter for
a conjunction of three private terms: {1.2.3.4, 80},
{1.2.3.4, 8080}, and {1.2.3.4, 443}. The client hashes
the words for each term, sums the hash values, trun-
cates the values via a bitwise AND with 7, and calcu-
lates the hash indices, 2 and 6. The client then sets
these filter entries to an encrypted value of one E(1).
In the example, two terms reference the same filter
entries. This is acceptable and is not a false positive.

The filter and record names (IP address and port)
are sent to the provider.

Table 9 continues this example, and highlights the
changes induced by our modifications: Notice that
the conjunction eliminates the public dictionary. Re-
stricting the search to fields from the packet elimi-
nates the product of filter entries during the search;
the provider only references a single filter value, and
thus, the encrypted match value is only one or zero (in
the plaintext domain.) The result of the provider’s
exponentiation r is not scaled and the provider only
stores copies of r to the buffer (the buffer is half the
size.) The example also incorporates Danezis’s itera-
tive document recovery method.

The provider constructs an encrypted output buffer
as a singular list of encrypted zeroes, and performs
a search on a packet p. The provider extracts the

Page 11 of 17
©ASE 2013

�
�

�
�

� � �
� �

� �
� �

�
� �

� � �
�

� �
� �

�
�

� �
� �

�

x x x x x x x x x x x x x x x

x

x

x

x

x

x
x

x
x

x x
x x x x x

§ § § § § § § §
§

§

§

§

§
§ § § § § § § § § § § § § § § § § §

¦ ¦

¦

¦

¦

¦ ¦

æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

æ

æ

æ

æ
æ

æ
æ

æ
æ

æ
æ

650 700 750 800 850 900

0.0

0.2

0.4

0.6

0.8

1.0

Inertions

R
ec

o
v
er

y
R

a
te

(b) 1024K Buffer

� �
�

�
�

�
�

� �
� �

� �
�

�
� �

�
�

� � �
� � � � � �

� � �

x x x x x x x x x x x x x x x x x

x

x

x

x
x

x
x

x x x
x x x x

§ § § § § § § § § §

§

§
§ § § § § § § § § § § § § § § § § § §

¦ ¦ ¦
¦

¦

¦ ¦

æ æ

æ

æ

æ
æ

æ
æ

æ
æ

æ

5000 5500 6000 6500 7000

0.0

0.2

0.4

0.6

0.8

1.0

Inertions

R
ec

o
v
er

y
R

a
te

(b) 8192K Buffer

� 2 Copies • 3 Copies χ 4 Copies > 5 Copies ⊥ 6 Copies

Figure 4: Effects of Multiple Copies on Document Recovery – Three copies is best

IP address and port, calculates the filter index as a
summed hash h = 2, and retrieves the third filter
entry s = F2 = E(1). After calculating the exponen-

tiation r = sp
′

= F2
p′

= E(p′), the provider saves
this result to the buffer positions as designated by
the hash chain C = {0, 1, 3}, and returns the buffer
to the client.

The client decrypts the buffer and extracts one (de-
duplicated) packet. The example in Table 9 is similar
to that of Table 2 emphasizing the integration into
the overall implementation.

VI SIMULATION

We conducted two simulations that assessed
Danezis’s iterative document recovery method: The
first measured the optimal number of document
copies stored to a buffer. The results are applicable
for our private packet filtering system and private
stream searching in general; we will use the term
documents, and recognize that the results apply for
packets, files, etc. Second, we measure the number
of documents recovered per iteration.

Finally, we measure the number of partitions ob-
served for a given PCAP data set, using our packet
partitioning method.

1 NUMBER OF DOCUMENT COPIES

Our simulation examined the effects of multiple doc-
ument copies in an output buffer. The effects are
measured in terms of a “recovery rate”, the fraction
of documents retrieved from a buffer for a given num-

ber of insertions. Ideally, the number of matching
documents saved to a buffer should match the num-
ber retrieved. The recovery rate should be 1.0 for any
number of insertions into the buffer.

However, as the number of insertions increases, some
documents will be overwritten with a multiplicity
greater than can be recovered from the buffer. At
some point, full recovery will not be possible, and
the recovery rate will decrease. The simulation thus,
determines the operational capacity of a buffer, where
full, acceptable, and unacceptable recovery rates can
be expected.

The simulation assumes that all searches are success-
ful, that each document is inserted into a buffer. This
permits analysis. Recognize that document selection
would be driven by the number of private keywords
and their frequency of occurrence in an actual corpus.

Figure 4 presents the recovery rates of our implemen-
tation of the iterative document recovery method.
The simulations used MD5 for the construction of
the hash chain, varied the buffer length, the number
of copies, and the number of insertions. Two buffer
lengths were exercised: 1024 and 8192 positions. The
number of document copies was varied from 2 to 6.
Insertions ranged from 0.6 to 0.9 of the buffer size.

The buffer with 1024 positions was exercised with 614
to 921 document insertions, and 4915 to 7372 inser-
tions were used for the buffer with 8192 positions.
The documents were big integers and selected at ran-
dom. Lastly, each simulation was executed over fifty
trials with these parameters over the range of inser-
tions. The recovery rate of each trial was then aver-
aged.

Page 12 of 17
©ASE 2013

0 10 20 30 40 50 60
0

100

200

300

400

Inertions

D
o
cu

m
en

ts
R

ec
o
v
er

ed

Figure 5: Documents Recovered per Iteration

æ

æ

æ
æ

æ
æ

æ
æ

æ
æ æ

æ

æ

0 2 4 6 8 10 12
1

10

100

1000

104

Partions in a packet

N
u

m
b

er
o
f

p
a
ck

et
s

Figure 6: Histogram of Packet Partitions

We seek a line from Figure 4 that provides full recov-
ery over the greatest range of insertions. We observe
that the line, representing three document copies, of-
fers this feature and for both buffers (drawn as a thick
blue line.)

Consider the buffer with 1024 positions, full recovery
is possible to 800 insertions when three copies is used.
At that point, the recovery rate decreases. In some
scenarios, this may be initially acceptable, but as the
upper bound of tested insertions is reached, recovery
is less than half. A similar result occurs in the buffer
with 8192 positions. Full recovery is possible to 6700
document insertions when three copies is used.

The extent that documents could be recovered for
other copy values did not perform as well. Notice
that when 4, 5, and 6 document copies were used for
storage, full recovery could only be achieved when
fewer documents were inserted into the buffer. If 4
copies are used, full recovery is possible for 775 doc-
uments for the 1024 buffer. Whereas, when 6 copies
are used, recovery is possible to 625 documents. Too
many copies and too many insertions leads to an in-
creased number of summations in a buffer position
that cannot be resolved by the client. The opposite
is also true. In the case of 2 copies, full recovery
is never achieved over the range of tested insertions.
When too few copies are used, no single copy remains
for recovery.

Our results confirm those presented by Danezis [5].
Since both used an iterative method to remove newly
discovered documents from the buffer (our algorithm
used a different positioning method), similar obser-
vations should be expected: Both efforts dispel the
notion that implementers should use a large number
of document copies as the buffer size increases, and

expect a high recovery rate. This notion does not
hold for finite and practically sized buffers.

Implementers should use three document copies as
the optimal value, and certainly for buffers sized to a
few thousand. Last, Danezis indicates that full recov-
ery can be achieved when the number of insertions is
less than half the size of the buffer.

Our experiments show that a greater capacity is pos-
sible. Full recovery was achieved at 800 and 6700
insertions for our two buffer sizes. This is approxi-
mately 0.80 of a buffer’s size.

2 DOCUMENTS PER ITERATION

Figure 5 depicts the number of documents returned
per iteration from the iterative recovery method. In
this simulation, the buffer size was 8192 and the the
buffer held 6625 insertions (near capacity.) The figure
shows four unique trials (lines), that a high number
of documents are initially discovered, followed by a
bottom, and then a peak number of documents are
recovered before the process halts. All documents
were recovered in these four simulations.

The intent was to discover the linear relationship be-
tween the size of the buffer and the number of iter-
ations needed to recover all documents. Some im-
plementers may be tempted to establish loop bounds
relative to a buffer’s size, and as a means of stopping
an errant recovery. For example, a buffer with 8192
positions seems to require no more than 60 iterations
to process (approximately 1% of the buffer size.)

We recommend a more effective measure: Only per-
mit positive buffer values. When the client subtracts

Page 13 of 17
©ASE 2013

a document value from the assigned buffer positions,
the result should always be positive. A negative value
in a buffer position identifies an errant condition, and
halts processing.

3 COUNTING PACKET PARTITIONS

Figure 6 shows the number of packet partitions after
processing the “Nitroba University Harassment Sce-
nario” [17]. This digital forensic exercise includes a
network dataset, the “Nitroba” corpus. This data set
contains 91,144 IP packets.

In this corpus, there were approximately thirty thou-
sand packets that fit in a single partition, and nearly
as many that fix into 13. These partitions introduce
a constant factor in the computation of the search
(specifically the exponentiation), and incur the great-
est computational cost of the system. Fortunately,
the exponentiation of r across multiple packet par-
titions can be parallelized. Each exponentiation is
independent; an area for future consideration.

VII THE LANGUAGE

In this section, we provide a brief summarization of
our high level language for private packet filtering,
and present the integration of our summed hash con-
junction. The intent is to convey the salient aspects of
the language, show how our conjunction can be used,
and present an application for cyber defense. A full
discourse, definition of the grammar, and details of
our prototype appear in [6]. We switch from client
and provider, to terms familiar with cyber defense: a
network defender and partner.

The language is designed for use in a collaborative
environment where a network defender and partner
agree to the notion of a private search. The defender
has access to sensitive attack indicators that if re-
vealed, could damage the source. The partner is will-
ing to share packet data that matches a query. If any
of the sensitive indicators are discovered on the part-
ner’s network, the defender can notify the partner of
the malicious activity (exposing only that indicator.)

Using our language, the client enters sensitive attack
indicators, uses our parser to transform those indi-
cators into an encrypted filter, and transfers the re-
sulting code to the partner. The partner conducts
the search and returns an encrypted buffer. In total,
there are three files: one for the query which the de-
fender keeps secret, one for the search, and one for

the output buffer. After extracting packets, our pro-
totype produces a PCAP file for use with other tools.

1 QUERY GENERATION

Listing 1 depicts the code for query generation. This
file consists of three sections: declarations, assign-
ments, and an expression of a packet filter. There is
a collision in nomenclature. Our “packet filter” se-
lects packets that are then processed by the private
search engine. Since the “encrypted filter” is an in-
tegral aspect of private search, “filter” is used as a
keyword. A packet filter uses an “encrypted filter” to
privately search packets.

Dec lara t ions

key public pa i l l i e r kPub {
buffer counjunctionOutput {

conjunction aConjunction {
f i l t e r in addr dst x ;

f i l t e r port dst y

} ;

} ;

buffer malsiteOutput {
f i l t e r in addr dst malS i te s ;

f i l t e r port dst dPort

}
} ;

graph myGraph {
source f i l e i n F i l e ;

whitelist in addr dst whList

} ;

Assignments

kPub = { include ”kPub . key” } ;

ma lS i t e s = { 5 . 6 . 7 . 8 , 5 . 6 . 7 . 9 } ;

dPort = {80 , 8080 , 443} ;

aConjunction = { { 1 . 2 . 3 . 4 , 80} , { 1 . 2 . 3 . 4 , 8080} ,

{ 1 . 2 . 3 . 4 , 443} , {malSites , dPort}
} ;

ma lS i t e s = { include ” l i s t M a l i o u s I P s . txt ” } ;

whList = { 192 . 168 . 0 . 0/16 } ;

A packet f i l t e r

myGraph = {
i n F i l e −> whList : : aConjunction ;

whList : : ma lS i t e s

} ;

Listing 1: The Query: Indicators Kept Private

Page 14 of 17
©ASE 2013

There are two declarations: key public paillier

kPub and graph myGraph. The first declares a vari-
able for a public key, two output buffers, a conjunc-
tion, and two filters. We emphasize that the hier-
archical structure establishes the cryptographic rela-
tionships necessary for a private search. Last, the
conjunction variable is independent of the two fil-
ter variables, but since the data type of these filters
match that of the conjunction, the variables can be
assigned.

The second declaration establishes a packet filter as a
graph of nodes and edges. The graph variable defines
two nodes, strictly variables, one for data input and
data reduction.

The code then displays four assignments to initialize
the public key, two filter variables, and the conjunc-
tion. The parameters for the public key are included
from a file. The filter variables are assigned to two
IP addresses, and a list of port values respectively.

The conjunction variable is then assigned as a list of
four terms. The first three are scalar assignments.
The fourth term is a short hand notation that cre-
ates conjunctive terms from an element-wise pairing
of the filter variables. Here, the matching types from
the two previously assigned filters are used. In total,
the conjunction is assigned to nine conjunctive terms.

The final assignment creates a white list, and a net
block of destination addresses to exclude from the
private search. The white list dis-regards packets to
common addresses. Last, a list of IP addresses is in-
cluded from a file and assigned to the IP filter.

The final section depicts the edge assignments of the
packet filter. Variables are interconnected via the
“->” operator and sink to a filter variable, via the
“::” operator. This interconnection forms a path
from the input source, inFile, to a white list vari-
able, and then processes packets in filters.

The defender submits the code in Listing 1 to our
parser. The parser removes the sensitive indicators,
computes, and writes the lists of encrypted values.
The defender sends this public file to the partner.

2 THE SEARCH

Listing 2 depicts the public form of the query, and
has a syntax similar to that seen in Listing 1. The
significant difference occurs in the assignment of
aConjunction and malSites. The values for both

encrypted filters are included from a file.

Dec lara t ions

key public pa i l l i e r kPub {
buffer counjunctionOutput {

conjunction aConjunction {
f i l t e r in addr dst x ;

f i l t e r port dst y

}
}

buffer malsiteOutput {
f i l t e r in addr dst malS i te s ;

}
} ;

graph myGraph {
source f i l e i n F i l e ;

whitelist in addr dst whList ;

} ;

Assignments

kPub = { include ”kPub . key” } ;

aConjunction = { include ” aConjunction . f l t r ” } ;

ma lS i t e s = { include ” malS i t e s . f l t r ” } ;

i n F i l e = {
” Enter a PCAP Filename : ”

} ;

whList = 1 9 2 . 1 6 8 . 0 . 0 / 1 6 ;

Graph Execution

myGraph = {
i n F i l e −> whList : : conjunctionOutput ;

whList : : mals iteOutput

} ;

Listing 2: The Search: Public Code for Private
Packet Filtering

When the partner executes the packet filter, pack-
ets flow through the graph and into both filters. We
represent this action in Figure 7, and the “tee” that
directs traffic into aConjunction, and malSites.
Packets that match in either the conjunction, or
the (standard disjunction) filter are stored to the
output buffer associated with that filter. Specifi-
cally, the results from aConjunction are saved to
conjunctionOutput, and the results from malSites

are stored in malsiteOutput.

Page 15 of 17
©ASE 2013

Packets

FooinFile
aConjunction

malSites

Flow

Figure 7: A Graph Representation of a Packet Filter

3 THE RESULT

After completing the search, the partner’s system will
create an output file consisting of a PCAP header,
identified by magic number 0xa1b2c3d4..., and the
encrypted data from the buffers. The partner sends
this file to the defender, who decrypts the buffers and
assembles the matching packets into PCAP files. The
defender can then use additional packet processing
tools. For brevity, only one ASCII hex value from
the buffer is displayed in Listing 3:

The output b u f f e r :

A PCAP header and encrypted b u f f e r

conjunctionOutput = {
0xa1b2c3d4. . . ,

{
0 x112233445566778899aa . . . ,

. . .

}
} ;

mals iteOutput = {
0xa1b2c3d4. . . ,

{
0 xf feeddccbbaa99887766 . . . ,

. . .

}
} ;

Listing 3: The Result: An Encrypted Output Buffer

Our language supports private searches for conjunc-
tions and disjunctions of IP addresses and ports. The
language thus, provides access to the low level con-
struct of private searching, and in a form that is fa-
miliar to network defenders.

VIII PROTOTYPE

A prototype was constructed in order to demonstrate
a working model of the language. The prototype con-
sists of a lexical analyzer (Flex), a Bison parser, C++
code, and used Mathematica for the private search
operations.

There are two principal C++ classes, an engine and
a base variable class. Each instance of a variable is
derived from the base variable class, and implements
specific functionality: a key class provides access to
the cryptographic parameters, a buffer class manages
the encrypted output, node variables select specific
packets, a filter class, and a conjunction class. The
engine interfaces with the Bison parser, instantiates
variables, and enforces semantic constraints in con-
junction with each variable.

The result is three programs, ppf-generate,
ppf-search, and ppf-recover, that derive from a
single code base to generate the query, perform the
search, and retrieve results. Listing 4 illustrates how
our private packet filter language and the examples
described would be used by the defender and partner.

IX CONCLUSION

We defined a summed hash conjunction for private
stream searching. The conjunctive operator inte-
grates into the private search system without any ad-
ditional data structures, complex calculations, and
removes the requirement for a public dictionary.
This broadens the capability provided by the private
search system, and permits the use of sensitive indi-
cators that cannot be exposed.

The insight and the theory from prior research has
been adapted, and a practical realization of pri-
vate stream searching has been realized (we have
not achieved full packet capture at line rate.) Our
language and prototype for private packet filtering
has been extended and includes our conjunction. To
achieve these goals, several system modifications were
made: Our conjunction references a single filter en-
try through a hash which removes a calculation of
filter entries, does not scale the result, and reduces
the buffer size by one half. We also described how to
tag and partition packets to solve the large documents
problem, that three document copies is optimum, and
a buffer’s capacity is approximately 0.8 the size of the
buffer.

The experiences and insights are intended for fu-
ture implementers and research, and open new venues
for research. The conjunction and language can be
adapted for further cyber research in private anti-
virus scanning, file scanners, intrusion detection, and
the discovery of malicious content without revealing
knowledge of the search.

Page 16 of 17
©ASE 2013

defender$ ppf -generate -r privateIndicators.ppf -w public.ppf

defender$ echo "Send public.ppf to the partner."

partner$ ppf -search -r public.ppf -w buffer.ppf

Enter PCAP filename: partner.pcap

partner$ echo "Return the buffer file , buffer.ppf"

defender$ ppf -recover -k kPrivate.key -r buffer.pss -w partnerActivity.pcap

Listing 4: A Demonstration of Private Packet Filtering

References

[1] E. Hutchins, M. Cloppert, and R. Amin,
“Intelligence-driven computer network defense
informed by analysis of adversary campaigns and
intrusion kill chains,” in Conference on Informa-
tion Warfare and Security, pp. 113–125, 2011.

[2] R. Ostrovsky and W. E. Skeith, “Private search-
ing on streaming data,” in Advances in Cryptol-
ogy (CRYPTO 2005) (V. Shoup, ed.), vol. 3621
of Lecture Notes in Computer Science, Springer,
2005.

[3] R. Ostrovsky and W. E. Skeith, “Private search-
ing on streaming data,” Journal of Cryptology,
vol. 20, no. 4, pp. 397–430, 2007.

[4] G. Danezis and C. Diaz, “Improving the de-
coding efficiency of private search,” in the
Dagstuhl seminar on anonymity and its appli-
cations, 2005.

[5] G. Danezis and C. Diaz, “Space-efficient pri-
vate search with applications to rateless codes,”
in Financial cryptography (FC’07), vol. 4886,
pp. 148–162, Springer-Verlag, 2007.

[6] M. Oehler, D. Phatak, and A. Sherman, “A
private packet filtering language for cyber de-
fense,” in the 8th Annual Symposium on In-
formation Assurance (ASIA’13), (Albany, New
York), pp. 46–55, 2013.

[7] M. Oehler and D. Phatak, “A conjunction filter
for private stream search,” in the 8th ASE/IEEE
International Conference on Privacy, Security,
Risk, and Trust (PASSAT’13), (Washington,
DC), 2013.

[8] M. Oehler and D. Phatak, “A simulation of doc-
ument detection methods and reducing false pos-
itive for private stream searching,” in the 8th In-
ternational Workshop on Data Privacy Manage-
ment (DPM’13), (Egham, England), 2013.

[9] S. M. Bellovin and W. R. Cheswick, “Privacy-
enhanced searches using encrypted bloom fil-
ters,” Tech. Rep. CUCS-034-07, 2007.

[10] P. Paillier, “Public-key cryptosystems based on
composite degree residuosity classes,” in In-
ternational conference on the theory and ap-
plications of cryptographic techniques (EURO-
CRYPT’99), vol. 1592, pp. 223–238, 1999.

[11] J. Bethencourt, D. Song, and B. Waters, “New
construction and practical applications for pri-
vate stream searching (extended abstract),”
in IEEE Symposium on Security and Privacy
(SP’06), pp. 132–139, IEEE Computer Society
Press, Los Alamitos, 2006.

[12] J. Bethencourt, D. Song, and B. Waters, “New
techniques for private stream searching,” ACM
Transactions on Information and System Secu-
rity, vol. 12, no. 3, 2009.

[13] D. Boneh, E. Goh, and K. Nissim, “Evaluat-
ing 2-DNF formulas on ciphertext,” in Theory
of Cryptography (TCC’05), vol. 3378, pp. 325–
341, 2005.

[14] X. Yi and E. Bertino, “Private searching for
single and conjunctive keywords on streaming
data,” in Proceedings of the 10th annual ACM
workshop on Privacy in the electronic society
(WPES ’11), pp. 153–158, 2011.

[15] D. E. Denning and P. J. Denning, “Data secu-
rity,” Computing Surveys, vol. 11, no. 3, pp. 227–
249, 1979.

[16] N. M. Haller, “The S/Key one-time password
system,” in the Symposium on Network Dis-
tributed Systems, Security, (San Diego, Califor-
nia), pp. 151–157, 1994.

[17] S. Garfinkel, “Digital corpora producing
the digital body – nitroba university ha-
rassment scenario.” NSF DUE-0919593,
http://digitalcorpora.org/, 2011.

Page 17 of 17
©ASE 2013

	Introduction
	Private Stream Search
	The Query
	The Search
	The Result
	Illustration of Private Search

	Related Work
	Storage and Recovery
	Conjunction Filters

	System Facets for Private Searching
	Elimination of the Dictionary
	Hashed-Index to Filter Entries
	Detection Tag
	Packet Partitioning
	Iterative Document Recovery
	PCAP Re-assembly

	Our Method for Conjunction
	Summed Hash Conjunction

	Simulation
	Number of Document Copies
	Documents Per Iteration
	Counting Packet Partitions

	The Language
	Query Generation
	The Search
	The Result

	Prototype
	Conclusion

