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Abstract

We describe the design, implementation, and evaluation of FROST—three new forensic tools for the OpenStack
cloud platform. Operated through the management plane, FROST provides the first dedicated forensics capabilities for
OpenStack, an open-source cloud platform for private and public clouds. Our implementation supports an Infrastructure-
as-a-Service (IaaS) cloud and provides trustworthy forensic acquisition of virtual disks, API logs, and guest firewall logs.
Unlike traditional acquisition tools, FROST works at the cloud management plane rather than interacting with the
operating system inside the guest virtual machines, thereby requiring no trust in the guest machine. We assume trust
in the cloud provider but FROST overcomes non-trivial challenges of remote evidence integrity by storing log data in
hash trees and returning evidence with cryptographic hashes. Our tools are user-driven, allowing customers, forensic
examiners, and law enforcement to conduct investigations without necessitating interaction with the cloud provider. We
demonstrate through examples how forensic investigators can independently use our new features to obtain forensically-
sound data. Our evaluation demonstrates the effectiveness of our approach to scale in a dynamic cloud environment.
The design supports an extensible set of forensic objectives, including the future addition of other data preservation,
discovery, real-time monitoring, metrics, auditing, and acquisition capabilities.

Keywords: OpenStack, cloud computing, digital forensics, cloud forensics.

1. Introduction

Today, cloud computing environments lack trustworthy
capabilities for the cloud customer or forensic investigator
to perform incident response and forensic investigation.
Consequently, customers of public cloud services are at
the mercy of their cloud provider to assist in an investiga-
tion. Law enforcement relies on the cumbersome and time-
consuming search warrant process to obtain cloud data,
and requires the cloud provider to execute each search
on behalf of the requester. In 2012, Dykstra and Sher-
man concluded that the management plane is an attrac-
tive solution for user-driven forensic capabilities since it
provides access to forensic data without needing to trust
the guest virtual machine (VM) or the hypervisor, and
without needing assistance from the cloud provider. Stor-
ing and acquiring trustworthy evidence from a third party
provider is non-trivial. This paper describes and evaluates
our implementation of a management plane forensic toolkit
in a private instantiation of the OpenStack cloud platform,
which we call Forensic OpenStack Tools (FROST).

FROST provides the first forensic capabilities built into
OpenStack, and to our knowledge the first to be built into
any Infrastructure-as-a-Service (IaaS) cloud platform. We
adopt the NIST definition of cloud computing as a model

for on-demand access to a pool of resources “that can be
rapidly provisioned and released with minimal manage-
ment effort or service provider interaction” (National In-
stitute of Standards and Technology, 2011). Our forensic
extensions allow for efficient, trustworthy, and user-driven
incident response and forensic acquisition in a cloud envi-
ronment.

This work implements practical tools on the theoretical
foundations established by Dykstra and Sherman. FROST
collects data at the cloud provider, at the host operating
system level underneath the guest virtual machines, and
makes that data available within the management plane.
The management plane, exposed through a website and
application programming interface (API), is how users of
OpenStack control the cloud, and where they start and
stop virtual machines. Because the user collecting forensic
data does not communicate with a virtual machine, the
forensic data are preserved against a compromised or un-
trustworthy virtual machine. Consider an arbitrary cloud
customer Alice who wants to investigate suspiciously high
bandwidth usage from her cloud-hosted webserver. Aside
from the logging of web requests that she does inside of
her own VM, Alice would have a more complete picture of
activity if she could also get a record of management ac-
tivity and metadata about her VMs. Our solution collects
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and provides trustworthy API logs, guest firewall logs, and
virtual disks. These data can help construct a timeline of
activity and understand an incident.

OpenStack (2012b) is an open-source cloud comput-
ing platform, conceived as a joint project between the Na-
tional Aeronautics and Space Administration (NASA) and
Rackspace. OpenStack users include many large organiza-
tions such as Intel, Argonne National Laboratory, AT&T,
Rackspace, and Deutsche Telekom. The cloud platform
comprises six primary modular components: Nova, the
compute platform and cloud controller; Swift, the object
storage system; Glance, the service for managing disk im-
ages; Keystone, the identity service; Horizon, the web-
based dashboard for managing OpenStack services; Quan-
tum, network services for virtual devices. OpenStack is
a complex software package, with over 600,000 lines of
code and 415 active developers (OpenStack, 2012a). It is
a widely used platform for private cloud instances, but it
is also compatible with commercial cloud offerings. Open-
Stack has APIs compatible with Amazon EC2 and S3.

Without loss of generality, our approach makes the fol-
lowing assumptions. First, the user-driven forensic capa-
bilities are applicable in situations where a cooperative
cloud customer is involved in the investigation. That is, if
a malicious customer uses the cloud to commit a crime, the
cloud provider will still be required to assist law enforce-
ment in the investigation. Second, the proposed solution
assumes a trusted cloud provider and cloud infrastructure.
Evidence from our forensic tools could be manipulated un-
less the underlying layers of the cloud infrastructure, such
as the host operating system and hardware, have integrity.
We assume that the hardware, host operating system, hy-
pervisor, and cloud employees are trusted, but we do not
assume trust in the guest machine. Third, we do not con-
sider legal issues associated with the process or product of
cloud-based forensic data acquisition; Dykstra and Riehl
(2012) previously explored those issues.

Our contributions are:

• Description of the architecture, design goals, and im-
plementation of user-driven forensic acquisition of
virtual disks, API logs, and firewall logs from the
management plane of OpenStack.

• An algorithm for storing and retrieving log data with
integrity in a hash tree that logically segregates the
data of each cloud user in his or her own subtree.

• Evaluation results showing that the proposed solu-
tion satisfies technological and legal requirements for
acceptance in court and scales appropriately for a
cloud environment.

The rest of the paper is organized as follows. Section 2
reviews previous and related work. Section 3 describes the
requirements, specifications, and capabilities of FROST.
Section 4 explains the architecture of our solution. Sec-
tion 5 discusses the design. Section 6 explains our API

and management console implementations based on the
architecture. Section 7 presents a concept of operations.
Section 8 evaluates our solution. Section 9 discusses ad-
vantages, limitations, and trust assumptions. Section 10
concludes the work.

2. Previous and Related Work

We survey previous and related work in remote foren-
sic acquisition, forensic data collected by providers, and
methods for storing content on untrusted platforms.

Data acquisition is a key issue when investigating cloud-
based incidents (Dykstra and Sherman, 2011a,b; Ruan et al.,
2011; Taylor et al., 2011). Research to date has focused
on explaining this issue but has failed to produce practical
tools to support remote forensic acquisition. Dykstra and
Sherman (2012) illustrated how to use existing tools like
Guidance EnCase to acquire forensic data remotely over
the Internet, but explained why the data may be untrust-
worthy. Martini and Choo (2012) proposed a conceptual
framework for preservation and collection of forensic data
from cloud computing but did not implement any capabil-
ities. In some cases, such as in Amazon Web Services, it
is possible to retrieve an image of the virtual disk of a vir-
tual machine. There is, however, no mechanism to obtain
a hash of the image on the provider’s system to validate
the integrity of the image after download.

In addition to disk images, forensic investigators use
metadata and system logs to reconstruct an event. Gen-
erating metadata and system logs are usually standard
practices in the operation of a system, rather than forensic-
specific tasks. Nevertheless, the logs are useful in an inves-
tigation and easily gathered. Consumers of cloud services
have few tools available for accessing low-level logs to the
cloud infrastructure. Cloud providers and researchers en-
courage application-level logging (Marty, 2011); Google,
Amazon, and Microsoft allow customers to log accesses to
stored objects (Google, 2012; Amazon Web Services, 2011;
Microsoft, 2012). Cloud customers are usually responsible
for their own monitoring, metrics, and auditing inside the
customer’s VM. Amazon CloudWatch is a monitoring ser-
vice for EC2, but its metrics are very course (Amazon Web
Services, 2013); detailed monitoring for network utilization
reports the number of bytes sent or received on all network
interfaces by an instance at one-minute frequency. To our
knowledge, no cloud provider makes available customer ac-
cessible API call audit logs or VM firewall logs. That is,
a customer has no way to know if, when, and from what
IP address his or her credentials were used to make API
calls.

Data integrity is a critical component of the forensic
process. Other authors have developed proposals for en-
suring integrity on untrusted machines, such as third-party
servers. Clarke (2005) proposed a method for validating
the integrity of untrusted data using hash trees and a small
fixed-sized trusted state. This method differs from our
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method because it does not check the integrity of sub-
sets of the data. SUNDR (Secure untrusted data reposi-
tory) (Liand et al.) is a filesystem for storing data securely
on untrusted servers. However, SUNDR requires that each
client of the filesystem is able to see file modifications by
the clients.

Other research has focused on storing content securely
on untrusted servers, which could then produce trustwor-
thy forensic data, even from third-party cloud providers.
Haber, et al. (2008) explored in depth the redaction of
subdocuments from signed original data, while preserv-
ing the cryptographic link of integrity between the two
datasets. Haber posited that audit logs can be considered
an append-only database, and that an audit report is es-
sentially a database query with certain entries redacted.
The proposed redactable signature algorithm is precisely
applicable to the cloud logs we will encounter, though it
must take into account a constantly changing dataset.

The dissertations of Crosby (2009) and Kundu (2010)
bear striking similarity to our goals despite different mo-
tivations. Crosby proposed history tree tamper-evident
logs, and suggested that they could “increase the trust in
software service and ‘cloud computing.’” Kundu was inter-
ested in authenticating subsets of signed data objects with-
out leaking structural information about the data struc-
tures. Our work was influenced by these designs. We
assume that the logger is trusted, and we use our en-
hanced logging mechanism simply for efficient log storage,
retrieval, and integrity validation.

3. Requirements, Specifications, and Capabilities

We describe the requirements, specification, and capa-
bilities for FROST. We identify the stakeholders and use
cases that will help determine the tool requirements. We
also discuss the accepted legal and forensic community re-
quirements, and how we will meet them.

Cloud-based crimes take two general forms that deter-
mine the stakeholders who would use FROST. One form is
a crime committed against an innocent cloud-based victim
who is cooperative in an investigation. The other is a crime
committed by an uncooperative party using the cloud as
an instrument of a crime. In the first case, the legitimate
cloud customer and/or law enforcement will use FROST.
In the second case, law enforcement or the provider will use
FROST. In both cases the requirement is to minimize in-
teraction with personnel at the cloud provider. The cloud
provider deploys FROST, but has no other responsibilities
(subject to the assumptions in Section 1).

3.1. Scientific, Technical, and Legal Requirements

There is no single, authoritative source for require-
ments development of new forensic tools. Our solution,
however, is informed by accepted practices and written
guidance. The Scientific Working Group on Digital Ev-
idence (SWGDE) (2006) asserts that “Digital Evidence

submitted for examination should be maintained in such
a way that the integrity of the data is preserved. The
commonly accepted method to achieve this is to use a
hashing function.” On the requirements for acquisition the
National Institute for Standards and Technology (2004)
says “The two critical measurable attributes of the ac-
quisition process are completeness and accuracy. Com-
pleteness measures if the all the data was acquired, and
accuracy measures if the data was correctly acquired.” In-
tegrity and completeness of the data will be of foremost
importance.

The cloud environment dictates the technical require-
ments. Any digital forensic tools for cloud computing
should be compatible with cloud characteristics of on-demand
self-service, rapid elasticity, and scalability. The following
technical requirements are consistent with these character-
istics:

1. Be compatible with existing forensic formats.
Instead of creating new data formats, the new capa-
bilities output data in existing formats to be easily
ingested by other forensic tools. Our logs and disk
images are provided in standard formats, and all are
accompanied by a Digital Forensic XML (DFXML)
file (Garfinkel, 2012). DFXML is used to express the
cryptographic hashes and provenance information.

2. Be easy to generate. It must be easy to modify
existing cloud deployments to add forensic capabili-
ties. It must also be intuitive and simple for a user
to request forensic data. Our changes to a stock in-
stallation of OpenStack can be made by running an
installation script. Users can request forensic data
with a single command or web click.

3. Be open and extensible. The implementation
must be available for any OpenStack administrator.
Developers should be able to extend and contribute
new forensic capabilities. The platform we developed
allows other developers to integrate other forensic
tools quickly and easily. The software will be sub-
mitted to the OpenStack project.

4. Be scalable. The forensic tools must be usable for
single cloud instances, while also supporting millions
of cloud customers and virtual machines. FROST
can support any number of instances and is limited
only by the processing time it takes the host operat-
ing system to retrieve the forensic data.

5. Follow existing practices and standards. Where
possible, cloud forensic tools should follow standard
forensic practices. The forensic data we provide ad-
heres to accepted practices and can be ingested by
standard forensic tools such as Guidance EnCase.

For acceptance in court, the Federal Rules of Evidence
901(b)(0) explain that “To demonstrate authenticity for
computer-generated records, or any records generated by
a process, the proponent should introduce ‘[e]vidence de-
scribing a process or a system used to produce a result and
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showing that the process or system produces an accurate
result’” (United States Government, 2011). In most cases,
the reliability of a computer program can be established
by showing that users of the program actually do rely on
it on a regular basis, such as in the ordinary course of
business. Our solutions use ordinary data, such as firewall
logs, even when we have enhanced the storage of data to
add increased data integrity.

3.2. Specifications and Capabilities

FROST has three primary components. First, a cloud
user can retrieve an image of the virtual disks associated
with any of the user’s virtual machines, and validate the
integrity of those images with cryptographic checksums.
Second, a cloud user can retrieve logs of all API requests
made to the cloud provider made using his or her creden-
tials, and validate the integrity of those logs. The API is
used for administering virtual machines, such as creating
and starting VM instances. Third, the cloud user can re-
trieve the OpenStack firewall logs for any of the user’s vir-
tual machines, and validate the integrity of those logs. The
OpenStack firewall operates at the host operating system,
and the API is used to administer it, such as allowing or
blocking network ports. These three components are use-
ful and offer forensic data that are not available directly to
cloud users today. In our informal discussions with cloud
users and administrators of two large private clouds and
forensic experts, they all requested capabilities that were
consistent with these features.

Cloud users interact with their provider and manage
cloud resources through the management plane using a
web interface and API. FROST is accessible from each of
these management plane interfaces. The implementation
is modular to allow additional forensic capabilities to be
added later.

4. Architecture

We describe the architecture of our solution. We show
how we will integrate with OpenStack, the type and format
of the data we will collect, and the methods for returning
data to the requestor.

4.1. Integration with OpenStack

OpenStack has many components, but we focus on the
two where we have integrated FROST: Nova and Horizon.
Nova provides the compute service through virtual servers
similar to those in Amazon EC2 and implements the com-
pute API. Horizon provides the web-based user interface
for OpenStack, and communicates with Nova through the
compute API. Figure 1 highlights where we modified Nova
and Horizon to integrate FROST.

We will add new Nova API calls that correspond to our
forensic features. Cloud users who interact with Open-
Stack using the compute API will be able to exercise our

capabilities from command-line tools and in their own pro-
grams.

Horizon is built using Django and Python, and imple-
ments dashboards for OpenStack. We modify the specifi-
cation for the dashboard that displays instance informa-
tion and creates a new tab. This tab will have links to
our forensic capabilities. These links will return data from
their corresponding API calls.

OpenStack has a variety of credentials for different
purposes. Our tools assume that OpenStack has authen-
ticated the user making the request. The Horizon web
interface requires only a username and password. The
command-line API requires either an access key and se-
cret access key (which can be retrieved using the API),
or an X.509 certificate and private key. API requests are
digitally signed using the private key, and this signature is
transmitted to OpenStack along with the certificate. Nova
also has a root certificate that can sign documents. We will
use this root certificate to add integrity to the storage of
log data, which we call the Authenticated Logging Service
(ALS).

4.2. Data Retrieval

Each of the three FROST capabilities accesses unique
data that are already stored by OpenStack or which we
can easily enable for storage. Retrieval of data for the
user depends on how and where the data are stored.

Retrieval of virtual disks is the most straightforward
task. For each virtual machine, OpenStack creates a direc-
tory on the host operating system that contains the virtual
disk, ramdisk, and other host-specific files. The file for-
mat of the virtual disk varies according to the hypervisor
used. Since we use KVM as our hypervisor, the format of
our virtual disks is QEMU QCOW2 images. The ability
to retrieve the original virtual disks must support snap-
shots of disks from machines that are running, as well as
downloads of disk images from stopped machines. QEMU
provides utilities to convert QCOW2 images to raw for-
mat, and libewf can convert raw images to the EWF-E01
format.

Cloud users may run a firewall inside their VM, but
OpenStack provides firewall services beneath the VM. By
default OpenStack uses the Linux iptables firewall on the
host machine to implement network security for the guest
machines. A new chain, or group of rules, is created for
each instance. Several default rules are automatically cre-
ated, such as allowing the host to communicate with the
guest. Cloud users are then able to create custom rules
manually, such as allowing inbound SSH or HTTP traffic.
OpenStack has no inherent configuration options to log
network connections that match the firewall rules or con-
nections that are denied by the firewall. However, iptables
natively has this ability. We will enable logging on all de-
nied network connections and enable the user to retrieve
logs for her OpenStack instances.

OpenStack has the ability to log request successes and
failures when a user issues a request to Nova. For exam-
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Figure 1: Pictorial snippet of the OpenStack architecture showing where OpenStack Compute (Nova) and OpenStack
Dashboard (Horizon) have been modified to add FROST. Horizon provides a web interface to the management plane
and Nova provides an API interface to the management plane. The majority of changes for FROST were to the API
Daemon.

ple, when a user uses the API to request a new VM, this
request can be recorded. These logs are stored on the host
operating system, and therefore are typically not available
to cloud users. FROST should store these data, but in a
method that allows the data to be segregated for each user
and that includes integrity checking information.

5. Design

The goals of enhanced API and firewall logging are to
enable a cloud user to retrieve and validate the integrity
of forensically-relevant log data. The ALS will supplement
Nova’s default logging capability. This service will store
the same data as the traditional log, but a new hash tree
will segregate users’ data and integrity checking informa-
tion with minimal overhead for record storage or retrieval.
Each OpenStack user account will have his or her own
subtree under the root.

When a user provisions a new virtual machine in Open-
Stack, a universally unique identifier (UUID) is assigned to
the machine. These UUIDs become children of the owner’s
root, and logs for that machine are appended as follows.
The subtree of any virtual machine has a depth of four for
the year, month, and day of the log entry, with the log mes-
sages as leaves of the tree. Because the tree is constantly
changing as new log entries are added, hash values for the
intermediate hash tree nodes are re-calculated daily. This
structure enables a user to request any date range for any
or all virtual machines, while reducing the additional over-
head required.

ALS guarantees integrity of the log data using crypto-
graphic hashes. Integrity checking allows the user to vali-

date if data has been inserted, removed, or modified. For
example, if Alice requests her logs for December, she can
calculate the hash values that she expects in the tree and
compare them to what the provider claimed they should
be. If an attacker modified the log data in transit, the
integrity check would fail and alert Alice to errors or ma-
nipulation.

6. Implementation

We provide details about the implementation of FROST
and show how users interact with the tools.

We implemented the forensic extensions using DevS-
tack, an OpenStack development environment, on Ubuntu
12.04. We used OpenStack Folsom, which was released
September 27, 2012. We used the Xen hypervisor and
Ubuntu guests, but our implementation can support any
hypervisor and guest operating systems.

6.1. Authenticated Logging Service

The Authenticated Logging Service uses Merkle trees (Merkle,
1988) as the data structure for storing API and firewall log
data. Unlike previous work, we are not concerned with
hiding the structural information associated with the tree,
nor about prohibiting redaction in exported subtrees.

Hash trees offer three advantages. First, storing sum-
mary information about a larger dataset enables efficient
validation and minimal data transmission. For any sub-
set of data in the tree, the algorithm hashes chunks of the
data, and uses those hashes to compute the hash of the
whole tree. It is unnecessary to reveal or transmit the en-
tire tree. Second, given the way we organize the tree, a
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Figure 2: Tree structure used to store API logs by user,
machine, year, month, and day, showing log entries for
Alice’s two virtual machines on December 7-8, 2012. The
value at each branch node is the hash of the concatenation
of its children. Hash values allow integrity validation for
a subtree of the whole.

user can easily query for data over any date range. Third,
the hash tree natively enables a user to validate the in-
tegrity of a subset of log data.

Our algorithm for storing API and firewall logs is as fol-
lows. These two sets of data are stored separately. Since
the design is the same for each, we describe only the stor-
age of API logs. As shown in Figure 2, the cloud provider
maintains a single, append-only hash tree for all users.
When a new user joins the cloud service, a subtree is cre-
ated for the user under the root. The user’s tree root is
signed using the user’s public key. All API logs associ-
ated with that user are stored in his or her subtree. Data
under the user’s root are organized in five layers, corre-
sponding to the machine instance, year, month, and day
of the respective log entry. Raw records are found at the
leaves, stored as children of the day. The value at each
branch node is calculated by concatenating the values of
its children and computing the hash of that aggregate. Ev-
ery minute, the provider computes a hash of the children
at each node and updates the value of each node with a
new hash. The provider also signs the root of the tree,
and the root of each cloud customer, using the Nova root
certificate.

When a user wishes to retrieve the logs associated with
a particular instance, the cloud provider returns the raw

log messages and any hash values necessary to validate the
integrity of the result up to the user’s root. For example, in
the most trivial case shown in Figure 2, the provider would
only return a single log message and the hash value at node
“Alice.” Using the Nova root certificate, the provider also
hashes and signs all data being returned and records these
values in a DFXML log file which is returned to the user.
Alice could then compute the hashes and validate that the
value she calculated for “Alice” matches what the provider
claimed.

6.2. API Implementation

Many users interact with cloud platforms with com-
mand line tools that call API functions. The Nova API
daemon is the endpoint for API queries. Our API ex-
tension file contains code to implement our features. We
register these extensions with Nova, and add the ability
to call them from the dashboard and the command-line
novaclient. New API calls are added to OpenStack by
placing their functionality in a contribution directory, and
modifying novaclient to allow the user to call the API.
Each of our forensic capabilities is implemented in this
manner. We then hook the Nova logging handler to send
log messages to our replacement logging service, described
below. We also hook the iptables manager to label firewall
messages with the instance ID associated with them. The
Nova Network daemon then carries out the work of cor-
rectly modifying the iptables rules as the system and the
user creates them.

To use FROST a user must have already authenticated
to OpenStack with his or her private key or credentials.
The authenticated user can access only the logs for ma-
chines that he or she owns, as enforced by Keystone, the
OpenStack identity service. The API validates that the
requestor has permission to access the instance for which
he or she is requesting forensic data.

Nova logs are stored in /var/log/nova/ on the host op-
erating system. When a user requests his or her Nova logs,
FROST searches this file for lines that contain that user’s
personal identifier.

Listing 1 shows the output of using FROST from the
command line to retrieve the Nova logs for a single virtual
machine. FROST returns the Nova entries that match that
UUID, and also creates a DFXML file named report.xml.
The DFXML file contains provenance information about
the execution of FROST and a hash of the log data for
integrity validation.

Firewall logging must be enabled, since it is not enabled
by default in OpenStack. Because OpenStack creates de-
fault rules for each running virtual machine, we append
another rule that logs all dropped packets to /var/log/sys-
log. For each instance, we prepend a special prefix to the
log messages that labels the UUID of the machine. Doing
so enables us to parse the log file and identify those lines
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$ nova get-nova-logs 0afcfbcd-b836-4593-a02c-25d8d3a94b00 verify.xml
[truncated]
2012-12-01 13:30:49 INFO nova.api.openstack.wsgi [req-0afcfbcd-b836-4593-a02c-25d8d3a94b00 admin demo]

POST http://10.34.50.142:8774/v2/5ee3040fa890428387f56111576cf819/servers
2012-12-01 13:30:49 DEBUG nova.quota [req-0afcfbcd-b836-4593-a02c-25d8d3a94b00 admin demo] Created

reservations [’915e9c89-b3bc-4091-8b75-3b555961ec3e’, ’72c39d24-0a96-42ca-96f1-593da3aa9f81’,
’57843316-872b-4b40-a853-2aa7c730262e’] from (pid=16036) reserve /opt/stack/nova/nova/quota.py:697

2012-12-01 13:30:50 DEBUG nova.compute.api [req-0afcfbcd-b836-4593-a02c-25d8d3a94b00 admin demo] Going to
run 1 instances... from (pid=16036) _create_instance /opt/stack/nova/nova/compute/api.py:492

[truncated]

Listing 1: Execution of the FROST API to retrieve the Nova logs for virtual machine 0afcfbcd-b836-4593-a02c-
25d8d3a94b00 showing user ”admin” provisioning a new virtual machine. These data are available only to users with
FROST or with provider assistance.

that correspond to the particular virtual machine that the
user requests.

Listing 2 shows the output of using FROST from the
command line to retrieve the firewall logs for a single vir-
tual machine. FROST returns the firewall logs that match
that UUID, and also creates a DFXML file named re-
port.xml.

Disk images are stored in the filesystem of the host
operating system. The file path includes the name of the
instance, which is used to identify the correct image to
return to the user.

Our implementation supports the retrieval of disk im-
ages from virtual machines that are powered off. New
versions of QEMU and Libvirt include functionality to ex-
ecute shapshots of running instances, but these features
have not yet been added to OpenStack.

Listing 3 shows the output of using FROST from the
command line to retrieve a disk image for a single vir-
tual disk with volume name myvol-e9a5612d. FROST re-
turns the disk image for myvol-e9a5612d, and also creates
a DFXML file named report.xml in the same way as above.
The requestor can validate the integrity of the image by
comparing the hash value in the DFXML, as computed by
the cloud provider, with the hash value computed by the
requestor.

6.3. Management Console Web Implementation

The Management Console for OpenStack Compute con-
tains an Instance Detail page for each virtual machine
guest created by the user. We added a new tab for “In-
cident Response” to the Instance Detail section. This tab
contains our forensic tools, and provides a space for future
forensics and incident response related features.

Figure 3 shows the Incident Response page for a virtual
machine. On this page a user can click to retrieve Nova
logs, firewall logs, and a disk image. These links return
a zip file that contains the data requested and a DFXML
file.

Figure 3: Screenshot of the OpenStack web interface show-
ing our new incident response tab and links to FROST
functions to download Nova logs, firewall logs, and disk
images for one virtual machine. These links provide easy
access to forensic functions for cloud users.

7. Concept of Operations

Here we explain how Alice, who we introduced in Sec-
tion 5, might use FROST to investigate an incident involv-
ing one of her virtual machines. Let us assume that one of
Alice’s machines has a webserver and that an attacker has
compromised it and gained access to the machine. Alice
becomes aware of this incident, and engages law enforce-
ment who opens an investigation.

Alice’s provider uses OpenStack with FROST. When
she first created her account, the ALS initialized a subtree
for her. When she created her virtual machine, subsequent
requests were logged to the tree. Furthermore, FROST
provides the ability to download virtual hard drive images
from both the web management plane and via the Nova
API.

After the incident, Alice uses her private key to retrieve
forensically-sound firewall logs, Nova logs, and virtual ma-
chine images of the compromised machine, and provides
them to the authorities. The firewall logs may show the
attacker scanning Alice’s machine before hacking it, and
the disk image contains evidence of what the attacker did
once he got access. This evidence is available only with
assistance from Alice’s provider, or with FROST, and it
gives strong forensic evidence about the crime that can be
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$ nova get-firewall-logs 0a18799f-c198-4dbb-b369-b49184e3dfbc verify.xml
0a18799f-c198-4dbb-b369-b49184e3dfbc: Nov 28 11:13:38 domU-12-31-39-17-29-5D kernel: [ 310.765760]

IPTables-Dropped: IN=eth0 OUT= MAC=12:31:39:17:29:5d:fe:ff:ff:ff:ff:ff:08:00 SRC=130.85.36.72 DST
=10.97.42.171 LEN=52 TOS=0x00 PREC=0x00 TTL=48 ID=29222 DF PROTO=TCP SPT=55739 DPT=443 WINDOW=1002
RES=0x00 ACK URGP=0

0a18799f-c198-4dbb-b369-b49184e3dfbc: Nov 28 11:13:36 domU-12-31-39-17-29-5D kernel: [ 309.623023]
IPTables-Dropped: IN=eth0 OUT= MAC=12:31:39:17:29:5d:fe:ff:ff:ff:ff:ff:08:00 SRC=172.16.0.23 DST
=10.97.42.171 LEN=103 TOS=0x00 PREC=0x00 TTL=64 ID=42188 PROTO=UDP SPT=33905 DPT=53 LEN=83

[truncated]

Listing 2: Execution of the FROST API to retrieve the firewall logs of virtual machine 0a18799f-c198-4dbb-b369-
b49184e3dfbc showing traffic to ports 443 and 53 being dropped. This level of logging is exposed only to users with
FROST or with provider assistance.

$ nova get-disk myvol-e9a5612d report.xml
MD5: b17ee04095b2a3d81eed98628072eab6
SHA1: 399f5ffaccd09fe43d642d5f0d996875ca650c9f

$ sha1sum myvol-e9a5612d
399f5ffaccd09fe43d642d5f0d996875ca650c9f myvol-e9a5612d

Listing 3: Execution of the FROST API to retrieve a disk image of volume myvol-e9a5612d. Integrity validation is
easily performed.

used in court.

8. Evaluation

We conducted two evaluations of FROST. The first is
an objectives-based assessment to validate that FROST
can scale and produce correct results. The second is a
consumer-oriented demonstration and independent appraisal
to gather feedback from potential users.

We tested FROST by creating 100 fictitious users and
used the API to launch five virtual machines for each user
simultaneously. For each virtual machine, we associated
firewall rules that allowed only SSH. With 500 virtual ma-
chines running, we used a network scanner to scan ports
1–1024 on each machine. This was done to trigger the fire-
wall to block network traffic on the prohibited ports. We
then chose a random user’s key from the list of 100 users,
and a random instance from the list of 500, and used the
API to try and stop the virtual machine. There was only a
1% chance that the chosen user owned the chosen virtual
machine, and this procedure generated Nova logs for both
successful and unsuccessful attempts.

We then chose 20 users at random and for each user
requested the API logs, firewall logs, and disk image for
each of the user’s instances. We validated the integrity of
each log and disk image returned by computing the hash of
the data and comparing it to the hash value in the DFXML
file. No anomalies were observed.

To scale to more users the logging mechanism needs
only more storage space. Each API and firewall log entry
can be no larger than 1KB. Using SHA-1 as the cryp-
tographic hash algorithm requires 160 bits for each tree
node (user, VM, year, month, day). In the worst case this

creates 1664 bytes per entry. Therefore, the logging mech-
anism can store more than 645,000 log entries in 1GB of
storage. We believe that modern servers can easily handle
this load. Cloud providers could choose to share this cost
with customers who wish to enable the logging service.

Cloud providers can expect minimal performance im-
pact after deploying FROST. The overhead of calculating
checksums and providing them to users is negligible. The
time and bandwidth required for a user to download his or
her logs or disk images is dependent upon the size of the
data. We also expect users to request large data volumes,
such as disk images, infrequently.

We demonstrated FROST to 12 users and administra-
tors of a large private government cloud; their reactions
were positive. One administrator said “[FROST] is exactly
what OpenStack has been missing” and “I appreciate shift-
ing the load [of investigation] away from me and onto our
users.” The audience was confident that FROST would be
useful in incident response and forensics due to its ease of
use. Users exercised FROSTs web and API interfaces and
described them as “intuitive and consistent with Open-
Stacks design.” Most users anticipated automating their
use of FROST, such as for collecting logs on a daily ba-
sis. They were also interested in using FROST for non-
forensic purposes, such as troubleshooting and compliance.
The administrators plan to deploy FROST to this cloud
in mid-2013.

This evaluation shows that the integrity, completeness,
and accuracy of the forensic data are intact, as identified
by SWGDE and NIST in Section 3.1. The legal require-
ments are similarly met. Our solutions use computer data
which are already collected and used in standard practice,
or like firewall logs, are standard practice in computer net-
works and are easily enabled in OpenStack.
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9. Discussion

We discuss advantages, limitations, trust assumptions,
and open problems of FROST.

FROST offers advantages to forensic investigators over
today’s options for data acquisition. Obtaining a search
warrant and serving it to a cloud provider, or requiring
a system administrator’s intervention to collect data puts
the investigator at the mercy of others to complete the
data acquisition. Today’s forensic tools like EnCase Enter-
prise also perform acquisition inside the guest VM, which
could be compromised. FROST performs acquisition at
the host operating system.

One limitation of FROST is that it still requires trust in
the cloud provider. In particular, users must trust the host
operating system, hardware, network, and cloud employ-
ees. Dykstra and Sherman (2012) previously explored op-
tions for addressing these concerns, such as rooting trust-
ing in hardware with trusted platform modules. Today
FROST concedes some trust in the system for the ability
to perform forensics remotely. FROST comes as a soft-
ware solution with almost no cost to the provider other
than some disk space and the support required to main-
tain and troubleshoot FROST. More comprehensive trust
solutions, including TPMs, require more substantial cost
on a large scale, and hardware changes to the entire cloud
infrastructure.

The enhanced logging mechanism is not foolproof. First,
it is impossible to detect if an untrusted logger intention-
ally fails to record an event without access to the logger.
Second, cloud clients could collude with the logger to roll
back or modify events that may be difficult for a third
party, such as law enforcement, to detect. Because we as-
sume that the cloud provider is non-coercible, this concern
is mitigated.

One open problem is preservation of data in the cloud.
Rapid elasticity is a feature of cloud computing, but it
comes with the challenge of preserving data in an inves-
tigation until that data can be identified and retrieved.
OpenStack needs the capability for manual or automatic
data preservation to maintain the record of activity of a
malicious cloud user. This could be achieved by archiving
logs and virtual disks for some period of time after the
cloud consumer requests their disposal. However, forensic
accountability may present tension with user privacy and
requires careful thought.

Another open problem is the evolution and maturity of
OpenStack. OpenStack has an active development com-
munity and regular software releases. Future modifications
to OpenStack may affect FROST’s functionality. We are
working to add FROST to the public OpenStack project.

Future work remains in several areas. FROST is unique
to IaaS environments. While the reference implementa-
tion has been done with OpenStack, implementations for
other IaaS platforms are feasible. Platform-as-a-Service
and Software-as-a-Service give less control to cloud users.
Forensic capabilities for these environments remain to be

done, and require considerations for their unique chal-
lenges. The provider will have to collect more of the foren-
sic data, such as logging in the guest operating system.

Expansion within OpenStack also remains. It would be
useful to support other virtual disk formats, since Open-
Stack supports many hypervisors. Other forensic capabil-
ities could be added to FROST, such as data preservation
or server-side e-discovery. Users will need the capability
to execute snapshots of running instances, which will be
possible with the latest versions of QEMU and Libvirt. It
would be useful to have automated snapshots of virtual
machines, and the ability to detect changes between snap-
shots. Forensic tools for object storage, like that provided
by OpenStack Swift and Amazon S3, would be useful to-
day.

While FROST implements the acquisition phase of the
forensic process, future work should consider solutions for
other phases of the process affected by cloud computing.
FROST produces data that can be consumed by standard
tools, but as data volumes increase other analysis tools
will be necessary.

10. Conclusion

We have introduced the FROST suite for OpenStack,
the first collection of forensic tools integrated into the man-
agement plane of a cloud architecture. These tools enable
cloud consumers, law enforcement, and forensic investiga-
tors to acquire trustworthy forensic data independent of
the cloud provider. In addition to incident response and
forensics, FROST can also be used for real-time monitor-
ing, metrics, or auditing.

FROST offers concrete user-accessible forensic capa-
bilities to cloud consumers. While many organizations are
still hesitant to adopt cloud solutions because of security
concerns, FROST arms them with powerful and immedi-
ate response capabilities. Similar tools should be a part
of all commercial cloud services, and we look forward to
the creation and adoption of more such tools to enhance
forensic readiness for cloud computing.
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